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Abstract— A two players stochastic differential game is con-
sidered with a given cost function. The players engage in a
non-cooperative game where one tries to minimize and the
other tries to maximize the cost. The players are given a
dynamical system and their actions serve as the control inputs
to the dynamical system. Their job is to control the state of
this dynamical system to optimize the given objective function.
We use the term “state of the game” to describe the state
of this dynamical system. The challenge is that none of the
players has access to the state of the game for all time, rather
they can access the state intermittently and only after paying
some information cost. Thus the cost structure is non-classical
for a linear-quadratic game and it incorporates the value of
information. We provide the Nash equilibrium strategy for the
players under full state information access at no cost, as well
as under costly state information access. The optimal instances
for accessing the state information are also explicitly computed
for the players.

I. INTRODUCTION

Many facets of robust control, minimax stochastic control
and general stochastic control problems have been revealed
through the study of two players differential games [1], [2],
[3], [4] [5]. To our best knowledge, differential games were
first introduced with the zero-sum framework in [6]. Later,
nonzero-sum differential games were introduced and studied
in the works of Starr and Ho [7], [8]. Nash equilibrium
strategies and their properties for different game frameworks
have been studied for decades. Existence and uniqueness of
such strategies are of paramount interests to studies like [9],
[10] [11] and many others.

Among the classes of various differential games, linear-
quadratic differential games is one of the most important and
most studied class of problems. In this framework, the state
of the game depends linearly on the strategies of the players
and the optimization criteria for the players are quadratic.
In most game problems, a closed form expression for the
Nash strategy is not available and, in general, very difficult
to calculate. However, for linear-quadratic games, the closed
form expression for the Nash strategy is determined by
solving certain coupled Riccati type equations [12], [10],
[13]. Whereas [14], [9] studied the necessary and sufficient
conditions for a strategy to be a Nash strategy, [11] addressed
the problem of uniqueness of a Nash strategy. While most
of the previous works address linear-quadratic games of
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fixed, finite time, [10] studies the asymptotic behavior of
the Nash strategy when the duration of the game extends to
infinity. Along with the studies of Nash strategies, Stackel-
berg strategies for nonzero-sum linear-quadratic games were
investigated in [15]. Games where one of the players does
not know the performance criterion of the opponent are best
modeled and solved using the Stackelberg strategy concept
[15].

[16] provided a counterexample showing the existence of
a nonlinear Nash strategy for certain linear-quadratic games,
startled the understanding that linear strategies are optimal
for linear-quadratic games. In principle a non-cooperative
game is a decision making problem and thus the information
structures available to the players play a great role in
determining the strategies for the players. In the class of
linear-quadratic games, there are notions of open-loop, close-
loop, feedback information patterns where the players can
have the knowledge of the initial state of the game only, or
all past and present states, or the present state only. This
limited information determines the different structures of
the corresponding Nash equilibrium strategies [17]. A very
recent work [18] considered a differential game with the
noise depending linearly on the state. The optimal strategy
is a linear state feedback for the game [18], however it
requires solving a stochastic Riccati-like equation for the
players rather than a deterministic Riccati-type equation.
The information pattern for this game is feedback type
and hence the players can access the current state without
paying any cost. The vast majority of past works makes
the assumption that the state information is available to the
players to construct their strategies.

In this work, we consider a nonclassical linear-quadratic
differential game framework where we add a cost for ac-
quiring state information. This new structure of the cost
introduces notable changes in the well known structure of the
Nash strategy for a similar game with no-cost information
acquisition. We consider the game to have a continuous-
time dynamics and the players can access state information
only at discrete time instances and each such access query
carries a finite cost. We impose the condition that the state
access times for the players have to be the same and the
state information will be made available to both of them at
those time instances. At a first look, this seem to be a strong
assumption but what this assumption technically means is
that all the strategies of the players will be adapted to the
same observational σ-field. Without this assumption, we will
run into the problem of asymmetric information and the study
of this problem is beyond the scope of this work. Some

2016 IEEE 55th Conference on Decision and Control (CDC)
ARIA Resort & Casino
December 12-14, 2016, Las Vegas, USA

U.S. Government work not protected by
U.S. copyright

276



preliminary results on this can be found in [19]. The analysis
shows that the optimal state access times can be found offline
by solving some finite-dimensional optimization problem.
This entails the players to declare a unanimous decision of
selecting state information acquisition times before the game
starts. Therefore, we intend to study the following two facts
of the game: first, how the players come to a consensus
regarding the state accessing times and second, what will
be their optimal strategies (the continuous controls that will
drive the continuous dynamics of the game) for the game.

