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Abstract— The back-pressure algorithm (BP) has received
much attention for jointly routing and scheduling over multi-
hop networks. The back-pressure algorithm is throughput-
optimal, but it has poor delay performance. This is due to
selection of unnecessarily long paths and routing loops, as the
algorithm operates without accounting for the network topol-
ogy. In this paper, we propose a throughput-optimal routing
and scheduling algorithm that improves delay performance
by greedy embedding of the network in hyperbolic space. We
improve delay performance by solving an optimization problem,
which aims to send packets mostly to greedy neighbors, subject
to throughput-optimality constraints. The algorithm that solves
this optimization problem has a design parameter M . We study
the effect of M on delay performance analytically. We validate
our theoretical results via simulations and demonstrate that the
proposed algorithm improves the delay performance.

I. INTRODUCTION

In recent decades, there has been huge improvement

in wireless network technology which led to new wire-

less networks such as sensor networks, cellular networks,

mobile ad-hoc networks. In these scenarios, unlike wired

networks, users compete for accessing a shared transmission

medium. As a result, designing high-performance and effi-

cient schemes for resource allocation is of great importance

for such networks. Some of the metrics critical to the

performance of these networks are throughput and delay.

There is an increasing demand for high throughput and low

delay scheduling and routing algorithms in both wireless and

wired networks. High throughput is critical to respond to

increasing demand of different applications. Besides that,

delay is very important in real-time applications such as

VoIP. Tassiulas and Ephremides in [1] proposed the back-

pressure algorithm for scheduling and routing, and proved

its throughput-optimality. A routing/scheduling algorithm is

throughput-optimal in the sense of [1], if it can stabilize any

traffic that can be stabilized by any other routing/scheduling

algorithm.
The back-pressure algorithm is a congestion based routing

and scheduling protocol that sends packets along the links

with higher queue differential backlog. However, it has poor

delay performance because it explores all feasible paths

between each source and destination without considering the

delay metric. This extensive hop-by-hop path exploration for

each packet leads to network stability. However, this may

lead to unnecessarily long paths and routing-loops. As a

result, the back-pressure algorithm has poor end-to-end delay

performance.
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There have been several studies on delay improvement

in back-pressure. In [2], Ji et al. used the age of head-of-

line packets instead of queue length as link weights, which

is throughput-optimal for fixed routing. In [3], Ying et al.

proposed an algorithm that adaptively selects a set of optimal

routes between each source and destination, but increases

the computational complexity and the number of queues

per node considerably. Both [4] and [5] use shadow queues

to improve delay performance and decrease the number

of queues in the network. Both algorithms are throughput-

optimal scheduling for fixed routing.

Stai et al. in [6] assigned virtual coordinates in hyperbolic

space to each node such that there is a greedy path in

hyperbolic space between each pair of nodes. They applied

back-pressure scheduling over a fixed set of greedy paths,

and called it Greedy back-pressure (GBP). In greedy back-

pressure, delay performance in light loads is improved by

restricting the packets to be sent along specific loop-free

paths. However, it is at the cost of decreasing the capacity

region, which is the main characteristic of the back-pressure

algorithm. Besides that, as our results show, the delay of

greedy back-pressure (as implemented in [6]) in heavy loads

may be larger than traditional back-pressure. This is due

to the fact that in the greedy back-pressure of [6], they

restrict packets to be sent along specific paths without

considering the arrival rate information, which may lead to

higher congestion.

In this paper, we propose a routing and scheduling al-

gorithm that improves delay in the back-pressure algorithm

considerably, while maintaining throughput optimality. We

embed the graph in hyperbolic space such that there is

a greedy path between each pair of nodes. This ensures

existence of greedy loop-free paths between each pair of

nodes. We utilize the technique proposed in [7] to embed

the network graph in hyperbolic space.

