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Abstract— In this paper, we investigate stability and con-
vergence properties of a class of nonlinear delayed consensus
networks. Using tools and techniques from functional differ-
ential equations, sufficient stability conditions with respect to
a common state as well as estimates on the convergence rate
are derived. We characterize the limit (consensus) state for
time-invariant sub-classes of these networks. More importantly,
we specify under what conditions a delayed network exhibits
periodic synchronized solutions. We provide sufficient condi-
tions for existence, uniqueness and stability of this interesting
phenomenon that we illustrate with a simulation example.

I. INTRODUCTION

Distributed cooperative dynamics have been vividly stimu-
lating the attention of the engineering and applied mathemat-
ics communities for over a decade now. The most popular
dynamics of this kind is the well-studied models of linear
consensus algorithms.

More precisely, a linear consensus network involves N ≥
2 agents, in which each agent i ∈ V := {1, . . . , N} is tagged
with a state of interest, denoted by xi. The state of each agent
evolves under the following averaging schemes,

xi(n+ 1) =
∑
j

aijxj(n), ẋi(t) =
∑
j

aij
(
xj(t)− xi(t)

)
. (1)

Certain connectivity criteria on the graph induced by the
weight coefficients aij guarantee convergence of xi in the
long run to a common consensus state [3], [9], [10], [17].
Networks of type (1) have been extensively used in the liter-
ature to explain cooperative computation in robotic, social,
biological, natural (flocking) networks (see for example [16]
and references therein). There are active lines of research that
aim at modifying the linear model (1) in order to incorporate
more realistic operational conditions of real-world consensus
networks, namely, delays and nonlinear couplings.

A. Nonlinear Models

Recent works investigate nonlinear variations of consensus
networks supplying the literature with a fruitful of impressive
results. Nonlinear versions of (1) exist in the literature
primarily as extensions of the linear scheme, because they
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preserve its vital qualitative features [1], [7], [9], [11], [12].
In his seminal work [9], Moreau studied the generic system:

i ∈ V :

{
xi(n+ 1) = fi(n, x1(n), . . . , xN (n)), n > n0,

xi(n0) = x0i , n = n0
(2)

where n ∈ Z+. Moreau built an asymptotic stability argu-
ment with respect to the set of consensus states, based on
set-valued Lyapunov functions. He showed that agreement
among agents emerges as n→∞, on condition that

xi(n+ 1) ∈ co
{
x1(n), . . . , xN (n)

}
, n ≥ n0. (3)

The latter condition sets every agent’s new state to lie in the
interior of the convex hull of their neighbors’ current states.
A different approach was adopted, by the same researcher,
for the continuous time linear version of (1) (see [8]). In that
paper he provided a semi-rigorous proof of the contraction
of the difference maxi xi(t)−mini xi(t) through time.

The nonlinear nature of (2) is essentially sine qua non.
Carathéodory’s Theorem assures that (3) is equivalent to
the discrete (1) if aij ≥ 0,

∑
j aij ≡ 1 [13]. These

are, in fact, the connectivity conditions that characterize co-
operative algorithms of type (1).

A first alternative of (1) is obtained assuming nonlinear
couplings on agents’ which possess certain passivity proper-
ties [1], [11] and this assumption has been used to rigorously
study models from chemistry and social sciences [5], [4]. A
second version is introduced in [12] as follows: For i ∈ V :

{
ẋi(t) =

∑
j aij(t)

(
gij(xj(t))− gij(xi(t))

)
, t ≥ t0

xi(t) = x0i , t = t0.
(4)

The authors prove convergence of solutions to a common
constant in the presence of connectivity failures. Their work
relies on Lyapunov stability and Invariance Principles in a
differential inclusion theory; framework.

B. Delays

In real world situations the agents’ access to information
is not instant. Robots have terminals that may take some
time to process data, exogenous conditions impose delays
in the transmission of information from one node to another.
Hence the phenomenon of delays plays a very important role
in the reliability and performance of the consensus networks
and it cannot be ignored. Generally speaking there are two
categories of delays. The processing delays characterize the
existence of delay while agent i processes its own value
whereas the propagation delays that characterize the delay
as agent i receives the transmitted states from the network.
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It is shown that while the former type can destabilize the
dynamics, the latter type can only affect the performance of
the network.

