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Abstract—Detecting targets in an image is a fundamental task
in computer vision and robotic system. When only a trained
detector (binary classifier) is at hand, the target detection prob-
lem becomes localizing the correct windows containing targets
in the image and can be considered as a sampling problem.
Exhaustive sliding window method is a common approach, but it
is usually computationally expensive especially when the detection
algorithm is time-consuming. In this work, we observe that
detector’s response scores of sampling windows fade gradually
from the peak response window in the detection area and we
approximate this scoring pattern with an exponential decay
function. By exploiting this property, we propose an active
sampling method for efficient target detection to avoid exhaus-
tively searching all the window space. The method estimates
the probability of windows containing the target by fusing
information from sampled windows and their detector’s scores
and then decides the next window to be observed. Experiments
have shown that our proposed method improves efficiency in
human detection applications as it requires fewer windows to
achieve similar performance compared to sliding windows and
multi-stage particle window (MS-PW) method.

I. INTRODUCTION

With the emerging social demand of robotics automation
in both industry and daily life, robotics and computer vision
systems have become an important and popular research area.
Efficient object detection and recognition are among the most
fundamental robot’s tasks, on which many subsequent actions
such as assembly, fetching, obstacle avoidance rely. Here, the
task of object detection can be understood as segmenting the
target out from the input image or video and the result can
be in the form of a window (i.e. bounding box) or a contour
enclosing the target.

The cardinality of search space could be extremely large
considering windows of different locations and sizes. There-
fore an exhaustive search would be very expensive. Many
works in computer vision try to reduce the search space utiliz-
ing additional features. For example, segmentation techniques
[1], [2] use information such as color, edges and texture
similarity to cluster image pixels into super-pixels to avoid
a brute-force searching.

In our work, we focus on a typical situation where only a
trained detector (binary classifier) is available and we desire
to detect the target efficiently from the given input image.
The general pipeline of detection includes three steps: window
selection, feature abstraction and classification, where the

provided detector implements the last two stages. The win-
dow selection scheme will determine the detection system’s
efficiency and quality.

A traditional manner is to slide a window of various sizes
over the input image, from left to right, top to bottom and feed
image patches to a binary target detector indicating whether
the target exists. However, this sliding window method would
run the detector a lot of times considering the potentially
large number of image windows and it gets even worse when
the feature abstraction and classification are complicated. The
scanning step size can be increased to speed up but the
accuracy will be traded off because the target may be skipped
or the windows may not be aligned with the target very well.

To improve this static scanning scheme, one practical way
is to regard window selection as a sampling problem, which
is to treat the provided vision detector as a black box and
sample windows based on the detector’s response character-
istics. For example, assuming the detector’s response score
on adjacent windows are similar, multi-stage particle window
method (MS-PW) [3] samples windows in stages and follows
a “coarse-to-fine” principle.

With the same insight of using the detector’s property but
going deeper, in this work we propose an active sampling
method considering response pattern for efficient target detec-
tion. The main contributions of this paper are: 1) We observe
that the detector’s response pattern of sampling windows in
the image follows a “half-ellipsoid” shape in the detection
area (i.e. positive classification area). Then an exponential
decay function is used to model the response pattern in the
positive area. 2) We propose an active sampling approach
by exploiting such pattern, which estimates the probability of
windows containing the target based on responses of observed
windows and then chooses the next window according to
posterior sampling. 3) The proposed method is implemented
in the application of human detection and experimental results
show that our method achieves higher detection rate with
the same sampling windows budget and also requires fewer
windows with comparable performance when compared with
the sliding windows and MS-PW method.

II. RELATED WORK

Efficient target detection has gained much attention and
there are many directions of the trial to cut the detection time
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while maintaining good detection performance. In general, the
attempts in speeding up classification procedure tend to find
an early rejection strategy on negative samples, while the work
on candidate generation procedures can be summarized as
reducing the search space using different sources of informa-
tion. Also, there is not a clear boundary between classification
and candidate proposal. Therefore, these methods can be
combined.