Our algorithm is the solution to an optimization problem

that aims to minimize routing packets (i.e. minimize the

amount of traffic routed) over non-greedy paths subject to

throughput optimality constraints. The selection of the objec-

tive function ensures that packets are mostly routed through

loop-free greedy paths. Since the back-pressure algorithm

sends packets through routing loops, especially in light to

moderate traffic, this objective function would improve delay

considerably. As we demonstrate, the solution of the problem

considers just greedy paths in light traffic, but as congestion

in the network increases it utilizes other feasible paths in

order to keep the queues in the network stable.

The rest of this paper is organized as follows. In Section II
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we summarize the properties of hyperbolic embedding and

greedy routing. In Section III, we describe our system and

state our assumptions. In Section IV we formalize our op-

timization problem and obtain a greedy-aided back-pressure

algorithm. We study the influence of the design parameter

on performance of the proposed algorithm. In Section V,

we discuss complexity and distributivity of the proposed

algorithm. In Section VI, we describe our simulation settings

and compare the proposed algorithm with the traditional

back-pressure and the greedy back-pressure. We close with

some conclusions and future work in Section VII.

II. HYPERBOLIC EMBEDDING AND GREEDY

GEOGRAPHICAL PATHS

There are several different models for constructing hyper-

bolic geometry. One of the standard models is the Poincaré

disc model. In this model, hyperbolic space H is represented

by a set of points (x, y) ∈ R
2 such that x2 + y2 ≤ 1,

which represents a unit disc. We refer to points in the

hyperbolic plane using complex coordinates, such that (x, y)
is represented by the complex number z = x+ yi.

The hyperbolic plane has a boundary circle denoted by

∂H, which is x2+y2 = 1, and represents the infinity. Points

on ∂H are at infinite distance from any point inside the

circle. If u and v are two points in the unit disc, the distance

between these two points in the Poincaré disk model is :

cosh dH(u, v) =
2|u− v|2

(1− |u|2)(1− |v|2) + 1 (1)

Definition 1: An embedding of a graph G in H
d is a

mapping C(G) : V → H
d that assigns to each vertex v ∈ V ,

a virtual coordinate C(v).
In greedy geographical routing, nodes forward the packets

based on the coordinates of the destination and coordinates of

their neighbors. Each node sends the packet to the destination

by forwarding the packet to any neighbor which is closer

to the destination than the node itself. If we use Euclidean

coordinates of the physical location of nodes, packets may

get stuck in local minima of the distance-to-destination

function.

Greedy embedding is a graph embedding that makes

simple greedy geometric packet forwarding successful for

every source-destination pair. In [7], the authors proposed

a distributed algorithm that assigns a virtual coordinate in

hyperbolic plane to each node in the network, such that there

exists a greedy geographical path for each pair of source

and destination with respect to these virtual coordinates.

To embed the actual graph G in hyperbolic plane, first an

arbitrary spanning tree T of G is chosen. If T admits a greedy

embedding in the hyperbolic space then G also admits the

greedy embedding. So, the algorithm embeds the spanning

tree in the hyperbolic plane such that tree edges provide

a greedy path between each source destination pair. As a

result in this embedding each node has at least one greedy

neighbor to the destination, which is one of its children or

its parent. We encourage the reader to read [7] for details of

the algorithm.

III. SYSTEM MODEL AND CAPACITY REGION

Consider a network represented by a graph G = (V, E),
where V is the set of nodes and E is the set of directed

links. Nodes are wireless transmitters/receivers and links

represent the wireless channel between two nodes if they can

directly communicate with each other. μm,n is the maximum

transmission rate supported on a directed link from node m
to node n. We assume that time is slotted, with a typical time

slot denoted by t. We denote μd
ij(t) as communication traffic

in link (i, j) for destination d at time t. Denote by Ad
i (t) the

amount of new exogenous data that arrives at node i on slot t
that must eventually be delivered to node d. We assume each

Ad
i (t) satisfies the Strong Law of Large Numbers (SLLN).

That is with probability 1 we have:

lim
t→∞

∑t−1
τ=0 A

d
i (τ)

t
= λd

i .