C. Contribution

The contribution of this paper is three-fold. We intro-
duce delayed versions of (4) with multiple time-dependent
propagation delays and study the existence and stability of
consensus solutions through a fixed point theory argument.
Our approach exploits a novel representation of the solution
with respect to a nominal exponential stable delayed version
of (1). The result associates the performance of the non-
linear network with the strength of the non-linearity and the
magnitude of the delays. We explain how a special type
of (4) (called monotonic) with delays exhibits asymptotic
stability with arbitrary multiple delays. Next, we characterize
the consensus point in the autonomous case of networks
with constant delays and we conclude by showing how non-
linearity and delays can create periodic non-constant syn-
chronized exponentially stable solutions. A simple example
illustrates the latter result concluding the work.

II. NOTATIONS & DEFINITIONS

By RN we denote the N−dimensional Euclidean space
endowed with the norm |y| = maxi |yi|. By 1 we un-
derstand the N -dimensional column vector of all ones. By
Cl([a, b],RN ) we understand the Banach space of continu-
ous functions mapping [a, b] into RN with the topology of
uniform convergence that have l ≥ 0 continuous derivatives.
We set C := C0([−τ, 0],RN ) for some τ > 0 and we
designate the norm |φ| = sups∈[−τ,0] |φ(s)| for φ ∈ C.
If x ∈ C([−σ − τ, σ + α],RN ) then for t ∈ [σ, σ + α], we
understand xt ∈ C as xt(s) = x(t + s), s ∈ [−τ, 0]. We
recall L1 the class of absolutely integrable functions. By d

dt
or “ · ” we understand the right-hand side Dini derivative. A
solution of an initial value problem through t0,φ is denoted
by x(t0,φ) so that xt0 = φ. For any xt ∈ C we define

W (xt) = [min
i∈V

min
s∈[−τ,0]

xi(t+ s),max
i∈V

max
s∈[−τ,0]

xi(t+ s)]

S(xt) = max
i∈V

max
s∈[−τ,0]

xi(t+ s)−min
i∈V

min
s∈[−τ,0]

xi(t+ s)

It can be easily shown that S(xt) is a pseudo-metric: While
S(xt) is non-negative and it satisfies the triangular inequality,
S(xt) = 0 implies

{
xt ∈ C : xi(t+ s) = xj(t+ s′), s, s′ ∈ [−τ, 0], i, j ∈ V

}
that we denote by ∆. The symbol t0 is reserved for the initial
time. For an appropriate operator R : [t0 ×∞) × C → RN
the initial value problem{

ẏ(t) = R(t)yt, t ≥ t0
y(t) = φ(t), t ∈ [t0 − τ, t0]

has a unique solution y(t, t0,φ), t ∈ [t0 − τ,∞). Another
representation is for fixed t ≥ t0, yt(t0,φ) to be a member
of C. To the initial value problem we associate a family of
continuous linear operators T (t, t0) : C → C,

T (t, t0)φ→ yt(t0,φ).

The framework can incorporate general (possibly time-
varying) delays, expressed as smooth functions of time. A
delay between two agents i and j is defined as τij(t) ∈
C1
(
[t0,∞), [0, τ ]

)
. Also, for the sake of brevity, we adopt

λij(t) = t− τij(t).
The framework for ordinary differential equations is re-

covered as a special case where τ = 0.

A. Review of Stability Results for Linear Systems

The communication network can be rigorously described
by a (possibly time varying) weighted graph Gt =
(V,Et,Wt) where Et denotes the set of edges and Wt the
connectivity weight between nodes at every instant t ≥ t0.
At this point we will review a stability result concerning
the continuous time delayed version of (1), in the following
initial value problem: For i ∈ V :,

{
ẋi(t) =

∑
j∈V aij(t)

(
xj(λij(t))− xi(t)

)
, t ≥ t0

xi(t) = φi(t), t ∈ [t0 − τ, t0]
(5)

For this we will need a number of assumptions that charac-
terize the connectivity conditions and the delays. The matrix
representation of Gt is with the adjacency matrix A(t),
each element of which aij(t) corresponds to the connectivity
between nodes.

Assumption 2.1: [3] For any i, j ∈ V , aij : [t0,∞) →
[0,∞), integrable with the property that t ≥ t0 : aij(t) 6= 0
implies aij(s) ≥ δ > 0 for an ε interval of time.

