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Distributed hybrid consensus of second-order dynamics over proximity
nets*
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Abstract— In this paper, we consider the distributed consen-
sus problem of the second-order multi-agent system where the
agents are connected via distance-dependent networks. For the
feasibility of information processing, we introduce dwell times
which may be different at different sampling time instants. Each
agent can only receive the information and update its control
laws at discrete sampling time instants, which in combination
with the continuous-time dynamics yields the hybrid closed-loop
dynamics. By analyzing the discrete-time system at the sampling
instants and the continuous-time system between the sampling
instants, we establish the sufficient condition for consensus of
the hybrid second-order multi-agents system, without relying
on the properties of the dynamics of the neighbor graphs.

I. INTRODUCTION

Coordination of multi-agent systems (MAS) has attracted
much attention of researchers in control and robotics fields,
and many efforts have been paid on the distributed control
design of the agents and the analysis of the collective
behavior of the whole system, see [1]-[16] and the references
therein. Consensus, meaning the agreement of the states of
all agents, is a basic task and is related to many phenomena
in natural systems, such as flocking in biological systems, su-
perconductivity in physical systems, and collective decision-
making in social and economic systems.

For many MAS, the agents can only receive and exchange
information from neighbors due to limited sensing and com-
munication capability. In the consensus study, the nearest-
neighbor rule is one of the widely used protocols. The
relationship between agents can be described by graphs or
networks. Therefore, the algebraic properties of graphs (cf.,
[17]-[19] as well as the corresponding matrix representatives
(cf., [20]) are often used to analyze the MAS. For different
network topology and different dynamics of the agents, dif-
ferent analysis methods will be used. The consensus results
have been established for the continuous-time and discrete-
time single integrator, double integrator and nonholonomic
unicycle dynamics under undirected or directed network
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topology. For continuous-time dynamics, the Lyapunov sta-
bility theorem and LaSalle’s invariance principle are often
applied in the consensus analysis. For example, in [26], the
first-order continuous-time dynamics is considered, and the
consensus results are given under the assumption that the
neighbor graphs are connected or jointly connected. In [7],
the flocking problem of the second-order continuous-time
dynamics is solved if the neighbor graphs are connected.
While for discrete-time dynamics, the theorems related to the
product of stochastic matrices are often used. For example,
the first-order discrete-time dynamics was considered in [1]
and [6] under the undirected and directed network topology,
and consensus results are given under certain assumptions
on dynamical neighbor graphs. Following these results, the
systems with nonlinear dynamics, measurement noises and
communication delays are also investigated, see [21]-[25] for
references. However, in almost all results for the consensus of
MAS, the dynamical neighbor graphs are required to satisfy
certain connectivity assumptions, and how to verify these
assumptions is an unresolved issue.

For different network topology, we may apply differ-
ent methods to guarantee and preserve the connectivity of
neighbor graphs. One of the natural and commonly used
approach to construct the network topology is based on
the distance between agents. The graphs formed in such a
manner are also called proximity nets or geometric graphs.
In [27] and [28], the necessary and sufficient condition was
established for the connectivity of random geometric graphs.
How to preserve the connectivity of dynamical neighbor
graphs is a challenging issue for the consensus of MAS.
For continuous-time dynamics with continuous-time control
laws, the potential function approach is widely used, and the
attractive forces in the potential function are designed large
enough to maintain the connectivity of neighbor graphs, see
[30]-[32]. But, this method may not work for the sampled-
data case since the connectivity of neighbors graphs may be
lost between sampling instants.

For the feasibility of information receiving and processing,
sampled-data technique is widely used, which means that the
agents can only receive the information from neighbors and
design control laws at sampling instants. The combination
of the continuous-time dynamics with the discrete-time con-
trol laws leads to the hybrid closed-loop dynamics. How
to analyze the dynamical behavior of the hybrid systems
without connectivity assumptions of dynamical neighbor
graphs is a challenging issue. In this paper, we study
the distributed consensus of second-order dynamics, where
the dwell time is introduced. The distributed sampled-data
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control law is designed. By analyzing the continuous-time
dynamics between sampling instants and the discrete-time
dynamics at sampling instants, and relying on the spectral
graph theory, we establish sufficient conditions depending on
the neighborhood radius, the initial moving speed, and the
difference of sampling periods, but without the connectivity
of dynamical neighbor graphs.

The rest of this paper is organized as follows. In Section
II, we present the problem formulation and provide the
main result for consensus of the second-order dynamics
under sampled-data control. In Section III, we provide some
preliminary lemmas, and the proof of the main theorem is
given in Section IV. Concluding remarks are presented in
Section V.