We assume λd
i = 0 if i = d. qdi (t) denotes the queue length

of a FIFO queue at node i for destination d. A scheduling

policy is a set of links that are active at the same time. A

scheduling policy is called feasible if activated links do not

interfere with each other. We call Γ the set of all feasible

schedules. Also we use the notation N (i) to denote the one-

hop neighbors of node i.
The capacity region of the network is defined as the set

of all end-to-end traffic load matrices that can be stably

supported under some network control policy. By stability

we mean the time average queue length of all queues in the

network doesn’t go to infinity. A network policy is called

throughput-optimal if its capacity region is the same as the

network capacity region. In [1], the authors proved that

the back-pressure algorithm is throughput-optimal for the

capacity region of the network denoted as ΛG. ΛG is the

set of all input rate matrices (λd
i ) such that there exists a

rate matrix [μij ] satisfying the following constraints:

• Efficiency constraints: μd
ij ≥ 0, μd

ii = 0,
μd
dj = 0,

∑
d μ

d
ij ≤ μij , ∀i, d, j.

• Flow constraints: λd
i +

∑
l μ

d
li ≤

∑
l μ

d
il, ∀i, d : i �= d.

IV. GREEDY-AIDED BACK-PRESSURE

We are interested in a routing algorithm which minimizes

average delay in the network subject to the throughput

optimality constraint.

Assume we have hyperbolic coordinates of nodes in our

network obtained through a distributed hyperbolic greedy

embedding algorithm by choosing a random spanning tree.

We assume our network topology does not change frequently

such that at each time slot the virtual coordinates result in

greedy paths between each pair of nodes.

In greedy routing, each node knows the virtual coordinates

of itself, its neighbors and destination. In this routing, packets

are forwarded to a neighbor which is closer to the destination

than the node itself, so the distance to the destination is

decreasing. Decreasing distance to the destination ensures

one node cannot be passed twice, so the path is loop free.

As a result if packets are sent through greedy links, they
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get to the destination through loop free paths. Thus, sending

packets through greedy links results in low delay when the

network is not congested. However, restricting packets to be

sent over a fixed set of paths may result in large delay and

unstable queues in heavy loads.

In order to ensure throughput optimality of the algorithm,

the packets should not be restricted to go through a set of

pre-specified paths for all set of packet arrivals. In order

to keep the throughput optimality feature while providing

good delay performance, we introduce a penalty function

which is the total amount of resources used over non-greedy

links. We are interested to find the routes for flows such

that time average expected penalty is minimized subject to

throughput optimality constraints. Thus we formulate the

following optimization problem:

min
μ′d

i,j(t)

lim
T→∞

1

T

T−1∑
t=0

∑
i,j,d∈ P

E{μd
ij(t)} (2)

s.t. {μnj(t)}(n,j)∈L ∈ ΛG,

where P denotes the set of (i, j, d) such that node j is not

a greedy neighbor of node i for destination d.

This optimization problem minimizes the total amount of

resources used by non-greedy links subject to throughput

optimality constraints. The solution to this problem will route

packets through greedy paths unless greedy paths will lead

to instability of queues.

Theorem 1: The scheduling and routing algorithm de-

scribed in Algorithm 1 asymptotically solves the described

optimization problem.

lim
T→∞

1

T

T−1∑
t=0

∑
i,j,d

E[μ
′d
i,j(t)] = copt +O(

1

M
) (3)

where copt is the infimum time average cost achievable

by any policy that meets the required constraints and

E

[
μ

′d
i,j(t)

]
is the average link rate when using Algorithm 1

with fixed parameter M .

Furthermore, the queues are stable and the expected value of

the queue length is bounded as follows:∑
i,d

E(qdi [∞]) = O(M(copt − cmin)) (4)

where E[qdi (∞)] is the queue length as t → ∞ and cmin

represents a lower bound of the cost function.

Proof: We denote by Q(t) = (qdi (t)), the matrix of

queues in the network. We define the Lyapunov function

L(Q(t)) =
∑

i,d q
d
i (t)

2. Based on chapter 4 of [8], we need

to design a controller that, at every time slot t, observes the

Q(t) values and subject to the known Q(t) greedily mini-

mizes the drift-plus-penalty expression which is as follows:

E{L(Q(t+ 1))− L(Q(t)) | Q(t)}
+ME{

∑
i,j,d∈ P

μd
ij(t) | Q(t)} (5)

where M > 0 is a control parameter that affects

performance-delay trade-off.