Assumption 2.2: [8] The graph Gt time-varying attains
the property there exists B > 0 such that

∫ t+B
t

A(s) ds
corresponds to a routed-out branching network.

Assumption 2.3: ∀i, j ∈ V , τij(t) ∈ C1([t0,∞), [0, τ ])
such that 1− τ̇ij(t) > 0.

Theorem 2.4: [16] Under Assumptions 2.1, 2.2 and 2.3,
the solution x of (5) satisfies

S(xt) ≤ Γe−γ(t−t0)S(φt0)

for some Γ, γ > 0 that depend on the network parameters as
described in the assumptions. In particular, ∃ k ∈ W (φt0)
such that limt→∞ xi(t) ≡ k exponentially fast.

Remark 2.5: For τ < ∞ set as the upper bound of the
magnitude of the delays, S(xt) ≡ 0 implies that the system
is at a constant consensus state.

Remark 2.6: Explicit estimates of Γ, γ in terms of the
network parameters lie beyond the scope of this report. The
interested reader is referred to [16].

III. NONLINEAR DELAYED NETWORKS

We consider the scenario of a network of agents running
a non-linear alrogithm of type (4) where each agent receives
a delayed version of its neighboring agents’ state. The
corresponding initial value problem reads:
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{
ẋi(t) =

∑
j gij

(
t, xj(λij(t))

)
−
∑
j gij

(
t, xi(t)

)
, t ≥ t0

xi(t) = φi(t), t ∈ [t0 − τ, t0]
(6)

To the best of our knowledge, the literature lacks an effec-
tive framework to rigorously study the long term behavior of
systems like (6) apart from special cases studied with very
hard assumptions on gij(·) [12]. In this section, we will
tackle this problem with the development of a fixed point
theory argument by comparing (6) with (5) in which we will
prove simultaneously, existence in the long run, uniqueness
and stability of solutions, with explicit rate estimates.

Assumption 3.1: Assume that for all i 6= j there are
functions aij as in Assumption 2.1 that form a graph as
in Assumption 2.2 and kij : [t0,∞)→ [0,∞) such that for
any y1, y2 ∈ R and t ≥ t0,∣∣∣∣aij(t)− ∫ 1

0

g′ij(t, qy1 + (1− q)y2)) dq

∣∣∣∣ ≤ kij(t)
where g′ij(t, x) =

∂gij(t,x)
∂x is assumed to exist and be

integrable.
The above assumption generally establishes a growth

estimate of gij with respect to aij and it is a hard Lipschitz
condition. We are ready now to state the first result of this
work.

Theorem 3.2: Let Assumptions 2.1, 2.2, 3.1 and 2.3, hold.
Consider the initial value problem (6) with its solution x. If

sup
t≥t0

D

∫ t

t0

e−γ(t−σ)k(σ) dσ < 1

where D = 2(N − 1)Γeγτ , then there exists ε ∈ (0, γ), such
that xt → ∆ as t→∞ exponentially fast with rate ε > 0.

Proof: We observe that we can write (6) as

ẋi(t) =
∑
j

aij(t)
(
xj(λij(t))− xi(t)

)
+
∑
j

(
g̃ij(t, xj(λij(t))− g̃ij(t, xi(t))

)
where g̃ij(t, y) = gij(t, y) − aij(t)y. In vector form the
systems of equations read

ẋ(t) = −L(t,xt) + G̃(t,xt) (7)

where L and G are RN -valued operators, acting on
[t0,∞)×C, with the ith component to be

∑
j [aij(t)xi(t)−

aij(t)xj(λ1j(t))] and
∑
j [g̃ij(t, xj(λ1j(t)) − g̃ij(t, xi(t))]

respectively. Now, the linear network

ż(t) = −L(t, zt)

admits under Assumptions 2.1, 2.2, solutions that regardless
φt0 , are exponentially stable with respect to ∆. Following
[14] the solution xt in terms of zt = T (t, t0)φt0 is

xt(t0,φt0) = T (t, t0)φt0 +

∫ t

t0

T (t, σ)Y G̃(σ,xσ) dσ (8)

where the last integral is with the understanding that

xt(t0,φt0)(s) = [T (t, t0)φt0 ](s) +

∫ t

t0

[T (t, σ)Y ](s)G̃(σ,xσ) dσ

for s ∈ [−τ, 0] and Y the N × N matrix valued function
Y (s) = 0 for s ∈ [−τ, 0] and Y = I for s = 0. The
triangular inequality and Theorem 2.4 yield