An attentional cascade is a classical approach to boost
average classification speed, in which the fundamental idea is
that background and irrelevant image patches usually occupy
the largest portion of all window space and they can be rejected
early in the designed cascade classification pipeline. This
mechanism achieves good results in applications such as face
detection [4] and car detection [5]. Applying a similar idea to
reduce the cost of the recognition pipeline, a deformable part
model [6] firstly runs a root filter over a downsampled image
to filter negative windows out. Andrea et al. [7] run an object
detector with a linear kernel before using more discriminative
but also more time-consuming non-linear kernel ones.

On the other hand, reducing the search space is an approach
aiming to reduce the total times of running a target detector,
instead of cutting the classification time for each time. Image
segmentation is a classical method exploiting low-level infor-
mation. A common process is to over-segment the image into
small boxes, or superpixels, then use graph algorithms, such
as minimal spanning tree and graph cut minimization, to build
meaningful candidate regions [1], [8], [9]. Selective search [2]
generates candidates by hierarchically grouping small regions
in a bottom-up manner. Making use of the close contour
property of daily objects, the torque operator [10] can provide
a reliable source of object candidates and even in high clutter
environments [11].

Similar with image segmentation, though more bio-inspired,
saliency can be another scheme to speed up detection by
imitating human recognition behavior, which always focuses
objects standing out of their neighbors pre-attentively. Koch
and Ullman [12] firstly put forward a computational attention
architecture consisting of the Winner-Take-All network to
determine the most salient region, and one of its most well-
known derivatives is the Neuromorphic Vision Toolkit [13]
proposed by Itti, which is a bottom-up computational attention
framework based on the center-surround mechanism of color,
intensity and orientations.

Another approach to reduce searching workload is to take
advantage of context information. It has attracted more at-
tention recently when incorporated with a sequential decision
strategy to optimize the observation path. Gonzalez-Garcia
et al. [14] adopts context knowledge (a spatial distribution
of target) into the windows selection procedure achieving
the same detection accuracy with the original region feature
convolutional neural network pipeline [15], while using a
reduced number of sampling windows. In the indoor environ-
ment Nagaraja et al. [16] studies structure information such
as objects’ relative positions to choose the next candidate
to observe for target detection. Mnih et al. [17] presents a

recurrent neural network framework that can decide the next
observation region and recognize a target with the same state
configuration.

The last category mentioned is window sampling, which our
work falls into. It seeks to learn the distribution of the target
via sampling the input image. One advantage is avoiding the
preprocessing such as edge detection, context analysis, which
makes its application general. Multi-stage particle window
(MS-PW) [3] samples images iteratively and updates the
distribution of the target by a mixture of Gaussians. Pang et al.
[18] advances MS-PW by classifying observed regions as re-
jection, ambiguity and acceptance regions based on classifier’s
response scores. Compared to those attempts, our work applies
a distinct way in learning the target distribution which focuses
on the detector’s response pattern on the positive classification
area.

III. PROBLEM DEFINITIONS

Given a sensor image I as input, the goal is to find out
sampling windows within the image that contain target objects.
We describe the center point of sampling window wi as pixel
coordinate (xi, yi). As we fix the ratio between length and
width of the sampling window according to the property of
target detectors, the size of window wi could be represented as
an integer scale level (si = 1, 2, . . . ) given base size and scale
factor. Examples are shown in Fig. 1. Therefore, the complete
set of possible sampling windows is defined as W = {wi|wi =
(xi, yi, si)}.

Fig. 1. Windows of different sizes with the same center point. Base size is
64×128 and scale factor between two scale levels is 1.05. From left to right,
the scale levels are 1, 5, 9 and 13.