Intuitively, minimizing E{L(Q(t + 1)) − L(Q(t)) | Q(t)}
alone would tend to push the network to a lower congestion

state, however, it may result in large penalty. Thus, we

minimize a weighted drift-plus-penalty, where M represents

how much we emphasize penalty minimization.

In order to minimize the drift-plus-penalty expression, we

define two indicator functions:

I1(i, j, d) = {distH(i, d) > distH(j, d) ∧ (j ∈ N (i))}
which means link (i, j) is a greedy path for destination d.

I2(i, j, d) = {distH(i, d) < distH(j, d) ∧ (j ∈ N (i))}
which means link (i, j) is not a greedy path for destination d.

We observe that I1 ∩ I2 = ∅. So we have:∑
i,j,d

μd
ij =

∑
(i,j,d)|I1

μd
ij +

∑
(i,j,d)|I2

μd
ij (6)

The queue dynamics are:

qdi (t+ 1) =max
{
qdi (t)−

∑
j

μd
ij(t), 0

}
+
∑
j

μd
ji(t)

+Ad
i (t) (7)

Based on Lemma 4.3 [9], if V , U , μ, A are all non-negative

numbers and V ≤ max[U − μ, 0] + A then the following

holds:

V 2 ≤ U2 + μ2 +A2 − 2U(μ−A) (8)

We derive an upper-bound of the drift-plus-penalty expres-

sion as follows:

E[L(Q(t+ 1))− L(Q(t))|Q(t)] +M
∑

(i,j,d)|I2
E[μd

ij(t)|Q(t)]

= E

[∑
i,d

qdi (t+ 1)2 −
∑
i,d

qdi (t)
2

∣∣∣∣Q(t)

]

+M
∑

(i,j,d)|I2
E[μd

ij(t)|Q(t)] ≤(7),(8)
∑
i,d

{
qdi (t)

2

+ E
[
(
∑
j

μd
ij(t))

2 + (
∑
j

μd
ji(t) +Ad

i (t))
2|Q(t)

]}

−
∑
i,d

{
2qdi (t)E

[
(
∑
j

μd
ij(t)−

∑
j

μd
ji(t)−Ad

i (t))|Q(t)
]}

−
∑
i,d

qdi (t)
2 +M

∑
(i,j,d)|I2

E[μd
ij(t)|Q(t)]

≤ B + 2
∑
i,d

qdi (t)λ
d
i +M

∑
(i,j,d)|I2

E[μd
ij(t)|Q(t)]

− 2
∑
i,d

qdi (t)E

[(∑
j

μd
ij(t)−

∑
j

μd
ji(t)

)∣∣∣∣Q(t)

]
(9)

where B is an upper-bound of

∑
i,d

E

[(∑
j

μd
ij(t)

)2

+

(∑
j

μd
ji(t) +Ad

i (t)

)2∣∣∣∣Q(t)

]
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As a result by applying (6) in (9) we have

E(L(Q(t+ 1))− L(Q(t))|Q(t)) +M
∑

(i,j,d)|I2
E[μd

ij(t)|Q(t)]

≤ B + 2
∑
i,d

qdi (t)λ
d
i − 2

∑
i,d

∑
(i,j)|I1

{(
qdi (t)− qdj (t)

)

E

[
μd
ij(t)

∣∣∣∣Q(t)

]}
− 2

∑
i,d

∑
(i,j)|I2

{(
qdi (t)− qdj (t)

)

E

[
μd
ij(t)

∣∣∣∣Q(t)

]}
+M

∑
(i,j,d)|I2

E[μd
ij(t)|Q(t)]

= B + 2
∑
i,d

qdi (t)λ
d
i − 2

∑
i

{ ∑
j,d|I2

(qdi (t)− qdj (t)−
M

2
)

E[μd
ij(t)|Q(t)] +

∑
j,d|I1

(qdi (t)− qdj (t))E[μ
d
ij(t)|Q(t)]

}
(10)

Every timeslot, the control decision variables are chosen

to minimize the right hand side of the above inequality which

results in Algorithm 1 (substitute M
2 with M ).