S(xt) ≤ S(zt) + S

(∫ t

t0

T (t, σ)Y G̃(σ,xσ) dσ

)
≤ Γe−γ(t−t0)S(φt0) + S

(∫ t

t0

T (t, σ)Y G̃(σ,xσ) dσ

)
and the last term is bounded by 2Γ

∫ t
t0
e−γ(t+s−σ)(N −

1)k(σ)S(xσ) dσ, for k(s) = maxij kij(s). So

S(xt) ≤ Γe−γ(t−t0)S(φt0) +D

∫ t

t0

e−γ(t−σ)k(σ)S(xσ) dσ.

This inequality implies that S(xt) is in fact upper bounded
by the solution q(t) of

q(t) = Γe−γ(t−t0)q(t0) +D

∫ t

t0

e−γ(t−σ)k(σ)q(σ) dσ (9)

for t ≥ t0 and q(t) = S(φt0).
1) Existence & uniqueness of a fixed point: Consider the

following space of functions

M =
{
y ∈ C0([t0,∞),R+

)
: y(t0) =S(φt0),

sup
t≥t0

eεt|y(t)| <∞
}

where ε as in the statement of the Theorem, together with
the weighted metric

ρ(y1, y2) = sup
t≥t0

eεt|y1(t)− y2(t)|

constitute a weighted complete metric space [2]. In this
metric space (M, ρ) we will apply the Contraction Mapping
Principle as follows: Define the operator Qy with (Qy)(t) =
S(φt0) for t = t0 and

(Qy)(t) = Γe−γ(t−t0)S(φt0) +D

∫ t

t0

e−γ(t−s)k(s)y(s) ds

for t ≥ t0, and note for any y ∈ M, eεt(Qy)(t) → 0 if
ε < γ, as the first term clearly vanishes and the second
term vanishes as the convolution of an L1 function with a
function that goes to zero. It is, finally, easy to see that Q is
a contraction in (M, ρ) since

ρ(Qy1,Qy2) ≤ D sup
t≥t0

eεt
∫ t

t0

eγ(t−s)k(s)e−εs dsρ(y1, y2)

Then the imposed condition and Banach’s Principle imply
that there exists ε small enough so that Q is a contraction
mapping in (M, ρ) hence it attains a unique solution in M
ensuring that the unique solution (the one that majors S(xt))
vanishes exponentially fast with rate ε > 0.
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A. Monotonic couplings

Theorem 3.2 is admittedly a rather conservative stability
result of (6) based on its relation to (5), the growth of the
perturbation (Assumption 3.1) and the maximum delay. In
particular, there is a strict interplay between D and kij for
the stability result to apply. This approach is too restrictive
because, heuristically speaking, we allowed “unregulated
freedom” on the way gij is allowed to vary. A simple type of
gij , makes the dynamics of (6) to mimic those of the linear
case (5). In particular, we will ask the following monotonic
condition1.

Assumption 3.3: For all i, j ∈ V it holds that gij ∈
C1
(
[t0,∞) × R,R

)
such that g(t, x) 6= 0 implies

∂
∂xgij(t, x) > 0 uniformly in x.
This condition yields the following interesting corollary that
we state here without proof.

Corollary 3.4: Let Assumptions of Theorem 3.2 hold to-
gether with Assumption 3.3. Then the solution x of (6) is
exponentially stable with respect to ∆ for arbitrary τ , with
rate γ > 0.

B. Characterization of the consensus point

It is well known that when a consensus system attains
time-invariant parameters there is a closed form solution of
the consensus point. In the absence of delays and constant
connectivity weights the solutions converge to wTx0 where
w ∈ RN satisfies wTL = 0, wi ≥ 0,

∑
i wi = 1, for L the

laplacian matrix of the network. Time-dependent parameters
(connection weights or delays) make generally the expression
of the consensus point in an explicit form inevitable. Non-
autonomous dynamics affect constantly the system’s solution
in a way that cannot simply depend on the initial conditions.
In this section we will consider and autonomous version of
(6) under a supplementary symmetry assumption:

Assumption 3.5: For the nonlinear functions gij it holds
that gij ∈ C1(R,R) with the property g′ij = g′ji.