In the quadratic cost function, we take an integral cost
and pointwise quadratic costs at several intermediate time
instances. Pointwise cost at the final time (T ) is widely
studied in the framework of linear-quadratic control, however
multiple pointwise costs allow the possibility of putting more
emphasis on some discrete time instances. This unusual
formulation of the cost changes the structure of the optimal
strategy even with no-cost information access structure.
The computation of the optimal strategy requires solving a
Riccati-type equation semi-coupled with a linear ordinary
differential equation ((8) and (9)).

Since the information acquisition is costly, the players will
ask for information only at some optimal time instances.
Similar to [19], the present study also shows that there
is no direct relation between the optimal time instances
of acquiring state information and the time instances of
incurring pointwise cost.

We start our analysis by citing the optimal strategy for
the players under no-cost information acquisition in Section
III. Subsequently, we add the cost for information acquisi-
tion and solve the two decoupled optimization problems to
describe the structure of the optimal strategy and the optimal
way to construct the set containing the access times of the
state information.

II. PROBLEM FORMULATION

Let us consider a two player game G(x, J, u, v) as defined
below.

Definition 2.1: A two players differential game
G(x, J, u, v) consists of four components: x(t): state
of the underlying dynamical system at time t, u(t), v(t):
actions chosen by the players at time t, and J : the cost
associated with the game. In a non-cooperative game set up,
the objective of one player is to minimize the cost, whereas
the other player maximizes the cost.

The state of the game (which means in this paper the
state of the underlying stochastic dynamical system) obeys
the following linear stochastic dynamics (1)

dx = Axdt+Budt+ Cvdt+GdWt (1)

where Wt is an r dimensional standard Wiener process and
the above dynamics should be treated in the sense of Ito.
∀t, x(t) ∈ Rn, u(t) ∈ Rm1 and v(t) ∈ Rm2 . The model
parameters A,B,C, G are time variant, however, in order
to maintain notational brevity, we omit the time argument.

The game is played for a finite time interval [0, T ] and the
cost function is considered to be (2):

J(u, v) = E
[ ∫ T

0

(‖x‖2L+‖u‖2R−‖v‖2S)dt+

N∑
i=1

‖x(ti)−ri‖2αi
]

(2)
where ‖p‖2Q = p′Qp for any two matrices p and Q of proper
dimensions; ri and αi are some given fixed vectors and
matrices that are the parameters of the cost function J . J
consists of a running cost (integral term) and pointwise costs
at some (N given) predefined time instances 0 ≤ t1 < t2 <
· · · < tN ≤ T .
The cost function has to be minimized for player-1 (P1) who
selects the action u, while player-2 (P2) aims to maximize
the cost by selecting the action v. In classical LQG control,
there is (if any) only terminal state cost, however, the cost
which we have considered is more general and it allows for
penalization if the state at time ti deviates from reference
value ri.

Each player has only limited and the same information
about the state of the game and they can ask for the current
state of the game by paying some cost. Let us denote
the number of times state information is requested by the
players up to time t be n(t). The cost associated with these
information acquisitions are λ1n(t) and λ2n(t) for P1 and
P2 respectively. We add these costs to the cost function J .
Hence P1 should minimize:

J1(u, v) =E
[ ∫ T

0

(‖x‖2L + ‖u‖2R − ‖v‖2S)dt (3)

+

N∑
i=1

‖x(ti)− ri‖2αi + λ1n(T )
]
,

and P2 should maximize:

J2(u, v) =E
[ ∫ T

0

(‖x‖2L + ‖u‖2R − ‖v‖2S)dt (4)

+

N∑
i=1

‖x(ti)− ri‖2αi − λ2n(T )
]
.

−λ2n(T ) is added in (4) since P2 aims to maximize J .
Though at this point we have two separate cost functions
for each player, both the optimization problems boil down
to minimizing and maximizing (2) once the players finalize
the number of times the state will be accessed. The objective
of the players is to jointly determine the time instances τk to
construct their information set I(t) = {x(τk)}n(t)

k=1 for all t.
P1 selects the control u, as a function of this information set,
to minimize J(u, v). On the other hand, P2 constructs the
strategy v, at time t, with the limited knowledge accumulated
in I(t), to maximize J(u, v) given in (2). The information
set is ordered i.e. τk < τk+1 and non-anticipative i.e. for any
t, τn(t) ≤ t. The set of admissible controls for P1 and P2
are adapted to the σ-field generated by the information set
I(t).

