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Abstract— In this paper, we propose a reachable set based
collision avoidance algorithm for unmanned aerial vehicles
(UAVs). UAVs have been deployed for agriculture research and
management, surveillance and sensor coverage for threat detec-
tion and disaster search and rescue operations. It is essential for
the aircraft to have on-board collision avoidance capability to
guarantee safety. Instead of the traditional approach of collision
avoidance between trajectories, we propose a collision avoidance
scheme based on reachable sets and tubes. We then formulate
the problem as a convex optimization problem seeking time
varying control sets for the ego aircraft given the predicted
intruder reachable tube. We have applied the approach on a
case study of two quadrotors collision avoidance scenario.

I. INTRODUCTION

Autonomous aircraft have been deployed for agriculture
research and management, surveillance and sensor coverage
for threat detection, and disaster search and rescue opera-
tions. In most of these scenarios, multiple aircraft are desired
to increase the efficiency and coverage of the task. Since
in many of these scenarios they will be deployed in the
shared commercial airspace as well, they are required to have
sophisticated collision avoidance algorithms in order to fly
together with other conventional aircraft, which are piloted
by humans. As the number of these UAVs increases, a cen-
tralized ground control based model alone is not sufficient.
Thus an autonomous on-board collision avoidance system is
required to be implemented in a decentralized manner. This
limits the computation time and complexity of the algorithm.

Many collision avoidance algorithms have been proposed
in robotics areas. An artificial potential function was pro-
posed in [1]–[3] to produce control policies for robots to
navigate towards a goal and avoid each other and obstacles.
In [4]–[6], the authors proposed a decentralized collision
avoidance rule based on heading and collision cones. How-
ever, the research works mentioned above focus only on
designing a single path or trajectory for individual aircraft,
so that they are separated by at least the threshold distance.
The important challenge remaining is to provide guarantees
for some uncertain behavior of the intruder aircraft. In most
of the collision avoidance problems, an estimated position
of intruder is provided to the planner at every time step.
The ego vehicle has to adapt accordingly to the changes in
prediction. The predictions commonly have uncertainties, so
we captured them in our problem formulation as time varying
sets instead of single trajectory. Because the predictions
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are updating frequently, the designed controller has to be
robust to changes in the predicted behavior of the intruder.
Therefore, instead of a control policy, we propose to use the
control tube, a time varying set, to describe the robustness
of the control. The problem then becomes how to find a
control set update rule for the ego vehicle to avoid the
predicted intruder tube while maximizing the robustness of
the control. This problem implies that the collision avoidance
problem needs to be solved between time varying sets instead
of trajectories. Different from our previous work [7], the
objective here is not to avoid all possible executions of the
intruder, but to avoid the predicted tube of the intruder.
We will also emphasize in this work that the control set
obtained should be time varying instead of a fixed control
set constraint, as in our previous work.

The reachable set of a dynamical system is defined as
the set of states reachable from a given bounded initial
set, control set and disturbance set. The practical problem
mentioned earlier is closely related to reachability analysis.
The collision avoidance problem between reachable sets
has been previously studied under the frame of reachabil-
ity analysis of nonlinear dynamical games [8], [9]. The
other agent is considered as adversary or disturbance to
the collision avoidance problem. A controller is synthesized
to allow the aircraft to avoid the reachable sets of others.
Commonly, the prediction of the intruder can be provided
through ground radars or existing onboard systems such as a
traffic collision avoidance system (TCAS). Besides the above
mentioned level set approach [8], [9] to obtain reachable sets
for nonlinear dynamics, there are several fast linear algo-
rithms based on convex analysis. These algorithms employ
linearized dynamics with convex initial state set and control
disturbance sets. They commonly approximate reachable sets
using specific covering sets including ellipsoids [10], [11]
and polytopes [12]–[15]. In all these cases, support functions
are commonly used to analytically derive, or estimate the
reachable sets. However, many algorithms [12]–[15] compute
the approximated convex set iteratively, which makes the
resulting tubes impossible to be represented in analytic
forms. In [16], the authors propose to use the invariant set
to capture the reachable set, however, the method requires
finding a particular parametrization of the control policy.
We will use the reachable set tool set from [17] based on
the ellipsoid methods in [10], because its solutions can be
expressed efficiently in analytical expressions.