After selecting the sampling window wi for the current
iteration, the target detector, a binary classifier, takes the
corresponding patch from the image I as input and returns
a detection score f(wi) as output, where f(·) depends on
the classification algorithms in the detector. The range of
such response scores may be different in different detection
applications. For instance, the human detection system [19]
uses the histogram of oriented gradients (HOG) feature and
the SVM classifier, while the detector’s response score is a
real value which mostly falls into (−10, 10). Score higher than
a specified threshold indicates a detection of a target. While



in the case of face detection using Haar-like features and the
cascade AdaBoost classifier [4], the detector’s response score
can be defined as f(wi) = lwi/L where lwi is the largest index
of stage returning positive results for input window patch wi
and L is the total number of stages in the cascade classifier.
Then, the range of such response is [0, 1].

To efficiently detect the target, we aim to sample as small
number of windows as possible to reduce the usage of the
target detector while maintaining good detection performance,
especially when the feature abstraction and classification pro-
cesses are time-consuming.

IV. ACTIVE SAMPLING WITH RESPONSE PATTERN

A. Detector’s Response Pattern

To start with, let us look at detector’s response pattern with
an example in Fig. 2, where (a) is an input image and (b) is
the heat map for the response score of human detector [19].
Each point in the heat map represents the center point of a
sampling window and all sampling windows are of the same
size. Fig. 2(c) explains the pattern of regions that can return
positive classification results in 3D. From the figure, we can
observe:
• “Continuity” of Detector’s Response Score The re-

sponse score of the detector on two nearby windows
(same size and close center points) will not change too
significantly.

• Half-ellipsoid Pattern of Detection Area The red region
in the heat map is the detection area that returns positive
results if detection threshold is set as 0. By looking at
it in 3D, we recognize the overall shape of the detection
area is like a half-ellipsoid, which tells that the detector’s
response score decays gradually with the increment of a
window’s distance to the peak response window in the
detection area.

(a) (b) (c)

Fig. 2. Illustration of response pattern. (a) Input image. (b) Heatmap of human
detector’s response score. (c) Positive classification region (red area in (b)) in
3D.

Although different detectors (binary classifiers) may have
diverse ranges of response score, many of them may still
have similar response patterns when the target is not occluded
severely. Also, this reaction pattern could be observed in some
other target applications though we are focusing on visual
object detectors here, thereby the sampling strategy exploiting
such pattern can also be applied. Next, we approximate the
response decay using an exponential function and utilize this

pattern to estimate the probability of an unobserved window
containing the target given observed results. Therefore, we can
sample windows more efficiently.

B. Formulation

In general, we formulate this process of window sampling
for target detection as a Markov Decision Process (MDP).

At iteration t, the fully-observable state consists of all
sampled windows and their corresponding detector’s response
scores st = {(wi, f(wi)), wi ∈Wt

e}, where Wt
e represents the

set of all sampled windows at iteration t. Action at+1, which
is the window to observe at time t+ 1, is selected among all
the unexplored windows W/Wt

e. A binary reward is defined
such that the reward is 1 for sampling a window that can return
highest local response score in positive classification regions
(i.e. h(w) = 1 defined in equation (2)) and 0 otherwise.

Our goal of efficient target detection is to minimize the
number of total sampling windows while still achieving a
certain number of windows containing the target. This could
also be considered as maximizing the number of sampled win-
dows that provide a local peak (highest) response in detection
area given a constraint on the total number of windows to be
checked.

Formally, our objective function is:

maximize |{w ∈Wt
e|h(w) = 1}|

subject to t ≤M.
(1)

where M is the bound on total iterations and also is the total
number of windows to be sampled since only one window
would be sampled in each iteration, | · | denotes the cardinality
of the set and the function h(·) is an indicator of whether a
window has a local maximum response in the detection area:

h(w) ,

 1 If f(w′) ≤ f(w) and f(w) > τ
for ∀w′, d(w′, w) < δ

0 o.w
(2)

In (2), τ is a threshold related to the detector that is used to
determine positive results. d(·) measures the distance between
two windows and δ > 0 is a threshold to determine local
neighbors.