III. STRATEGIES WITH COSTLY INFORMATION

Before attempting the overall problem, let us first cite a
theorem that gives the Nash Strategy for this game when
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the players do not have any cost for sampling the states, i.e.
λ1 = λ2 = 0

Theorem 3.1 ( [19]): The optimal strategies for the play-
ers are:

u∗(t) = −R−1B′
(η

2
+ Px

)
(5)

v∗(t) = S−1C ′
(η

2
+ Px

)
. (6)

The optimal cost is

J∗ =E[‖x(0)‖2P (0) + x(0)′η(0)] +

N∑
i=1

‖ri‖2αi (7)

+

∫ T

0

(
tr(PGG′) +

1

4
‖η‖2CS−1C′ −

1

4
‖η‖2BR−1B′

)
dt,

where

Ṗ +A′P + PA+ L+ P (CS−1C ′ −BR−1B′)P = 0 (8)

P (T ) = 0

P (t−i )− P (t+i ) = αi

and
η̇ = −

(
P (CS−1C ′ −BR−1B′) +A′

)
η (9)

η(T ) = 0

η(t−i )− η(t+i ) = −2αiri
Assumption 3.2: We assume CS−1C ′ − BR−1B′ � 0

∀t ∈ [0, T ] in order to ensure existence and uniqueness of
the solution of the Riccati equation (8) over [0, T ].
The following remarks follow directly from Theorem 3.1.

Remark 3.3 ( [19]): The optimal strategy consists of an
open loop term to optimize the pointwise cost and a closed
loop term to optimize both the pointwise cost and the integral
cost.

Remark 3.4 ( [19]): For the case when tN = T , the
jump and boundary conditions for (8) and (9) are given as
follows:

P (t−i )− P (t+i ) = αi ∀1 ≤ i < N

and P (T ) = αN.

η(t−i )− η(t+i ) = −2αiri ∀1 ≤ i < N

and η(T ) = −2αNrN.
Remark 3.5 ( [19]): If the game parameters for both the

players are the same i.e. B = C and R = S, the game
exhibits some interesting properties:
• The optimal strategies can be computed by solving two

decoupled linear equations on P and η with the same
boundary and jump conditions as in (8) and (9).

• The optimal cost in this case will be

J∗ =E
[
‖x(0)‖2∑N

i=1 ‖ΦA(ti,0)‖2αi+
∫ T
0
‖ΦA(t,0)‖2L

− 2x(0)′
N∑
i=1

ΦA(ti, 0)′αiri
]

+

N∑
i=1

‖ri‖2αi (10)

+

∫ T

0

tr(PGG′)dt

where (10) is derived by solving (8) and (9).
• Any pair of strategies (u, v) of the form (γ,−γ)

will achieve the optimal cost. However, the pair
(−R−1B′Px,R−1B′Px) is the Nash equilibrium strat-
egy.

In Theorem 3.1, the explicit formulae for the optimal
strategies of both the players require the knowledge of the
state x(t) for all time t ∈ [0, T ]. Now we will investigate how
the strategies change for both the players when they have
state information only at finite number of time instances.
Let us first attempt to solve the problem of finding the
optimal strategies for both the players for an arbitrary interval
(t0, t1] ⊆ [0, T ]. In particular, we want to find the optimal
strategies for the players in this interval but the strategies
should not be continuous state feedback. The strategies may
depend on the state information at discrete time instances
and the strategies should not ask for future state information.
In calculating the strategies, we still do not consider the
state query cost at this point. In the subsequent sections we
will remove this assumption and comment on the original
problem. Making this assumption for this section makes our
problem tractable for this initial step.

It can be shown [19] that:

J = E
[
‖x(0)‖2P (0) + x(0)′η(0) +

N∑
i=1

‖ri‖2αi (11)

+

∫ T

0

(
‖u+R−1B′(Px+

η

2
)‖2R − ‖v − S−1C ′(Px+

η

2
)‖2S

− 1

4
‖η‖2BR−1B′−CS−1C′ + tr(PGG′)

)
dt
]

From (11), we can divide the cost in two parts Ji, Jd. Ji is
independent of the actions of the players and the other, Jd
depends on the choice of u and v. Thus,

Ji =E
[
‖x(0)‖2P (0) + x(0)′η(0) +

N∑
k=1

‖rk‖2αk (12)

+

∫ T

0

(
tr(PGG′)− 1

4
‖η‖2BR−1B′−CS−1C′

)
dt
]

and,

Jd(u, v) =E[

∫ T

0

(
‖u+R−1B′(Px+

η

2
)‖2R (13)

− ‖v − S−1C ′(Px+
η

2
)‖2S
)
dt].