The main contribution of our work is that we provide a
new formulation of the collision avoidance problem using
reachable tubes, and propose a time varying update rule of
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control sets based on the optimization problem. The rest of
the paper is organized as follows. In section II we present
the fundamentals of reachability sets. Then in section III
we define the reachable set collision avoidance problem and
formulate it into a convex optimization problem incorpo-
rating the reachable sets. Afterward, we demonstrate our
approach in scenarios involving collision avoidance between
two quadrotors.

II. PRELIMINARIES

We consider collision avoidance navigation between air-
craft whose dynamics are given by nonlinear models as (1).

ẋ(t) = f(t, x, u, v) (1)

where x(t) ∈ X , x(0) ∈ X0 ⊆ X ⊂ Rn, u(t) ∈ U(t) ⊂ Rm
for all t, v(t) ∈ V ⊂ Rn for all t. U(t) is the control set and
V is a bounded disturbance set.

A. Reachable Set

The reachable set of (1) (or forward reachable set) R[ϑ] =
R(ϑ,X0), is the set of states that are reachable at time ϑ
from a set of initial states X0 and all possible controls and
disturbances. Formally it is defined by the following,

Definition 2.1 (Reachable Set): The reachable set
R[ϑ] = R(ϑ, t0, X0) of the system (1) at time ϑ from a set
of initial positions X0 and time t0 is the set of all points
x for which there exists a trajectory x(s, t0, x0), x0 ∈ X0

that transfers the system from (t0, x0) to (ϑ, x), x = x(ϑ),
while satisfying the associated constraints.

Similarly the reachable tube is the set of all reachable sets
over a time interval.

Definition 2.2 (Reachable Tube): The reachable tube
R[Θ] = {X(ϑ) = R(ϑ, t0, X0), ϑ ∈ Θ}

Reachable set computation for nonlinear model exists, but
either it is impractical in collision avoidance due to slow
computation time [8], or it relies on numerical methods
to approximate the nonlinear model with linear models
[12]. So instead of looking at the full nonlinear model, we
linearize the dynamics around an operating point, resulting
in dynamics that are of the following form.

ẋ(t) = A(t)x(t) +B(t)u(t) + v(t) (2)

Control design using linearization of the dynamics around
nominal trajectories (commonly used for fixed-wing aircraft)
is studied in [18]. Interested readers should refer to detailed
studies within. In this paper, because of the special structure
of the quadrotor dynamics, linearization can be performed
around an operating point for a short predicting horizon as in
[19], [20]. Exemplary trajectories from nonlinear dynamics
will be included in the results to confirm that the computa-
tion for the linearized quadrotor system does apply for the
nonlinear case.

To simplify the computation, the following assumptions
are used by noting Lemma 2.3, where U(t),X0 and V are
all convex and compact sets [10].

Lemma 2.3: With U(t),X0 and V being convex and
compact, the reachable set R[ϑ] is also convex and compact.

The problem of defining the reachable set of the system
can be reformulated as an optimization problem. Consider
the system (2). Since the reachable set would be convex and
compact due to the assumption on the control set and the
initial set, the reachable set can be captured using its support
function. Let ρ(l|X) be the support function of the set X , i.e.
ρ(l|X) = max{〈l, x〉 |x ∈ X}, and 〈l, x〉 represents the inner
product between vector l and x. Then the support function
of the reachable set R[ϑ] is given by the following,

ρ(l|R[ϑ]) = max{〈l, x〉 |x ∈ R[ϑ]}
= max{〈l, x(ϑ, t0, x0, u, v)〉 |u(·) ∈ U(t), x0 ∈ X0}

= max

{∫ ϑ

t0

l′Φ(ϑ, s)B(s)u(s) + l′Φ(ϑ, s)v(s)ds

+ l′Φ(ϑ, t0)x0

∣∣∣∣u(s) ∈ U(s), x0 ∈ X0, v(s) ∈ V
}

=

∫ ϑ

t0

ρ(B′(s)Φ′(ϑ, s)l|U(s)) + ρ(Φ′(ϑ, s)l|V)ds

+ ρ(Φ′(ϑ, t0)l|X0) (3)

where Φ(t, s) is the transition matrix of the system (2). i.e.
it satisfies ∂

∂tΦ(t, s) = A(t)Φ(t, s) and Φ(s, s) = I.