Since it is difficult to estimate directly the detector’s re-
sponse score of a selected window patch in each iteration
based on observed windows and their scores, i.e., the transition
probabilities are unknown, traditional MDP solutions can-
not be adopted here. However, through sampling interaction
between the input image and the detector’s response, it is
achievable to learn the distribution of the defined binary reward
among unexplored windows. Accordingly, we could maximize
our objective rewards according to that estimated distribution.

The overall procedure is demonstrated with an example
in Fig. 3. Given an input image Fig. 3(a), we calculate an
estimation error (Fig. 3(b)) of each window having local
peak response in the detection area based on all the sam-
pled windows (Fig. 3(c)) and their corresponding detector’s
response score st. Then the next window to be tested is chosen
according to the posterior sampling on the distribution of



Fig. 3. System procedure example. (a) Input image. (b) Estimation error heat map of all windows with same scale. (c) The center points of observed windows.
(d) Output the positive classified windows.

the binary reward derived from the estimation error obtained
above. There is a loop between (b) and (c) because with the
newly sampled window and its detector’s response added, the
reward distribution is reevaluated, and a new window will
be selected to be sampled until it achieves the limited total
number. Finally, outputs are the positive classified windows
(Fig. 3(d)).

In the following sections, we detail on how to evaluate the
distribution of the binary reward and how to choose the next
action given current observations.

C. Reward Distribution Evaluation

In this section we will elaborate our reward distribution
evaluation method. Based on the definition of the binary
reward above, the probability of getting a reward 1 is the same
as the probability of the selected window returning locally
highest response score in the detection area given current
observations, i.e. P (h(w) = 1|st).

The procedures to calculate the probability P (h(w) = 1|st)
at window w are as follows. 1) We predict the detector’s
response score f̂(w′) of windows w′ that locally surround
window w, assuming window w was the peak window in
the detection area. This step applies the response pattern that
the detector’s score exponentially decayed with the increment
of distance between a surrounding window w′ and the peak
response window w. 2) After we observe the response score
f(w′) for each iteration, we compare it with the predicted one
and obtain the prediction error. 3) The prediction errors of all
surrounding windows of window w are entered in an energy
function, and we evaluate the probability of window w being
the local peak window in the detection area.

Formally, given current observation st, the probability of
a window w being the peak window in the detection area is
evaluated as:

P (h(w) = 1|st) =
1

Z
exp(−

t∑
i=1

E(wi, f(wi)|w)) (3)

where Z is the normalization factor and the energy function
E(·) is defined regarding the error between the observed

and predicted detector’s response score. The error function
is defined as:

E(wi, f(wi)|w) =

{
||f(wi)− f̂(wi|w)||2 if wi ∈ R(w)
0 o.w

(4)

Here f̂(·|w) is the predicted detector’s response function
assuming w was the peak response window, and R(w) denotes
the influence (cutoff) area for window w.

According to the detector’s response pattern observed above,
the predicted detector’s response could be written as:

f̂(w′|w) = C exp(−(w′ − w)TΣ−1(w′ − w)) (5)

and θ = (C,Σ−1) are parameters determining the peak
response score and the decaying speed of scores surrounding
the peak window.

Given a range for parameter θ, we need to estimate a value
best fitting the current observation st. The estimation is done
by minimizing the prediction error of all observed window
patches:

θ∗ = arg min
{θ:C>τ}

t∑
i=1

E(wi, f(wi)|w, θ) (6)

Finally the predicted detector’s score is determined as
f̂(w′|w, θ∗) and the energy function will compare the truly
observed response score f(wi) with the predicted score
f̂(wi|w, θ∗) to update the probability of window w being the
peak window in the detection area.