For the main result we will need the next technical lemma:
Lemma 3.6: Let Assumption 3.3 hold. Given φi ∈

C0([−τ, 0],R), i = 1, . . . , N then ∃ ! c ∈W (φ) to satisfy

c =
∑
i

αiφi(0) +
∑
i,j

βi

(∫ 0

−τij
gij(φj(s)) ds− τijgij(c)

)
where α,β ∈ RN ≥ 0 with

∑
i αi =

∑
i βi = 1.

Proof: Define the function J : W (φ)→ R

J(c) = c−
∑
i

αiφi(0)−
∑
i,j

βi

(∫ 0

−τ
gij(φj(s)) ds+ gij(c)

)
We begin by excluding the trivial cases. This is for W (φ)
being a singleton, i.e. W (φ) = {c} and hence φi ≡ c and
automatically J ≡ 0. If W (φ) is not a singleton then we
take

c1 := min
i∈V

min
s∈[−τ,0]

φi(s) < max
i∈V

max
s∈[−τ,0]

φi(s) =: c2

1The term “monotone” is due to H. Smith [15]

by continuity of φi and gij we conclude that

c1 ≤ φi(0) and gij(c) ≤ gij(φi(s))

but with some i, j such that gij(c) < gij(φ(s)) for some
s ∈ [−τ, 0]. Consequently, J(c1) < 0 and similar analysis
will yield J(c2) > 0. By the theorem of Bolzano there exists
c ∈W such that J(c) = 0. The uniqueness of c follows from
the fact that J ′ = 1 +

∑
i,j βig

′
ij(c) > 0.

Theorem 3.7: Consider the system (6) with gij(t, x) =
gij(x) and τij(t) ≡ τij . Let Assumptions 3.3 and 3.5 hold
and the nonlinear network is simply connected. The solution
x = x(t, t0,φ), t ≥ t0 of (6) converges to the unique
solution of

c =
∑
j

αjφj(0) +
∑
i,j

1

N

∫ 0

−τij
gij
(
φj(s)

)
ds−

∑
i,j

1

N
τijgij(c)

exponentially fast with rates dictated by Theorem 2.4.
Proof: [Sketch] It suffices to show that x indeed con-

verges to a point satisfying the aforementioned nonlinear
algebraic equation. We rewrite (6) as follows:

ẋi(t) =
∑
j

(
gij(xj)− gij(xi)

− d

dt

∫ t

t−τij

[
gij
(
xj(s)

)
− gij(c)

]
ds

)
Consider the solution y of

i ∈ V :

{
ẏi =

∑
j gij(yj)−

∑
j gij(yi), t > 0

yi(t) = φ0
i , t = 0

(10)

In vector form (10) reads,

ẏ = G(y), y(0) = φ0

For t ≥ s ≥ 0, V(s) := y
(
t, s,x(s)

)
and differentiate

with respect to s

d

ds
V(s) = −

∂y
(
t, s,x(s)

)
∂ξ

d

ds
H(xs)

where H(xs) is a vector with the ith element∑
j

∫ s
s−τij

[
gij(xj(σ)) − gij(c)

]
dσ. Note that ∂y(t,s,x(s))

∂ξ

is the principal matrix solution of the following linear
non-autonomous system

ż = G′
(
y(t, s,x(s))

)
z.

This is a consensus network with symmetric weights for
which it is very well known that regardless of y(t, s,x(s)),
z(t)→ 11T

N z0 exponentially fast. Next, we integrate from 0
to t to obtain the following expression for the solution of (6)

x(t, 0,φ) = y(t, 0,φ0)−
∫ t

0

∂y
(
t, s,x(s)

)
∂ξ

d

ds
H(xs) ds

Integration by parts and change of the order of integration
in the last equation yields as t→∞
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1c =1
∑
j

αjφj(0) + 1
∑
i,j

1

N

(∫ 0

−τij
gij
(
φj(s)

)
ds− τijgij(c)

)
which, by Lemma 3.6, we know that it attains a unique
solution in W (φ0).

IV. PERIODIC SYNCHRONIZED SOLUTIONS

Studies in consensus systems with propagation delayed
information confirm that the effect of delays appear only on
the performance of the network. In this section we will show
that the effect of propagation delays in cooperative systems
may cause more complex behavior than simply weakening
the rate of convergence to consensus. Indeed, whenever the
dynamics are nonlinear and the type of delays is distributed,
there seems to be a possibility of a non-trivial periodic
solution. The period of the solution is directly connected
to the magnitude of the delay. We focus our discussion on
both periodic and synchronized solutions.