II. PROBLEM STATEMENT

Consider a group of n agents moving in an m—dimensional
Euclidean space (m = 2,3), with motion equations described
by the following second-order dynamics,

qi(t) = pi(t) _

A B @
where ¢;(r) € R™ and p;(r) € R™, respectively, denote the
position and moving velocity of the agent i at time ¢ (¢ > 0),
and u;(r) € R™ is a local feedback control designed according
to the information of agent i’s neighbors. The pair of agents i
and j is said to be neighbors if the agent j falls in the open
ball centered at the agent i’s position with a given radius
r, > 0. Denote #;(t) as the neighbor set of the agent i, i.e.,

i) =1{j:Mlg; (1) = qi(®)l| < ra}, 2)

where | - || is the Euclidean norm. It is clear that for any
agent i and f, we have i € #(¢).

The neighbor relations can be described by a time-varying
graph sequence ¥, = (¥,&;), where the vertex set ¥ =
{1,2,---,n} is composed of all agents, while the edge set
& =A{(i,)) €V xV :|qi(t) — q;(t)|| <ra} is defined via
the Euclidean distance between agents, and dynamically
changes over time. The graph & is also called geometric
graph or proximity net. The adjacency matrix of ¢; is denoted
as A(t) = (aij(t))nxn where a;j(t) =1 if (i,j) € &, and
a;j(t) = 0 otherwise. The degree of the agent i, denoted as
di(t), is defined as d;(t) = ¥ jc s aij(t). The degree matrix
D(t) is defined as D(t) = diag(d,(t),d>(t),---d,(t)). The
Laplacian and the normalized Laplacian of the graph ¥
is, respectively, defined as L(t) = D(t) —A(t) and Z(t) =
D~'2(1)L(t)D~'/2(t). The neighbor graphs formed in the
above manner are undirected, and thus the matrices A(r)
and £(t) are symmetric. It is clear that #(r) is non-
negative definite and 0 is one of the eigenvalues of Z(z).
Arrange all the eigenvalues of Z(¢) according to a non-
increasing manner as 0 = Ao(r) < A;(¢) <--- < A,—1(¢). The
connectivity of the graph % is equivalent to that .£(¢) has
only one eigenvalue O.

We assume that each agent can only sense the relative
velocities of its neighbors. For the feasibility of information
receiving and processing, we introduce a dwell time when

the agents receive the information and design the control
laws. For the agent i, it can receive the information of its
neighbors at discrete time instants fj,#;1,#2,---. Thus, the
control law of the agent can only be updated at time instants
tio,ti1;i2, - -+ and keep unchanged for ¢ € [fit, k1)) With k=
0,1,2,---. We introduce the dwell time 7, to characterize the
frequency with which the agent i receives the information,
L.e., fiky1) —ti = Tik- Thus, for the agent 4, it can receive the
following information at time #;

{pj(ti) — pi(ta), j € Ai(ta)}, 3)

where Ai(t) = {j: llg;(t) — qi(t)|| < ra}.

The objective of this paper is to design the distributed
control law u;(t) (i € ¥') for the system (1) based on the
sampled-data information (3) such that the second-order
integrators (1) reach consensus in velocity. By consensus we
mean that all agents move with the same velocity eventually,
i.e., there exists a vector pg € R™, such that for all i € ¥,
we have limy_,e p;i(t) = pys-

In order to simplify the analysis, we assume that all agents
receive the information from their corresponding neighbors
and update the distributed control law at the same time
instant, i.e., for any i and j, we have t;; =1, £ 4 with 79 =0,
and we denote the dwell time as 7;. The analysis for the
case where different agents may have different update time
instants is much more complicated, and falls into our future
research.

In this paper, we adopt the widely-used nearest-neighbor
rule for the control law of each agent, i.e., for 7 € [tg,f;11),

LY (i) - i), @

ni(1) ;)

ui(t) =

Substituting (4) into (1), we obtain the following hybrid
closed-loop system for ¢ € [ty 1),

{ qi(t) = pi(t)
Pi(t) = ooy Ljesitn) (P () = pi(te)

It is clear that the closed-loop system (5) evolves according
to continuous-time dynamics between sampling instants, but
evolves according to discrete-time dynamics at sampling
instants.

The positions and velocities of all agents at the initial
time instant is important for the dynamical behavior of
the closed-loop system (5). For example, if the agents are
distributed in two disjoint clusters at the initial time and the
distance between these two clusters is large, then there are no
interactions between the agents in different clusters for small
neighborhood radius, and the consensus of the system can
not be achieved. In addition to this, if the initial velocities
of the agents is large, then the neighbor graphs will change
a lot and the connectivity of the neighbor graphs can not be
guaranteed even if the initial neighbor graph is connected. In
this paper, we proceed with our analysis under the following
assumptions on the initial configuration of all agents.