Algorithm 1 Greedy-aided back-pressure (GA-BP)

1: � Each node i maintains a separate queue for each destination
d

2: for each directed link (i, j) do
3: for each destination d do
4: � if node j is a greedy neighbor of node i
5: if distH(i, d) > distH(j, d) then
6: P d

ij(t)← qdi (t)− qdj (t)
7: else
8: P d

ij(t)← qdi (t)− qdj (t)−M
9: end if

10: end for
11: � Each link is assigned a weight Pij

12: Pij(t)← max{max
d

P d
ij(t), 0};

13: � The destination which achieves the maximum in previous
line

14: d∗(i, j, t)← argmax
d

P d
ij(t);

15: end for
16: � Scheduling and routing rule: Choose the rate matrix through

the maximization:
17: [μij(t)]← argmax

μ′∈Γ

∑

(i,j)

μ′
ijPij(t)

18: for each directed link (i, j) do
19: if μij(t) > 0 then
20: the link (i, j) serves d∗(i, j, t) with μd∗

ij (t) = μij(t)
21: end if
22: end for

In Algorithm 1, M ≥ 0 is a design parameter. The

algorithm prioritizes routing packets along greedy paths over

non-greedy ones in order to improve delay performance

while achieving throughput-optimality. With this change, one

node can send packets to the non-greedy neighbor if and only

if the queue differential backlog between the node and the

non-greedy neighbor exceeds M . If we choose M = 0, GA-

BP would be the same as the traditional BP. Since hyperbolic

embedding in [7] guarantees existence of a greedy path to

the destination, the routing algorithm proposed in Algorithm

1 ensures packets would be routed to the destination.

As shown in Theorem 1, the performance of the algorithm

which solves the optimization problem with fixed parameter

M is within O( 1
M ) of the optimal solution. However, the

total queue length in the network increases linearly with M
(or, equivalently, delay by Little’s law). Very large M results

in larger congestion while too small M results in being far

from the optimal solution. So we are interested in M which is

neither too large nor too small. The intuition is that greedy

paths don’t always provide best set of paths. By choosing

small M we will prevent large delay in light loads by pushing

packets to go through loop-free paths while as congestion in

the network increases the greedy paths may not guarantee

stability of queues. Then the packets would be sent through

non-greedy paths besides greedy ones.

V. COMPLEXITY AND DISTRIBUTIVITY OF

GREEDY-AIDED BACK-PRESSURE

In this section, we compare the computational complexity

and distributivity of the proposed algorithm to the traditional

back-pressure algorithm. Intuitively, it may be observed that

the complexity of our method is similar to the traditional

back-pressure. In the first stage of our method, we embed

the graph in hyperbolic space by assigning a hyperbolic

coordinate to each node. This involves the overhead of

computing a spanning tree in the graph. However, since this

step is only required once in the beginning, the overhead

may be negligible over the lifetime of the network. In

both algorithms, each node computes and utilizes queue

differential backlogs (with a bias factor for our algorithm)

to make routing decisions. Thus, the recurring steps in each

algorithm have the same complexity.

Even though the traditional back-pressure is a centralized

algorithm, several studies on suitable distributed scheduling

algorithms that achieve throughput optimality have been

proposed in the literature, e.g. [10]-[11]. We may modify the

weights assigned to links in these scheduling algorithms by

utilizing the metrics from GA-BP. Thus, these algorithms can

be utilized to substitute the scheduling in GA-BP, enabling

the execution of our algorithm in a distributed manner while

satisfying throughput optimality. Since the hyperbolic coordi-

nates are calculated in a distributed manner, as demonstrated

in [7], a fully distributed implementation of our algorithm is

possible.