Definition 4.1: A function y ∈ C([t0,∞),RN ) is syn-
chronized if |y| <∞ and S(y(t)) ≡ 0.

This is an extended concept of agreement that basically
accepts consensus along a non-trivial orbit. The forms of
networks that exhibit such behavior are substantially different
from the previous ones. Consider the following initial value
problem; For i ∈ V :


ẋi(t) =

∑
j

[ ∫ 0

−τ gij
(
t, s, xj(t+ s)

)
p(t, s) ds− gij

(
t, t, xi(t)

)]
, t ≥ t0

xi(t) = φi(t) , t ∈ [t0 − τ, t0]
(11)

where p ∈ C0([t0,∞)× [−τ, 0],R+) has the property∫ 0

−τ
p(t, s) ds = 1, t ≥ 0. (12)

The working hypothesis in the conventional consensus net-
works models agent i to receive the signal with the state xj
from agent j with a coupling weight which suffers from no
processing delay. This condition would makes sense only if
the particular rate is a parameter controlled exclusively by
i. Otherwise, if the information on the coupling rate is also
transmitted from j should suffer from delays. We will show
here that if this is the case, periodic solutions can occur.
We study the generic scenario where uncertainty is put in an
interval of possible delays. This is typically expressed via
a distribution function that smoothly weights the different
possible delays.

A. Delay induced synchronization

Exhaustive simulations have suggested the following mod-
ification of the consensus network:


ẋi(t) = −

∑
j gij

(
t, xi(t)

)
+
∑
j

∫ t
t−T gij

(
s, xj(s)

)
p(s− t) ds,

, t ≥ 0

xi(t) = φi(t), t ∈ [−T, 0]
(13)

where p is a distributed delay satisfying (12) with τ = T . The
conditions we are imposing on gij are significantly harder
than the ones considered so far.

Assumption 4.2: For all i, j ∈ V, t ≥ 0, x ∈ R, the
following properties hold:
(i.) gij(t, x) > 0, uniformly in t, if and only if j is

connected to i and zero otherwise.
(ii.) gij(t+ T, x) = gij(t, x),

(iii.) ∂
∂xgij(t, x) ∈ C0

(
[0,∞) × R, [K,K]

)
for (i, j) ∈ E

and some 0 < K ≤ K <∞, independent of t
(iv.)

∑
j gij(t, x) is independent of i.

Assumption 4.3: The connectivity graph is static and there
exists j ∈ V : gij 6= 0 for all i ∈ V \{j}.

Proposition 4.4: Let Assumption 4.2 hold. If

K

∫ 0

−T
p(s)(−s) ds < 1,

then there exists a unique synchronized periodic solution
of (13) with period T . The solution is constant only if there
is c such that∑

j

gij(t, c) =

∫ 0

−T
p(s)

∑
j

gij(t+ s, c) ds.

Proof: [Sketch] We begin with the second state-
ment. If x is synchronized and T−periodic, i.e. x(t) =(
x1(t), . . . , xN (t)

)
=
(
ζ(t), . . . , ζ(t)

)
for some appropriate

function. By Assumption 4.2(v.),

ζ̇(t) = −
∑
j

gij
(
t, ζ(t)

)
+
∑
j

∫ t

t−T
gij
(
s, ζ(s)

)
p(s− t) ds

independent of i. If ζ(t) ≡ c for some c ∈ R, then the last
equation reads

0 = −
∑
j

gij
(
t, c
)

+
∑
j

∫ t

t−T
gij
(
s, c
)
p(s− t) ds

= −
∑
j

gij
(
t, c
)

+

∫ 0

−T
p(s)

∑
j

gij(t+ s, c) ds

We proceed by proving the existence and uniqueness of
a periodic solution x(t) = 1ζ(t). Adding and subtracting
gij
(
t, xj(t)

)
we arrive at the following equivalent equation

for xi

ẋi(t) =
∑
j

gij
(
t, xj(t)

)
−
∑
j

gij
(
t, xi(t)

)
−
∑
j

d

dt

∫ 0

−T
p(s)