Assumption 2.1: 1) All agents are uniformly and indepen-
dently distributed in the unit square [0, 1]%;

(&)

4274



2) The initial velocities of all satisfies
maxi<i<p ||pi(0)[| < v

Under the above assumptions, we establish sufficient con-
ditions depending on the the neighborhood radius and the
maximum initial speed to guarantee the consensus of the
closed-loop system (5).

Theorem 2.1: Assume that the neighborhood radius and

the initial moving speed satisfy

¢/logn ’L’onzrg
—= 1 [ —
V T TS S 558 304 10gm

and the dwell time satisfies max; |7 — 7| < %, then
under Assumption 2.1, the closed-loop multi-agent system
(5) reaches consensus for large population size.

Remark 2.1: Throughout the sequel, the following stan-
dard notions will be used: for two positive sequences {a,,n >
1} and {by,n > 1}, a, = O(b,) means that there exists a
positive constant C independent of #n, such that a, < Cb,, for
any n > 1; a, = o(b,) means that lim,_ Z—Z =0.

agents

ITI. PRELIMINARY LEMMAS
Denote p(t) = [p} (1), p5(t),--, pj(t))] € R™, and Q(t) =
D~!(#)L(¢). By the second equation of (5), we have for ¢ €
[tk ti1)

p(t) = (=Q(1) © 1) p(ti), (6)

where ® denotes the Kronecker product, and I,,, is an identity
matrix with order m. For t € [ty,f;11), the degree matrix
and the Laplacian matrix will not change since the neighbor
graphs keep unchanged. Thus, the solution of the equation
(6) can be written as

p(1) = (I — Q) (t — 1)) @ L) (), 1 € [tistia]. (7
For t =41, we have
ptiy1) = (I — Q(tx) ) @ Ln) p(tx)- 3

By the definition of Q(#), we see that ((I — Q(t) %) ®
L)1, = 1,,,, where 1,,, denotes the mn—dimensional vector
with all elements 1. Furthermore, if 7; < 1, then all elements
of the matrices ((I — Q(#;)T) ®I,,) are nonnegative, and thus
the matrices ((I — Q(t)t) ® L) are stochastic. We proceed
with the following analysis under assumption 7; < 1 without
further explanations.

In the consensus analysis, we are concerned with the
convergence behavior of the dissimilarity of the velocities
Op(t) which is defined as

8p(t) = max [Ipi(1) = (1)l

The dynamical behavior of p(¢) depends on the properties
of the matrices Q(¢), which are determined by the neighbor
graphs. We will first provide a preliminary lemma for the
evolution of p(#;) for the case where the neighbor graphs
and the dwell times keep unchanged.

Lemma 3.1: Assume that the neighbor graphs and the
dwell times keep unchanged, and denoted by ¢ and 7,
respectively. The normalized Laplacian and the degree of

4 are denoted as .Z and D, and the eigenvalues of . are
denoted in a non-decreasing manner as Ag <Ay <--- <A,_|.
Then we have for ¢ € [ty, 1)
T
max_|pi(r) — p;(t)]| < V2kAT= 1| p(0)]),

I<i,j<n
where [x] denotes the largest natural number not more

than x, k¥ = % with dmax = maxi<ij<,d; and dpyin =

min| <;<,d;, and A = max{|1 —A;7|,|1 — 4,7}
The proof details are omitted due to space limitations.

By the assumption that 7 < 1 and the fact that the
eigenvalues of . satisfy 0 < A; < 2, we see that A < 1.
Furthermore, if the neighbor graphs keep unchanged and are
connected, then we have A < 1, and the consensus can be
achieved with the convergence rate A. However, the neighbor
graphs are determined via the positions of all agents, and
will change over time. It is clear that if the positions of all
agents change too much, then it is difficult to characterize
the change of matrices Q(¢). In this paper, we consider the
case where the matrices Q(¢) slowly change with time.

Lemma 3.2: Denote the neighbor graph at time interval
[tkstir1) as 4 (#) and the corresponding degree, minimum
degree, maximum degree, degree matrix and the normalized
Laplacian are denoted as d;(fy),dmin(t), dmax (2 ), D(#) and
Z (1), respectively. If ||Q(t) T — Q(t0) 0| < €, then we have

max ||pi(te) — p; () | < V2x(A(0) + ke)*[ p(0)]l,

1<i,j<n
where A(0) = max{l —1;(0)tp,1 —A,—1(0)7p}.

The above lemma can be derived by using Lemma 3.1 and
Lemma 2 in [33]. We omit the proof details to save space.

By Lemma 3.2, we see that in the consensus analysis
of (7) and (8), we need to estimate the upper bound of
|Q(#) T — O(0)15]|, as well as some characteristics concern-
ing the initial states including the maximum and minimum
degrees, the spectrum of the normalized Laplacian .%.