B. Ellipsoid Formulation

Assume further that all the sets are represented by ellip-
soids. Let cX and MX denote the center and shape matrix
of the set. The following holds, if x ∈ X = E(cX ,MX),〈

x− cX ,M−1
X (x− cX)

〉
≤ 1.

In terms of the support function, it can be expressed by

〈l, x〉 ≤ 〈l, cX〉+ 〈l,MX l〉1/2 .

The support function of the reachable set R[ϑ] could be
expressed in terms of the centers and shape matrices of the
initial set, control and disturbance sets Equation (4).

ρ(l|R[ϑ])

= 〈l,Φ(ϑ, 0)cX0〉+

〈
l,

∫ ϑ

0

Φ(ϑ, s)B(s)cU (s)ds

〉
+
〈
l,Φ(ϑ, 0)MX0ΦT (ϑ, 0)l

〉1/2
+

〈
l,

∫ ϑ

0

Φ(ϑ, s)cV(s)ds

〉
(4)

+

∫ ϑ

0

〈
l,Φ(ϑ, s)B(s)MU (s)BT (s)ΦT (ϑ, s)l

〉1/2
ds

+

∫ ϑ

0

〈
l,Φ(ϑ, s)MV(s)ΦT (ϑ, s)l

〉1/2
ds

In the following section where an optimization problem
about the control sets is formulated, the disturbance and
initial set will be constant terms to the optimization problem,
since they are independent of the control set parameters. We
will assume in what follows that v(t) = 0. The disturbance
term affects the size of the reachable set. Therefore, it can be
treated as an additional separation required in the collision
avoidance problem.
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C. Control Set Reparameterization

The control set under the ellipsoid formulation is described
by U(t) = E(cU (t),MU (t)). To simplify the parameteriza-
tion and formulation of the optimization problem, we adopt
the following from [16].

We define the control set by a scaling factor αU (t) of the
original system control constraint and the nominal control
cU (t), i.e. U(t) = E(cU (t), α(t)MŪ ). Ū = E(cŪ ,MŪ )
is an ellipsoid inner-approximation of the physical control
limitations. Naturally we have the following constraint on
cU (t) and α(t).

E(cU (t), α(t)MŪ ) ⊆ Ū ∀t

III. COLLISION AVOIDANCE USING REACHABILITY
ANALYSIS

In a collision avoidance scenario, the predicted path of
the intruder is commonly known apriori. Furthermore, the
uncertainty of the intruder can be predicted through onboard
sensors or ground radar. The main problem we want to
address, is to generate an update policy for the control set,
so that the reachable tube of the ego aircraft is collision free
from the predicted tube of the intruder.

More specifically, this collision avoidance problem will be
defined as the following problem involving reachable tubes.

Problem 3.1 (Reachability Based Collision Avoidance):
Denote the estimated collision time as T . The collision
avoidance using reachability can be formulated as a two
steps optimization problem. In the first step, We seek a
control set policy U(t) over the time interval, [0, T ], for
the ego aircraft, such that the resulting reachable tube
Rex([0, T ]) does not intersect with the intruder aircraft
reachable tube Rix([0, T ]) counting the separation. These
control sets should be chosen to maximize the flexibility of
the subsequent Model Predictive Control (MPC) design, and
therefore, the objective will be to maximize the size of the
control sets over time [0, T ]. In the second step, we seek
controls within these control sets, so that the ego aircraft
can safely reach their objectives in an optimal manner.

The following remark summarizes all the assumptions
discussed in the previous section,

Remark:
1) The control sets associated to the control policy and

initial set are represented by convex and compact
ellipsoids. The disturbance set is assumed to be empty
since it is a constant contribution to the optimization
problems.