Since both players know the parameters of the game i.e.
A,B,C,G, S and R, they can easily calculate the open-loop
term. Thus, without loss of generality, it is sufficient for the
players to optimize (14).

Jd(u, v) =E
[ ∫ T

0

(
‖u+R−1B′Px‖2R− (14)

‖v − S−1C ′Px‖2S
)
dt
]
.

Let us denote R̃ = PBR−1B′P and S̃ = PCS−1C ′P .
Without loss of generality, let the optimal controller for P1
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be u = −R−1B′Px̂1 and that of P2 be v = S−1C ′Px̂2,
where x̂i(t) = f(t, I(t), x̂i(τ)|τ∈[0,t)) for some function f
that needs to be determined. The purposes of x̂1(t) and x̂2(t)
are to make optimal estimates of the state x(t) by P1 and
P2 respectively for all time t. Thus, rewriting Jd:

Jd(x̂1, x̂2) = E[

∫ T

0

(‖x− x̂1‖2R̃ − ‖x− x̂2‖2S̃)dt]. (15)

With these strategies, the state of the game evolves as:

dx = (Ax+Bu0 +Cv0−P−1R̃x̂1 +P−1S̃x̂2)dt+GdWt.
(16)

Let us define ΦQ(t, s) to be the solution of the following
matrix differential equation.

d

dt
ΦQ(t, s) = Q(t)ΦQ(t, s) (17)

ΦQ(t, t) = I, (18)

for some matrix Q. Therefore, we can write the solution of
(16) to be:

x(t) =ΦA(t, t0)x(t0) +Kt,t0 [Bu0 + Cv0](t) (19)

−Kt,t0 [P−1R̃x̂1 − P−1S̃x̂2](t) +Kt,t0
1 [GW ](t)

where Kt1,t2
1 and Kt1,t2 are linear operators defined as

follows:

Kt,t0 [f ](t) =

∫ t

t0

ΦA(t, s)f(s)ds (20)

Kt,t0
1 [fW ](t) =

∫ t

t0

ΦA(t, s)f(s)dWs. (21)

Let P1 select its strategy to be

x̂1(t) =ΦA(t, t0)x̂1(t0) +Kt,t0 [Bu0 + Cv0 − P−1R̃x̂1](t)

+ f1(t) (22)

Similarly, P2 selects its strategy in the following way

x̂2(t) =ΦA(t, t0)x̂2(t0) +Kt,t0 [Bu0 + Cv0 + P−1S̃x̂2](t)

− f2(t) (23)

where f1 and f2 are to be determined optimally. It should
be noted at this point that these strategies do not have any
special structures since there is no constraint on choosing
f1 and f2. Writing the strategies in that form only provides
some advantages in the analysis and computations. f1 and f2

are possibly piecewise continuous functions. There may be
jump discontinuities in them in order to reset the values of x̂1

and x̂2 at the instances when the value of x(t) is available.
Using (22) and (23) for any interval (t0, t1], we get

E[

∫ t1

t0

‖x− x̂1‖2R̃ − ‖x− x̂2‖2S̃dt]

=E[

∫ t1

t0

(‖Kt,t0 [P−1S̃x̂2](t)− f1(t) + φA(t, t0)e1(t0)‖2
R̃
−

‖Kt,t0 [P−1R̃x̂1](t)− f2(t)− φA(t, t0)e2(t0)‖2
S̃

)dt

+

∫ t1

t0

‖Kt,t0
1 [GW ](t)‖2

R̃−S̃dt] (24)

where e1 = x − x̂1 and e2 = x − x̂2. x̂1 depends linearly
on f1 and hence Kt,t0 [P−1R̃x̂1](·) can be written as an
affine functional of f1. Let us denote ÃR = A − P−1R̃,
∆RΦ(t, t0) = ΦA(t, t0) − ΦÃR(t, t0), ÃS = A + P−1S̃,
∆SΦ(t, t0) = ΦÃS (t, t0) − ΦA(t, t0). We define two new
linear operators Kt,t0

R [·] and Kt,t0
S [·] as follows:

Kt,t0
R [f ](t) =

∫ t

t0

ΦÃR(t, s)f(s)ds,

Kt,t0
S [f ](t) =

∫ t

t0

ΦÃS (t, s)f(s)ds.