The quantity [|Q(#) T — Q(0)1p|| is determined by the
positions of all agents, while the positions depend on the
velocities, and the velocities are affected by |[|Q(#) T —
0(0)1y]|. Thus, ||Q(#)T — Q(0)To]|, positions and headings
of all agents are coupled together. We deal with this coupled
relationship in the next section. Here, we first provide a
preliminary result for the estimation of ||Q(#) 7 — Q(0) 7|

Lemma 3.3: Assume that in comparison with the initial
neighbor graph G(0), the number of agents changed in the
neighborhood of the k-th (1 <k < n) node in the graph G(#)
satisfies Ry < Rmax < dmin, then
HQ(tk)Tk_Q(O)TOH < z(dmax(()) ';R.max)hk T0|

min
Rmax (dmax (O) + dmin (0)) maxy Tk
dmin (0) (dmin (0) - Rmax) ’

where Q(t;) is defined as Q(t;) = D' (1) L(tx).
The proof details are omitted due to space limitations.
We introduce the following set %; to characterize the
change of neighbors of the agent i(1 <i<n),

K ={j: (1 =np)r, <dij(0) < (14+n0,)ra}, )

+2
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where d;;(0) = ||¢i(0) —¢;(0)]| is the distance between agents
i and j at the initial time, and 7),, can be taken as follows:
nr2
"= 288.324° (10

The cardinality of the set %; is denoted as R;, and Ry, =
max<j<, R;. Assume that for any time instants f, ||d;;(tx) —
d;j(0)|| € Nury. If d;j(0) < (1 —Mp)ry, then d;j(t) < ry, and
if d;j(0) > (14 ny)ry, then d;j(ty) > ry. Thus, the set (9)
characterizes the change of neighbors of the agents i.

Under Assumption 2.1, we can obtain estimates for the
characteristics concerning the initial states of the agents..

Lemma 3.4: [33] For the initial random geometric graph
Gy, if the interaction radius satisfies < r, < 1, then
the following results hold almost surely for all large n,

1) The maximum and minimum degrees satisfy

nmrl

dnin(0) = T(lJro(l)).
2) The maximum number of agents in (9) satisfies

Ryax < 4nmnr2(1+o(1)). (1D

6/logn
dmax = nﬂ:rﬁ(l +o(1));

3) The second smallest eigenvalue of the normalized
Laplacian .Z(0) of the graph G(0) satisfy
2

r;
>n
J(0)> T2

1
A1(0)<2 (1= ——— ] (14+0(1)).
1022 (1 s ) (o)
Remark 3.1: The constants k¥ and A in Lemmas 3.1 and
3.2 can be taken as

Kk=2(140(1));

2
Ttr, To
1 1)).
Remark 3.2: By [34], we see that similar results as those

of Lemma 3.4 hold for m = 3.

(I+o(1));

A<1-—

IV. PROOF OF THEOREM 2.1.

The analysis of the hybrid closed-loop system needs the
combination of the discrete-time dynamics at sampling in-
stants with the continuous-time dynamics between sampling
instants. In addition, we need to deal with the entanglement
relations of positions and headings. For the closed-loop
second-order dynamics under consideration, the velocity of
each agent is determined via the velocities of the neighbors,
while neighbors are determined by the position of the agents,
and the position of each agent depends on its velocities. We
deal with this coupled relation in the following proposition.

Proposition 4.1: Assume the dwell time satisfies
maxy [t — | < B, If the moving speed and the
neighborhood radius satisfy the following conditions:

logn
v/ f <<,

then we have

< DTl
288logn

|dij(tk) — dij(0)] < Mnrus
0(t) T — Q(to70)|| < 1621,

12)
13)

where 7, is taken as in (10).

The proof details are omitted due to space limitations.

Proof of Theorem 2.1

By the translational velocity update equation (6),
we know that max;<;<, ||pi(#)| (resp. minj<;<p ||pi(t)])
is a non-increasing (resp. non-decreasing) sequence, SO
max|<i<y || pi(t)|| and minj<;<, || pi(#)|| have bounded limits
as k — co. On the other hand, by Proposition 4.1, we have
for all k>0

max ||pi(tx) — p;(t)|l

1<i,j<n
a2 (1+o(1)\*
< 2V2nv, (1= En " TR
= ”V"< 288 )
— 0, as k —» oo,

It is easy to see that the translational velocity tends to the
same value. This completes the proof of the theorem. [ ]

V. CONCLUDING REMARKS

In this paper, we investigated the distributed sampled-
data consensus of the second-order dynamics connected
via the proximity networks, where the sampled periods
may be different and independent of the network topology.
The combination of the continuous-time dynamics with the
discrete-time control law leads to the hybrid closed-loop
dynamics. We provide sufficient conditions depending on the
moving speed, neighborhood radius and the initial sampling
period for consensus. The investigation for the case where
different agents may have different sampling time instants is
interesting and more complicated, and falls into our future
research.
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