∫ t

t+s

gij
(
w, xj(w)

)
dwds

We follow the steps of the proof of Theorem 3.7. We set
l(s) = x

(
t, s, z(s)

)
, differentiate with respect to s and

integrate from 0 to t and we express the solution x(t) =
x(t, 0,φ) of (13) as follows:

x(t, 0,φ) = z(t, 0,φ)−

−
∫ t

0

∂z(t, s,x(s))

∂ξ

d

ds

∫ 0

−T
p(q)

∫ s

s+q

G(w,x(w)) dwdqds

(14)
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Let
(
S, | · |

)
be the Banach space of continuous T -periodic

synchronized functions. Define the operator P : S → B as
follows:

(Px)(t) = x(14)(t)

where x(14)(t) is the right hand-side of (14) as it was
expressed above. Interestingly enough, Q, restricted to S,
becomes particularly simplified. Indeed, for x ∈ S under
Assumption 4.2:

1) z(t, 0,φ) ≡ φ,
2) G

(
w,x(w)

)
∈ ∆ for any fixed w ≥ −T .

Consequently, the principal matrix ∂z
∂ξ acts on ∆ and thus

has no effect on any such element of ∆. So we are left with

(Px)(t) = φ(0) +

∫ 0

−T
p(q)

∫ 0

q

G
(
w,φ(w)

)
dwdq

−
∫ 0

−T
p(q)

∫ t

t+q

G
(
w,x(w)

)
dwdq

and it is easy to see that (Px)(t+ T ) = (Px)(t).
Finally, under the stated condition Q becomes a contrac-

tion under the metric ρ(x,y) = supt maxi |xi(t)−yi(t)| and
the Contraction Mapping Principle applies to prove existence
and uniqueness of a fixed point in S, concluding the proof.

Proposition 4.4 states a sufficient condition for existence
and uniqueness of a periodic synchronized solution. We will
see now that this condition actually suffices for the local
asymptotic stability of 1ζ.

Theorem 4.5: Let Assumptions 4.2 and 4.3 hold. The
synchronized solution 1ζ(t) of Proposition 4.4 is locally
exponentially stable if

sup
t≥0

∫ 0

−T

∫ t

t+s

[∑
j

∂gij(w, ζ(w))

∂x

]
dwp(s) ds < 1.

Proof: [Sketch]We will make a first variation orbital
stability argument. Assumption 4.2 implies that the right
hand-side of (13) has continuous first order partial derivatives
globally. Let 1ζ(t) be the T -periodic solution of (13) defined
from Proposition 4.4 and x(t, 0,φ) a solution of (13) so
that φ is in the vicinity of 1ζ. For t ≥ 0, set z(t) =
maxi |xi(t)−ζ(t)|. If xi(t)−ζ(t) ≥ 0 then Taylor’s theorem
yields

dt

dt
z(t) ≤−

∑
j

∂gij
(
t, ζ(t)

)
∂x

z(t)

+

∫ t

t−T

∑
j

∂gij
(
s, ζ(s)

)
∂x

z(s)p(s− t) ds+ o(|z|).

A similar argumentation for xi(t) − ζ(t) < 0 yields the
same upper bound for ż(t). Consequently, for initial data
near the periodic orbit we omit the higher order terms o(|z|)
and observe that ż(t) ≤ q̇(t) for

q̇(t) =−
∑
j

∂gij
(
t, ζ(t)

)
∂x

q(t)

+

∫ t

t−T

∑
j

∂gij
(
s, ζ(s)

)
∂x

q(s)p(s− t) ds

In view of (12) we write

d

dt
q(t) = − d

dt

∫ 0

−T

∫ t

t+s

[∑
j

∂gij
(
w, ζ(w)

)
∂x

]
q(w) dwp(s) ds

and this will yield

q(t) = q0 −
∫ 0

−T

∫ t

t+s

[∑
j

∂gij
(
w, ζ(w)

)
∂x

]
q(w) dwp(s) ds

(15)
with q0 = q(0) +

∫ 0

−T
∫ 0

s

[∑
j
∂gij(w,ζ(w))

∂x

]
q(w) dwp(s) ds.