2) The time varying control sets are parametrized by time
varying scalars that capture the ratios between the new
control sets and the original control bounds.

3) The nonlinear dynamics are linearized around the
operating point.

4) Note: There are no assumptions about the stabiliz-
ability or controllability of the dynamics, (although
unstable systems may induce infeasible optimization
problems.)

We will focus mainly on the first step of Problem 3.1 in
this paper. As assumed in the previous section, let the initial
state and control set of the ego aircraft be the ellipsoids
Xe

0 = E(ceX0
,Me

X0
) and Ū = E(cŪ ,MŪ ) respectively.

Formally, the Problem 3.1 can be formulated as the following
optimization problem,

Problem 3.2 (Reachable Set Collision Avoidance):

max
q(t),α(t)

max
l(t)

∫ T
t=0

µ(t)α(t)dt

subject to ∀t ∈ [0, T ] :
E(q(t), α(t)MŪ ) ⊆ E(cŪ ,MŪ )

−ρ(−l(t)|Rix(t))− ρ(l(t)|Rex(t)) > 0

The parameters of the optimization are q(t) and α(t), both
related to the updated control sets, Ũ(t) = E(q(t), α(t)MŪ ).
The objective is to maximize the sizes of the control sets
over time. µ(t) is a fixed scalar function which specifies
the importance of control sets over time. If the weight
is uniform over time, the optimal solution can have very
flexible control set at the start, but very tight control near
collision, which is not desired. The inner maximization is a
feasibility problem, which is to find the direction for a series
of separation hyperplanes l(t) induced by the reachable set
separation constraint. The first constraint is due to the fact
that Ũ(t) ⊂ Ū , the last constraint is to keep reachable sets
separated at every time step.

The first constraint is equivalent to the following con-
straints [21] on a new function λ(t) > 0,∀t ∈ [0, T ], such
that

 1− λ(t) 0 (q(t)− cŪ )T

0 λ(t)I a(t)(MŪ )1/2

q(t)− cŪ a(t)(MŪ )1/2 MŪ

 � 0

a(t)2 = α(t)

Let us assume the norm of the best separation hyperplane
l∗(t) can be estimated based on the initial predicted tubes
of the intruder and ego aircraft. In other words, we assume
the direction that minimizes distance between the reachable
sets is not affected by changes in the control constraint.
The intuition behind this assumption is that even if the
direction is altered, the outer maximization is achieved at
a similar constraint set. In real applications, the autonomous
aircraft will be given such direction to avoid either based
on the approaching angle autonomously or based on in-
structions from the other pilots. Let us define ellipsoids
E(ciX(t),M i

X(t)) ⊇ Rix(t), t ∈ [0, T ], which tightly over-
approximate the reachable tube of the intruder. The last
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constraints can be written as〈
l∗(t), ciX(t)

〉
−
〈
l∗(t),M i

X(t)l∗
〉1/2 − 〈l∗(t), eAtceX0

〉
−
〈
l∗(t),

∫ t

0

eA(t−s)Bq(s)ds

〉
︸ ︷︷ ︸

h(q,t)

−
〈
l∗(t), eAtMe

X0
eAtl∗(t)

〉1/2

−
∫ t

0

r(s,t)︷ ︸︸ ︷〈
l∗(t), eA(t−s)BMŪB

T (eA(t−s))T l∗(t)
〉1/2

a(s)ds︸ ︷︷ ︸
g(a,t)

> 0.

(5)

Furthermore, we assume the control set is only allowed
to be updated every δt and collision happened at N steps in
the future, i.e. Nδt = T . We have

U(s) = E(qd(k), αd(k)MŪ ) ∀s ∈ [kδt, (k + 1)δt)

Therefore the optimization variables can be captured in
terms of a ∈ RN , q ∈ Rm×N such that

ai =
(
αd(i− 1)

)1/2
= ad(i− 1)

and the ith column of q is

qi = qd(i− 1).

It is also desired to keep the control set varying smoothly
over time. Therefore, we also add a term in the objective to
minimize variation in the nominal controller qd(k). Define
constant matrix H as

H =


1 −1 0 0 . . . 0
0 1 −1 0 . . . 0
...