Even though we determine the maximum likelihood (min-
imum prediction error) parameter θ∗ for all the unexplored
windows, the update process can be fast if we restrict to a
finite set of values for θ and use the kernel trick. A kernel
function based on the observed windows can be defined:
q(w|wi, f(wi), θ) , E(wi, f(wi)|w, θ). The function’s value
under different θ and f(wi) can be pre-computed, where we
can discretize f(wi) by binning if it takes a continuous value.



As a result, the probability can be simply estimated through
kernel functions:

− logP (h(w) = 1|st) ∝ min
θ

t∑
i=1

q(w|wi, f(wi), θ)

= min
θ

∑
wi∈R(w)

q(w|wi, f(wi), θ)

(7)
When a new observation (wt, f(wt)) is made, only the

probability of windows within the influence area of wt:
w ∈ R(wt) needs to be updated.

D. Active Sampling Action Policy

Given the reward distribution estimated based on the current
observed state, we select an unexplored window to be sampled
at the next iteration. In order to better balance exploration
and exploitation during iterations, Posterior Sampling [20] is
employed here as our action policy. The key idea of poste-
rior sampling is to instantiate beliefs based on the posterior
distribution given current observations in each iteration, then
choose an action that can maximize the expected reward.

As the binary reward is gained only when the sampling
window w is a peak response window in the detection area
and the reward posterior distribution is estimated as described
in the previous section, our action policy to select the next
sampling window simply becomes:

P (At+1 = w|st) ∝ P (h(w) = 1|st) (8)

where At+1 denotes the action variable for iteration t+ 1.
Algorithm 1 shows the overall active sampling algorithm.

V. EXPERIMENTS

In this section, we evaluate our sampling method with
Multi-Stage Particle Windows sampling (MS-PW) [3] to
demonstrate that our proposed method obtains better efficiency
while maintaining good detection performance through ex-
ploiting the detector’s response pattern.

MS-PW is chosen as a comparison method because both
methods detect targets only by sampling and using the de-
tector’s response without adopting other pre-processing tech-
niques such as segmentation [2], [9].

We test the algorithms’ performance via several evaluation
metrics including detection rate, window usage efficiency, the
average precision rate given the same budget and overall sys-
tem detection performance using different sampling window
budget.

A. Dataset and Settings

We assess our sampling method on the INRIA person
dataset [19]. The training set contains 1208 cropped person
patches for positive examples and 1218 non-person images
where negative example patches can be sampled from. In the
testing set, there are 453 images of scenery and buildings with-
out people and 288 images containing one or more persons.
Most people in testing images are standing, but they appear in
different orientations and various backgrounds such as shops,

Algorithm 1: Active Sampling with Response Pattern
Parameters:

Total number of windows to be sampled: M ;
Parameters set for prediction functions {f̂i}: {θi};
Influence region function R(·);
Detection threshold τ .

Input:
Image to be detected: I;
Target detector returning response f(w) with input w.

Output:
Set of sampled windows with postive results: Wp.

1: Pre-compute / load kernel functions {qi(·)} for all {θi}
2: Initialize the prediction error w.r.t each kernel function

and minimum prediction error for all the window:
{Ei(w) = 0}, E∗(w) = 0

3: Initialize the probability of each window being locally
peak window in detection area:
p(w) = P (h(w) = 1|s0) = 1

Z exp(−E(w)) = 1
Z

4: Set: Wp = ∅
5: for t = 1 to M do
6: Sample a window wt proportionally to p(w)
7: Observe detector’s response f(wt)

8: for ∀w ∈ R(wt) do
9: for each kernel function qi do

10: Ei(w) = Ei(w) + q(w|wt, f(wt), θi)

11: end for
12: Update E(w): E(w) = min

i∈{1,...,M}
Ei(w)

13: Update p(w): p(w) = 1
Z exp(E(w))

14: end for
15: if f(wt) > τ then
16: Wp = Wp ∪ {wt}
17: end if
18: end for

statues and pillars. In this work we are addressing a detection
problem, so that full images in the testing dataset are used
to evaluate our algorithm’s performance. A SVM classifier
trained with HOG features is employed as the human detector,
which takes input images of 64× 128 pixels.