∀t ∈ (t0, t1], we define Kt,t0 [P−1R̃x̂1](t) = LR[f1](t). It
can be shown that LR[·] is an affine functional of the form:

LR[f1](t) = ∆RΦA(t, t0)
(
x̂1(t+0 )− f1(t+0 )

)
+ (Kt,t0 −Kt,t0

R )[Bu0 + Cv0](t)

+Kt,t0
R [P−1R̃f1](t). (25)

Similarly it can also be shown that

LS [f2](t)
∆
= Kt,t0 [P−1S̃x̂2](t)

= ∆SΦA(t, t0)
(
x̂2(t+0 ) + f2(t+0 )

)
+ (Kt,t0

S −Kt,t0)[Bu0 + Cv0](t)

−Kt,t0
S [P−1S̃f2](t). (26)

Therefore, optimal f1 and f2 are chosen in order to optimize

J =E[

∫ t1

t0

(
‖LS [f2](t)− f1(t) + φA(t, t0)e1(t0)‖2

R̃

− ‖LR[f1](t)− f2(t)− φA(t, t0)e2(t0)‖2
S̃

)
dt]. (27)

Theorem 3.6: J has a unique saddle point at f∗1 and f∗2
such that:

J (f∗1 , f2) ≤ J (f∗1 , f
∗
2 ) ≤ J (f1, f

∗
2 ) (28)

where, for a given interval (t0, t1]1, the optimal f∗1 and f∗2
satisfy the following differential equations:

ḟ∗1 = Af∗1 + P−1S̃ζ (29)

f∗1 (t+0 ) = x(t0)− x̂1(t0)

ζ̇ = ÃSζ +Bu0 + Cv0 − P−1R̃x̂1 (30)

ζ(t+0 ) = x(t0)

ḟ∗2 = Af∗2 − P−1R̃ξ (31)

f∗2 (t+0 ) = x̂2(t0)− x(t0)

ξ̇ = ÃRξ +Bu0 + Cv0 + P−1S̃x̂2 (32)

ξ(t+0 ) = x(t0)
Proof: The proof is provided in the Appendix V-A.

Remark 3.7: The optimal x̂1 satisfies the following sys-
tem of equations for the time interval (t0, t1]:

˙̂x1 = (A− P−1R̃)x̂1 +Bu0 + Cv0 + P−1S̃ζ (33)

ζ̇ = (A+ P−1S̃)ζ +Bu0 + Cv0 − P−1R̃x̂1 (34)

x̂1(t+0 ) = ζ(t+0 ) = x(t0).

1In this paper we use the following convention to define derivatives at
enclosed boundary points: ḟ(t1) = limt→t1 ḟ(t) s.t. t ∈ (t0, t1]
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Comparing (16) and (33), ζ serves as the estimate of x̂2 for
the evolution of x̂1.

Remark 3.8: The optimal x̂2 satisfies the following sys-
tem of equations for the time interval (t0, t1]:

˙̂x2 = (A+ P−1S̃)x̂2 +Bu0 + Cv0 − P−1R̃ξ (35)

ξ̇ = (A− P−1R̃)ξ +Bu0 + Cv0 + P−1S̃x̂2 (36)

x̂2(t+0 ) = ξ(t+0 ) = x(t0).

Comparing (16) and (35), ξ serves as the estimate of x̂1 for
the evolution of x̂2.

With this optimal strategy, the cost incurred is:

E

[∫ t1

t0

(‖x− x̂1‖2R̃ − ‖x− x̂2‖2S̃) dt

]
=

E

[∫ t1

t0

‖Kt,t0
1 [GW ](t)‖2

R̃−S̃dt

]
.

So far we have been able to find the Nash strategy for the
players in an arbitrary interval (t0, t1]. Thus, if somehow the
players come to an agreement about the state information
acquisition times {τi}nT

i=1, they can find their strategies for
the intervals (τi, τi+1] where τ0 = t0 and τnT+1 = T .
Since the strategies on different intervals are independent
of each other, the strategies for the entire time horizon [0, T ]
can be constructed by concatenating the individual strategies
over the intervals (τi, τi+1]. The question that remains to be
answered is how the players come to an agreement about the
state information acquisition times. Let us analyse this from
the point of view of both players. For P1, it is of paramount
interest to optimize (3) which becomes (37) when the optimal
f∗1 and f∗2 are used:

For P1:

min
n1(T ),τ1

1 ,··· ,τ1
n1(T )

n1(T )+1∑
i=0

E
[ ∫ τ1

i+1

τ1
i

‖Kt,τ1
i

1 [GW ](t)‖2
R̃−S̃dt+

λ1n1(T )
]
. (37)