. . . . . . . . . . . .
...

0 . . . 0 −1 1 0
0 . . . 0 0 1 −1


The variation in nominal control can be captured using∥∥HTq

∥∥
F

Let {P (i), i = 1, 2 . . . N} be N n×m constant matrices,
such that the jth column of P (i) is defined as

P (i)j =

∫ iδt

(i−1)δt

eA(kδt−s)bjds,

where bj is the jth column of the B matrix.
Then h(q, t) and g(α, t) in the separation constraints

Equation (5) evaluated at kδt become

h(q, kδt) =

〈
l∗(kδt),

k∑
i=1

∫ iδt

(i−1)δt

eA(kδt−s)Bqids

〉

=

〈
l∗(kδt),

k∑
i=1

m∑
j=1

∫ iδt

(i−1)δt

eA(kδt−s)bjds qji

〉

=

k∑
i=1

l∗T (kδt)P (i)qi (6)

g(a, kδt) =

k∑
i=1

ai

∫ iδt

(i−1)δt

r(s, kδt)ds (7)

Let µi = µ(iδt).
Since a is positive the objective of maximizing µ(t)Tα(t),

is modified to maximize µTa instead, then the optimization
problem 3.2 becomes the following,

Problem 3.3 (Simplified Problem):

max
a,q

µTa−
∥∥HTq

∥∥
F

subject to ∀k ∈ 1, 2...N :
λ(k) > 01− λ(k) 0 (qk − cŪ )T

0 λ(k)I ak(MŪ )1/2

qk − cŪ ak(MŪ )1/2 MŪ

 � 0

ρ(−l(kδt)|Rix(kδt))− ρ(l(kδt)|Rex(kδt)) > 0

The last constraint will be affine on q,a based on Equa-
tions (6) and (7). Therefore this problem can be solved using
convex optimization.

IV. SIMULATIONS AND RESULTS

The reachable set based method described above is demon-
strated on the linearized quadrotor models described below.

A. Quadrotor Model

To capture the dynamics of the quadrotor properly, we
need two coordinate frames. One of them is a fixed frame
and will be named as the earth frame, and the second one
is the body frame which moves with the quadrotor. The
transformation matrix from the body frame to the earth frame
is R(t). The quadrotor dynamics has twelve state variables
(x, y, z, vx, vy, vz, φ, θ, ψ, p, q, r), where ξ = [x, y, z]T and
v = [vx, vy, vz]

T represent the position and velocity of the
quadrotor w.r.t the body frame. (φ, θ, ψ) are the roll, pitch
and yaw angles, and Ω = [p, q, r]T are the rates of change
of roll, pitch and yaw respectively.

The Newton-Euler formalism for the quadrotor rigid body
dynamics in earth fixed frame is given by:

ξ̇ = v

v̇ = −ge3 +
F

m
Re3 (8)

Ṙ = RΩ̂

Ω̇ = J−1(−Ω× JΩ + u)

where g is the acceleration due to gravity, e3 = [0, 0, 1]T , F
is the total lift force and u = [u1, u2, u3]T are the torques
applied. F and u are the control inputs. More details on
the quadrotor dynamics can be found in [22], [23]. For this
work, we linearize the dynamics (8) about the hover with
yaw constraint to be zero, as it has been done in [19]. Since
ψ is constrained to be zero, we remove ψ and r from our
system and make the system ten dimensional. Consequently,
we only need three control inputs, F, u1, and u2 for the
system. The linearized model is the same as what is done in
[19], [20]. The system matrices for the linearized model are:
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Fig. 1. The initial reachable tubes of of both aircraft projected to x y. The
reachable tubes are represented by external approximations computed by
Ellipsoid Toolbox. The light yellow tube is the external approximation of
the reachable tube of the ego aircraft, while the light red one is the external
approximation of the reachable tube of the intruder. Clearly, the reachable
tubes collide.

Fig. 2. The reachable tubes for two aircraft after control set design for the
first scenario. Clearly, there is no collision between the overapproximation
of the reachable tubes. A closer examination also reveals that there is no
violation of separation requirement over time. The nonlinear trajectories are
within the reachable tube bounds during the whole time horizon.