In all experiments, we set our influential region R(w) as a
cube of size 21× 31× 5 pixels (width, height, scale) centered
at observed window w. According to the observed detector’s
response pattern, we restrict the prediction function f̂(·) to the
set of parameters {θ1, θ2}: (C1,Σ

−1
1 ) = (1.2, diag(10, 20, 5))

and (C2,Σ
−1
2 ) = (2.2, diag(25, 35, 5)). Fig. 4 illustrates our

prediction function using parameters θ1, θ2.
The ratio between width and height of each window is fixed

as 1
2 according to the detector’s input requirements. And the

scaling factor for the window size of two adjacent levels is
set as 1.05. Meanwhile, the total number of possible sampling
windows varies with different sizes of input images. We denote



Fig. 4. The heat map of predicted score with our two settings of parameters.
Each point corresponds to a window in the same size with the selected
observed window.

Nsw as the total number of sliding windows when we scan
images both vertically and horizontally with a stride of 8.
Then we limit the total number of windows to be sampled
in experiments proportional to Nsw.

B. Experimental Results

The first experiment compares the detection rate under the
same false positive rate per image (FPPI = 1) between MS-
PW and our method. Here the false positive rate is measured
per image instead of per window because we allow multiple
targets detected in one picture, even though the latter one is
the standard metric for traditional classification problems. The
outcome is shown in Table I top, from where we can notice
that with the same budget number of windows to be sampled,
our method has higher detection rate and hits more windows
with positive results than MS-PW.

# of win. Method Detection
Rate

# of Positive
Windows

FPPI = 1

1/7Nsw
MS-PW 0.624 10.4

Our 0.716 18.3

1/6Nsw
MS-PW 0.650 11.4

Our 0.718 23.7

1/5Nsw
MS-PW 0.652 12.0

Our 0.721 31.0

1/4Nsw
MS-PW 0.667 14.1

Our 0.725 42.3

1/3Nsw
MS-PW 0.691 17.5

Our 0.726 57.6

1/2Nsw
MS-PW 0.708 24.0

Our 0.728 75.2

τ = 0

1/7Nsw
MS-PW 0.587 7.0

Our 0.677 15.4

1/6Nsw
MS-PW 0.596 8.1

Our 0.681 20.6

1/5Nsw
MS-PW 0.604 9.1

Our 0.688 28.0

1/4Nsw
MS-PW 0.652 11.8

Our 0.713 38.6

1/3Nsw
MS-PW 0.684 15.6

Our 0.714 53.5

1/2Nsw
MS-PW 0.708 23.7

Our 0.719 72.5

TABLE I
DETECTION PERFORMANCE WITH SAME SAMPLING WINDOW BUDGET.

TOP: CLASSIFICATION THRESHOLD CUSTOMIZED TO FPPI = 1.
BOTTOM: CLASSIFICATION THRESHOLD τ = 0

The second experiment contrasts sampling efficiency be-
tween methods, i.e., the number of sampled windows with

(a) (b)

(c) (d)

Fig. 5. The qualitative result of sampling the same number of windows. Top
row: MS-PW. Bottom row: Our method. Left column: The center points of the
windows selected by each method (both red and green dots). Right column:
The center points of positive classified windows sampled (green dots).

positive detection results per image using the same number
of total sampling windows. The detector (binary classifier)’s
threshold is identical (τ = 0) for fair comparison. The
consequence is displayed in Table I bottom. It is evident that
our method can discover more positive windows and achieve
higher detection rate than MS-PW.

An intuitive explanation of these results would come from
the qualitative comparison in Fig. 5, where our method exhibits
better performance in locating windows containing targets
when sampling the same number of windows and classifying
with the same threshold.