Whereas, P2 will seek to optimize the following function:
For P2:

max
n2(T ),τ2

1 ,··· ,τ2
n2(T )

n2(T )+1∑
i=0

E
[ ∫ τ2

i+1

τ2
i

‖Kt,τ2
i

1 GW‖2
R̃−S̃dt−

λ2n2(T )
]

(38)

where τ1
0 = τ2

0 = 0 and τ2
n2(T )+1 = τ1

n1(T )+1 = T .
Under the assumption that R̃(t) − S̃(t) � 0, ∀t ∈ [0, T ], in
order to ensure that the solution of the Riccati equation (8) is
well defined, one can easily find out that for P2, the optimal
choice would be to never access the state information.
However, this is not the case for P1 and the choice for P1
depends on the value of λ1 and the game parameters.

Remark 3.9: If the game parameters for both the players
satisfy the condition CS−1C ′ = BR−1B′, both the opti-
mization problems for the players have the same solution,
and that solution does not ask for any state information
except x(t0).

Remark 3.10: The optimal choice of information set and
the optimal strategy selection are two decoupled problems for
each player.

Let us denote the optimal value of the optimization prob-
lem (37) to be c∗1 and that of (38) to be c∗2. If the jointly
selected time instances are {τ1, τ2, · · · , τNT }, then both the
players will try to keep the cost incurred by this choice to
be as close as possible to their optimal values. Therefore the
following function needs to be minimized:

H(NT , τ1, · · · τNT ) = (39)∥∥∥ NT∑
i=0

∫ τi+1

τi

E‖Kt,τi [GW ]‖2
R̃−S̃dt+ λ1NT − c∗1

∥∥∥2

+

∥∥∥ NT∑
i=0

∫ τi+1

τi

E‖Kt,τi [GW ]‖2
R̃−S̃dt− λ2NT − c∗2

∥∥∥2

.

In (39) the first term tries to keep the cost of P1 close to the
optimal value c∗1 whereas the second term tries to keep the
cost of P2 close to its optimal value c∗2.

In principle, there can be other functions that can model
the same trade-off between the players, however in this paper
we will consider (39) for the remainder of this paper.

From the properties of the Wiener process one can obtain,

E[‖Kt,τiGW‖2
R̃−S̃ ] =

∫ t

τi

tr(‖ΦA(t, s)G(s)‖2
R̃(s)−S̃(s)

)ds.

(40)
Let us denote

∑NT
i=0

∫ τi+1

τi
E‖Kt,τi [GW ]‖2

R̃−S̃dt =

C(NT , τ1, · · · , τNT ). Therefore,
H(NT , τ1, · · · , τNT ) = ‖C +λ1NT − c∗1‖2 + ‖C −λ2NT −
c∗2‖2.

For a fixed NT , to select optimal τk, we seek: ∂H
∂τi

= 0.
Therefore the necessary conditions are:

(2C + (λ1 − λ2)NT − c∗1 − c∗2)
∂C

∂τi
= 0. (41)

For all i = 1, · · · , NT , ∂C
∂τi

= 0 implies∫ τi

τi−1

tr(‖ΦA(τi, t)G(t)‖2
R̃(t)−S̃(t)

)dt = (42)∫ τi+1

τi

tr(‖ΦA(t, τi)G(τi)‖2R̃(τi)−S̃(τi)
)dt,

which needs to be satisfied or (2C+(λ1−λ2)NT−c∗1−c∗2) =
0 admits a solution.

Claim 3.11: For a fixed NT , 2C(NT , τ1, · · · , τNT ) +
(λ1 − λ2)NT − c∗1 − c∗2 = 0 has a solution.
The proof of the above claim follows directly from the
fact that C(NT , τ1, · · · , τNT ) is a continuous function of
τi and the maximum and minimum values of C are c∗2 +
λ2NT and c∗1 − λ1NT respectively. Therefore, there is
a point in the space where the function attains a value
equal to the average of its maximum and minimum values.
Moreover, it is straightforward to show that {τi} satisfying
2C(NT , τ1, · · · , τNT ) + (λ1 − λ2)NT − c∗1 − c∗2 = 0 is
optimal. After this point, H will be a function of an integer
variable NT and its optimization can be done easily. Under
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this choice of sampling instances, the costs incurred by P1
and P2 are respectively 1

2 [(c∗1 + c∗2) + (λ1 + λ2)NT ] and
1
2 [(c∗1 + c∗2)− (λ1 + λ2)NT ] .

Remark 3.12: The game parameter G has influence in
determining {τk}, but the optimal strategies for the players
do not rely on G. For a deterministic game (G ≡ 0) the re-
sults imply that the players do not need any more information
other than x(0). In fact, the deterministic framework results
in the same strategy and state information access instances
as the symmetric (i.e. B = C, S = R) game.