For z(·) as defined above and χ > 0 we consider the
functional space

V =
{
v(t) ∈ C0([−T,∞),R) : v(s) = z(s)|s∈[−T,0],

sup
t≥0

eχt|v(t)| <∞
}

which, together with the weighted metric, ρ(v1, v2) =
supt e

χt|v1(t) − v2(t)| constitutes a complete metric space
[2]. Define the mapping Q : V→ B

(Qv) =

{
z(t), t ∈ [−T, 0]

q(15)(t), t ≥ 0

where q(15)(t) stands for the right hand-side of (15). It is easy
to see that Q : V→ V and under the imposed condition one
can pick χ > 0 small enough so that

sup
t≥0

eχt
∫ 0

−T

∫ t

t+s

[∑
j

∂gij(w, ζ(w))

∂x

]
e−χw dwp(s) ds < 1.

Then Q becomes a contraction in V and the Contraction
Mapping Principle applies to ensure a unique fixed point. So
q(t) converges to 0 exponentially fast and so does z(t).

V. A SIMULATION EXAMPLE

Due to space limitations we will illustrate only Theorem
4.5 with a simple simulation run over a small network.
Consider the 3× 3 network

ẋi = −
3∑
j=1

aij(t)gij
(
xi
)

+

∫ t

t−1

3∑
j=1

aij(s)gij
(
xj(s)

)
p(s− t) ds

with

G(x) = ḡ

 0 0.01x+ x3

1+x2
3x+ sin2(x)

0.01x+ x3

1+x2
0 3x+ sin2(x)

3x+ sin2(x) 0.01x+ x3

1+x2
0


for some ḡ > 0 and

A(t) =

 0 2 + sin(2πt) 3 + sin(4πt)
2 + sin(2πt) 0 3 + sin(4πt)
3 + sin(4πt) 2 + sin(2πt) 0

 .
It can be easily verified that the system satisfies Assumptions
4.2 and 4.3. Moreover, if p(s) ≡ 1, (12) is satisfied, as
well. Choosing ḡ < 1

6.14 both the conditions of Proposition
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Fig. 1. Simulation run with the ddesd routine in MATLAB.

4.4 and Theorem 4.5 hold and this means that there is a
unique solution that is exponentially stable with rate χ =
0.0015. See Figure 1 for a numerical calculation of the
solution. A simulation study of the solutions of the network
reveals that the upper bound of ḡ is conservative. Indeed
the monotonicity of gij suggests that periodic solutions exist
and are asymptotically stable for arbitrary values of ḡ and
arbitrary initial data.

VI. CONCLUDING REMARKS

In this paper we considered classes of nonlinear delayed
extension of consensus networks developing nonlinear meth-
ods for the characterization of the long-term behavior of the
its solutions. Sufficient conditions for asymptotic stability
depend not only on the connectivity regime between nodes
but also on the type of the coupling non-linearities as well
as the magnitude of the delays in the network. Whenever
the nonlinear systems incorporate monotonic features hard
stability conditions are replaced by the standard ones from
linear theory.

The autonomous case also provides information on the
consensus point. The monotonicity condition implies that the
consensus point serves as a unique solution of a nonlinear
algebraic equation that depends on the connectivity of the
network as well as the (constant) delays.

In the last part of the work section we pointed out that
although the standard type in synchronization solutions of
consensus systems is the constant solutions, in an inter-
esting turn of events we showed that for the special type
of distributed delays, nonlinearity provides an alternative:
the existence and asymptotic stability of synchronized yet
non-constant periodic solutions. We proved the existence
and uniqueness of a periodic solution with a fixed point
theorem approach and its local stability using the classic
variational argument. Our objective was to merely point to
this a direction of dynamic behavior thus the very strong
and simplifying assumptions of Theorem 4.5 and open the

discussion with the introduction of the standard framework
and the first scratching of the surface of this topic.

Despite several advantages of non-linear variational tech-
niques we conclude this work by discussing the drawback
of too strong assumptions of Theorem 3.2. The key reason
is that the metric S(xt) is by its nature very conservative
because it considers τ -interval of solutions, hence it provides
estimates that grow exponentially fast with τ . In addition,
the derivation of the solution operator in the proof of the
theorem is generally crude. One would follow more involved
methods discussed in [6] for the solution representation in
terms of S(xt) provided that one would prove that the spread
operator S : C → RN attains an, at least integrable, Fréchet
derivative.

It is clear that the discussed drawbacks of our approach
constitutes the challenges that pave the way for future
research work.
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