1/7Nsw 1/6Nsw 1/5Nsw 1/4Nsw 1/3Nsw 1/2Nsw

MS−PW
Our

Number of Windows Sampled
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Fig. 6. Average precision rate of two methods with same window budget

Meanwhile, Fig. 6 demonstrates the average precision rate
of system’s performance in retrieving targets from images un-
der different sampling budget. Although the average precision
of MS-PW method increases along with the sampling budget,
our method remains favorable because of better performance
for all budgets. More interestingly, our method could hold a
relatively high average precision rate when the budget number



is small. This suggests our approach properly exploits the
detector’s response pattern and facilitates sample efficiency.

In the last experiment, we examine system’s detection per-
formance using Detection Error Tradeoff (DET) curves, which
represent how missing rate (1 - detection rate) changes with
the false positive rate per image (FPPI). Performance using
sliding window method with Nsw budget windows (scanning
step = 8) is also shown as a baseline. Results in Fig. 7 reveal
similar DET curves when we set windows budgets for our
method and MS-PW as 1/7Nsw and 1/3Nsw. The results
mean that to achieve the same detection performance with
the sliding windows method, our method only uses 1/7 of the
total windows which outperforms MS-PW that needs 1/3.

10 -3 10 -2 10 -1 10 0 10 1

FPPI(False Positives Per Image)

0.2
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MSPW

SW

Fig. 7. DET curve of MSPW, SW and our method

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we present a method of active sampling with
response pattern to detect targets efficiently in a visual image.
The proposed method exploits the detector’s response pattern
to avoid an expensive, exhaustive searching for targets. An
exponential decay function is used to model the pattern of
detection score in the positive classification region. By com-
paring the predicted response score and the observed one, we
estimate the probability of an unobserved window containing
targets and having locally maximum response. Based on that,
posterior sampling is applied to decide the next window to
observe. Experimental results on human detection show that
our approach can achieve higher detection rate than the MS-
PW method using the same total windows budget, and also
requires less number of windows to achieve similar detection
performance compared to the sliding window and MS-PW
methods.

In the future, we will consider integrating this sampling
method with other search space reduction algorithms such as
segmentation or saliency-based image processing techniques
to achieve better target detection performance. Also, we may
investigate other action policy strategies such as information-
directed sampling [21], so that we can further incorporate the
potential information gain of sampling each window into our
reward evaluation to improve the balance between exploitation
and exploration during detection iterations.

ACKNOWLEDGMENT

Research supported in part by DARPA (through ARO) grant
W911NF1410384 and by NSF grant CNS-1544787.

REFERENCES

[1] B. Peng, L. Zhang, and D. Zhang, “A survey of graph theoretical
approaches to image segmentation,” 2012.

[2] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders, “Selective
search for object recognition,” International Journal of Computer Vision,
vol. 104, no. 2, pp. 154–171, 2013.

[3] G. Gualdi, A. Prati, and R. Cucchiara, “Multistage particle windows
for fast and accurate object detection,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 34, no. 8, pp. 1589–1604, Aug
2012.

[4] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE Computer Society Confer-
ence on, vol. 1, 2001, pp. I–511–I–518 vol.1.

[5] P. Negri, X. Clady, S. M. Hanif, and L. Prevost, “A cascade of boosted
generative and discriminative classifiers for vehicle detection,” EURASIP
J. Adv. Sig. Proc., vol. 2008.

[6] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan, “Ob-
ject detection with discriminatively trained part-based models,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 32, no. 9,
pp. 1627–1645, Sept 2010.

[7] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman, “Multiple kernels
for object detection,” in Proceedings of the International Conference on
Computer Vision (ICCV), 2009.

[8] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image
segmentation,” Int. J. Comput. Vision, vol. 59, no. 2, pp. 167–181, Sep.
2004.
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