Remark 3.13: The set of state information acquisition
times {τk} selected by the players is independent of the time
instances of incurring the pointwise cost i.e. {ti}.

IV. CONCLUSIONS

In this work we have considered a two players stochastic
linear-quadratic differential game. The Nash equilibrium
strategy for both the players under full state information has
been derived. With costly noise-free state information, we
have derived the optimal instances for obtaining the state
information for the players and the optimal strategies for
selecting the actions u and v.

This framework can be easily extended to related problems
such as the cost function being linear-exponential-quadratic
or quadratic with exponential forgetting factor. The results
are similar with minute difference and thus omitted from the
paper due to limited space.

A valid question to ask is what happens when the play-
ers can independently choose their own set of triggering
instances. The answer to this question is beyond the scope of
this paper and will be considered as a possible future work.

V. APPENDIX

A. Proof of Theorem 3.6:

The Gateaux differential of the functional J is:

δJ [f1, f2](h1, h2) = lim
a→0

J (f1 + ah1, f2 + ah2)− J (f1, f2)

a
(43)

where the notation J [f1, f2](h1, h2) means the Gateaux
differential of J evaluated at the point (f1, f2) in the direc-
tion (h1, h2). Note that J [f1, f2](·, ·) is a linear functional
parameterized by f1 and f2. Therefore,

1

2
δJ [f1, f2](h1, h2) =

E
[ ∫ t1

t0

(
〈∆SΦ(t, t0)h2(t0)−Kt,t0

S [P−1S̃h2](t)− h1(t),

LS [f2](t)− f1(t) + ΦA(t, t0)e1(t0)〉R̃−
〈Kt,t0

R [P−1R̃h1](t)−∆RΦ(t, t0)h1(t0)− h2(t),

LR[f1](t)− f2(t)− ΦA(t, t0)e2(t0)〉S̃
)
dt
]

(44)

where 〈a, b〉C = a′Cb and a, b, C are matrices (or vectors)
of compatible dimensions.

After few steps it can be shown that:
1

2
δJ [f1, f2](h1, h2) = E[I1 + I2 + I3 + I4] (45)

where

I1 = −
∫ t1

t0

(
〈LS [f2](t)− f1(t) + ΦA(t, t0)e1(t0)

+ P−1(t)

∫ t1

t

ΦÃR(s, t)′S̃(s)
(
LR[f1](s)− f2(s)

− ΦA(s, t0)e2(t0)
)
ds, h1〉R̃

)
dt (46)

I2 = (47)∫ t1

t0

〈LR[f1]− f2 − ΦA(t, t0)e2(t0),∆RΦ(t, t0)h1(t0)〉S̃dt

I3 =

∫ t1

t0

(
〈LR[f1](t)− f2(t)− ΦA(t, t0)e2(t0)

− P−1(t)

∫ t1

t

ΦÃS (s, t)′R̃(s)
(
LS [f2](s)− f1(s)

+ ΦA(s, t0)e1(t0)
)
ds, h2〉S̃

)
dt (48)

I4 = (49)∫ t1

t0

〈LS [f2]− f1 + ΦA(t, t0)e1(t0),∆SΦ(t, t0)h2(t0)〉R̃dt

For I(t) adapted f∗1 and f∗2 to be a stationary point for
the functional J , we need δJ [f∗1 , f

∗
2 ](h1, h2) = 0 for all

piecewise continuous I(t) measurable functions h1 and h2.
From (45), (46), (47), (48) and (49) we obtain the necessary
conditions to be held for all t ∈ (t0, t1):

LS [f2](t)− f1(t) + ΦA(t, t0)E[e1(t0) | I(t)] = 0, (50)
LR[f1](t)− f2(t)− ΦA(t, t0)E[e2(t0) | I(t)] = 0. (51)

Evaluating (50) at t+0 and using the fact that LS [f2](t+0 ) = 0,
we obtain:

f1(t+0 ) = E[x(t0) | I(t)]− x̂1(t0). (52)

If x(t0) ∈ I(t), then E[x(t0) | I(t)] = x(t0) i.e. the best
possible estimate. This reflects the fact that t0 is the time
instance when the state of the game x(t0) must be made
available. This fact along with (22) imply that x̂1(t+0 ) =
x(t0). Similarly,

f2(t+0 ) = −(x(t0)− x̂2(t0)) (53)

and x̂2(t+0 ) = x(t0). We also note the fact that:

L̇R[f1](t) = AR̃LR[f1](t) + P−1R̃g1(t) (54)

g1(t) = ΦA(t, t0)(x̂1(t+0 )− f1(t+0 ))+ (55)
Kt,t0 [Bu0 + Cv0](t) + f1(t)

g1(t+0 ) = x(t0). (56)

Similarly,

L̇S [f2](t) = AS̃LS [f2](t) + P−1S̃g2(t) (57)

g2(t) = ΦA(t, t0)(x̂2(t+0 ) + f2(t+0 ))+ (58)
Kt,t0 [Bu0 + Cv0](t)− f2(t)

g2(t+0 ) = x(t0). (59)
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The conditions (52) and (53) ensure (50) and (51) hold true
at t = t+0 . To ensure (50) and (51) hold for all t ∈ (t0, t1), we
differentiate them and make the derivatives equal to zero for
t ∈ (t0, t1). Therefore differentiating (50) w.r.t. t we obtain:

ḟ1 = Af1 + P−1S̃ζ (60)
ζ = g2 + LS(f2) (61)

ζ̇ = ASζ +Bu0 + Cv0 − ḟ2 +Af2 (62)

ζ(t+0 ) = x(t0). (63)

At the same time, from (51) we obtain:

ḟ2 = Af2 + P−1R̃ξ (64)
ξ = g1 − LR(f1) (65)

ξ̇ = ARξ +Bu0 + Cv0 + ḟ1 −Af1 (66)

ξ(t+0 ) = x(t0). (67)

From (22) and (66) we can conclude x̂1 ≡ ξ for all
t ∈ (t0, t1) and similarly, x̂2 ≡ ζ. Therefore, the coupled
equations (60)-(67) can be rewritten as:

ḟ1 = Af1 + P−1S̃ζ (68)

ζ̇ = ASζ +Bu0 + Cv0 − P−1R̃x̂1 (69)

ζ(t+0 ) = x(t0) (70)

f1(t+0 ) = x(t0)− x̂1(t0) (71)

and,

ḟ2 = Af2 + P−1R̃ξ (72)

ξ̇ = ARξ +Bu0 + Cv0 + P−1S̃x̂2 (73)

ξ(t+0 ) = x(t0) (74)

f2(t+0 ) = x̂2(t0)− x(t0). (75)

Thus, the optimal f∗1 and f∗2 must satisfy the necessary
conditions (68)-(75). This proves the second part of Theorem
3.6.

To prove that f∗1 and f∗2 satisfying (68)-(75) are a saddle
point (hence Nash Equilibrium) for J , we need to calculate
the second order Gateaux differential of J . In a similar
fashion of deriving the first order Gateaux differential, one
can find the second order Gateaux differential using (43).We
do not present the details of this derivation due to space
limitation, but one can verify that:

1

2
δ2J [f∗1 , f

∗
2 ](h1, h2) = E[J1 − J2 + J3] (76)

where

J1 =

∫ t1

t0

(‖h1‖2R̃ − ‖G1[h1]‖2
S̃

)dt (77)

G1[h1](t) = Kt,t0
R [P−1R̃h1](t)−∆RΦ(t, t0)h1(t0)

J2 =

∫ t1

t0

(‖h2‖2S̃ − ‖G2[h2]‖2
R̃

)dt (78)

G2[h2](t) = Kt,t0
S [P−1S̃h2](t)−∆SΦ(t, t0)h2(t0) and

J3 = 2

∫ t1

t0

(
〈G2[h2], h1〉R̃ + 〈G1[h1], h2〉S̃

)
dt. (79)

To prove that δ2J [f∗1 , f
∗
2 ] is indefinite (i.e. depending

on the direction (h1, h2), δ2J can be positive as well as
negative), let us consider h∗2 to be of the form h∗2(t) =
ΦA(t, t0)a and h∗1(t) = Φ(t, t0)b for some constant vectors
a and b. These choices imply G2[h∗2] ≡ 0 and G1[h∗1] ≡ 0.
Therefore, δ2J [f∗1 , f

∗
2 ](h∗1, 0) =

∫ t1
t0
‖h∗1‖2R̃dt > 0 for some

a. Also, we have δ2J [f∗1 , f
∗
2 ](0, h∗2) = −

∫ t1
t0
‖h∗2‖2S̃dt < 0

for some b. This proves that (f∗1 , f
∗
2 ) is a saddle point of J .

The uniqueness of (f∗1 , f
∗
2 ) is a direct consequence of the

fact that they satisfy certain linear differential equations with
fixed boundary conditions.
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