A =


0 I 0 0

0 0

 0 g
−g 0
0 0

 0

0 0 0 I
0 0 0 0

 ; B =


0 0 0
0

1/m

 0

0 0
0 I2×3J

−1


I2,3 =

[
1 0 0
0 1 0

]
All zero and identity matrices in A and B are of proper
dimensions.

B. Collision Avoidance Between Quadrotors

We computed the reachable sets and performed convex
optimization using a computer with a 3.4GHz processor and
8GB memory. The software we used include the Ellipsoid

Fig. 3. The reachable tubes for two aircraft after control set design for the
second scenario. Since the intruder is moving away, the reachable tube for
the ego aircraft is larger in size comparing to the one in Fig. 2 . Clearly,
there is no collision between the overapproximation of the reachable tubes.
A closer examination also reveals that there is no violation of separation
requirement over time.

toolbox [17] and CVX [24], [25] for solving convex opti-
mization problems.

The first scenario is the following: the ego aircraft starts
at (−1, 0.5, 0)m with the initial speed of (0.2, 0, 0)m/s. The
intruder aircraft is currently at (1, 0, 0) approaching the
ego aircraft with the initial speed of (−0.2, 0, 0)m/s. The
separation requirement is 1m. The collision time T = 5s.
The directions of the hyperplane l∗(t) are estimated based
on nominal trajectories. The initial reachable tubes of both
aircraft projected to the x, y and time axis are shown in Fig.
1. As can be seen, the reachable tubes clearly overlap with
each other. By solving the optimization problem, we obtained
the resulting reachable tubes for intruder and ego aircraft
shown in Fig. 2. The newly computed control set is updated
every 0.25s. The nonlinear example trajectories are obtained
by forwardly integrating the nonlinear dynamics of Equation
(8) with controls on the boundary of the resulting control
tube for the ego aircraft. They are within the reachable tube
computed. Clearly, the resulting reachable tubes avoid each
other, and a closer examination shows that the separation
requirement is satisfied.

There is miner a modification in the simulation scenario.
The difference is that the intruder aircraft is moving slightly
away in the y direction from the ego aircraft with initial speed
of (−0.2,−0.05, 0)m/s. All the other parameters are the
same. The near miss time instant is close to the collision time
in the first scenario. By solving the optimization problem, we
obtained the resulting reachable tubes for intruder and ego
aircraft shown in Fig. 3. The newly computed control set
is updated every 0.25s. Since the intruder is moving away,
the reachable tube for the ego aircraft is larger in size. The
resulting tubes also met the same separation requirements we
specified.

The computation time for the control set design through
convex optimization for both cases is about 1.2s, which
means the collision avoidance algorithm can be implemented
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online. The reachable set computation takes a lot more
time. Since we would like to have good precision of the
reachable set, 10 ellipsoids are used to obtain the external
approximation. Given time varying control sets the reachable
tube computation takes around 620s.

V. CONCLUSION

In this paper, we have proposed a reachability based
approach to collision avoidance algorithm for UAVs so that
the resulting reachable tube is safe from the intruder. We
transform the collision avoidance problem into an optimiza-
tion problem. The reachable set can be captured equivalently
by its support function. Thus we formulated the original
problem as a continuous time optimal control problem using
the support function of the reachable sets. To solve the prob-
lem using numerical techniques, the problem was discretized.
It was shown that the discretized optimization problem has
cost function which is convex in the optimization variables
and the constraints are affine in the optimization variables.
The optimization problem is solved numerically and the
simulation results are presented. We want to emphasize that
the present approach is robust, since the problem has been
formulated using reachable tubes, instead of a single trajec-
tory. Furthermore, as this approach gives limited constraints
on the controller, standard optimization based or rule based
controller design can be used after our method to obtain
optimal and safe trajectories.

Although currently, the method is limited to linearized
systems, reachability analysis for hybrid systems can extend
our method to nonlinear and more general dynamics. We
focused the analysis for two aircraft collision avoidance, but
our method can be extended to the multiple aircraft case by
adding constraints.
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