VI. SIMULATIONS AND RESULTS

In this section, we evaluate the delay and throughput

performance of greedy-aided back-pressure (GA-BP) and

compare it to BP and GBP via simulations. We consider

two networks of wireless nodes distributed over a region and

a wireline network which represents the GMPLS network

of North America [12]. We assume a one hop interference

model between the links for wireless networks. We assume

a Poisson arrival process with mean λ for each flow in the

network. In the simulations, we observed the performance

of the algorithms under different traffic loads and network
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topology. For each, the simulation is executed for 50000

iterations.

Fig. 1. Grid network topology

Fig. 2. Sprint GMPLS network topology of North America [12]

We consider three scenarios with varying network topol-

ogy depicted in Fig 1, 2 and 3. The scenarios are selected

to contrast extreme performance scenarios in the current

algorithms. In the first and second scenarios, GBP has poor

performance in heavy loads and it achieves only about 50%
of the network capacity. In the third scenario, GBP almost

achieves the capacity region of the network. We study the

performance of GA-BP in all scenarios and compare it with

the performance of GBP and BP.

The optimal throughput region is defined as the set of

arrival rates in which queue length and thus delay remains

finite. We can consider the traffic load under which the queue

length and thus delay increases rapidly as the boundary of

the optimal throughput region.

TABLE I

SET OF FLOWS IN GRID NETWORK

Flow ID (Source,Destination)

1 (3,11)
2 (5,12)
3 (2,9)
4 (1,8)

In the first scenario, shown in Figure 1, the network has a

grid structure with 12 nodes and 17 links. 4 flows are created

in the network as shown in Table I. The arrival rate of each

flow ranges from 0.05 to 1.3. Each link can transmit three

Fig. 3. Random network topology
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Fig. 5. Performance parameters in scenario 1 for varying M : (a) ratio of
total packets routed over non-greedy links to the packets routed over greedy
ones; (b) sum of queue length vs. average arrival rate; (c) average delay vs.
average arrival rate

MTNS 2016, July 11-15, 2016
Minneapolis, MN, USA

702



packets during a time slot. We find the hyperbolic embedding

of the graph for a minimum spanning tree (by assigning

weight equal to 1 to each link) with 1 as the root node.

Figure 4 shows delay as a function of the arrival rate for

the three algorithms BP, GBP and GA-BP with M = 1.

It can be seen GA-BP and BP achieve the same capacity

region boundary which supports our theoretical results on

throughput optimality. Moreover, GA-BP achieves better

delay performance compared to BP and GBP. This is because

under the back-pressure algorithm, packets are sent over

routing loops and unnecessarily long paths when there is

not enough congestion in the network. This leads to poor

delay performance especially in light and moderate traffic.

By using GA-BP, packets are routed through loop free paths

of the greedy embedding in light loads. However, as the

gradients build up toward the destination, packets are also

forwarded through non-greedy paths which decreases the

congestion in the network. So GA-BP improves delay by

routing packets through shorter paths, while it also exploits

long paths in the heavy traffic regime.

We vary our control parameter M to study its impact on

the performance of GA-BP. In Figure 5(a), we illustrate the

impact of M on the ratio of total packets routed over non-

greedy links to the packets routed over greedy ones. It can be

seen that as M increases the ratio of the packets routed over

non-greedy links over greedy ones decreases. In Theorem 1,

we have proved that the average packets sent through non-

greedy links are asymptotically minimized when M → ∞.

Our simulation results are consistent with the theorem.

In light traffic, for the case of M = 0 (traditional back-

pressure), the ratio is large. This is because in very light

loads, there is not sufficient traffic in the network. So it takes

very long time to build up gradient toward the destination. As

a result, the packets choose their next hop randomly. As the

arrival rate increases, the gradients towards the destinations

build up faster. Thus, the packets traverse mostly through

short loop free paths. Since greedy paths also contain a
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Fig. 6. Performance parameters in scenario 1 with different spanning trees

TABLE II

SET OF FLOWS IN RANDOM NETWORK

Flow ID (Source,Destination)

1 (1,14)
2 (5,15)
3 (12,3)
4 (7,13)

(a) (b)

(c) (d)

Fig. 7. Spanning trees used for embedding in grid network topology
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Fig. 8. Average delay vs. average arrival rate in scenario 2

set of short loop free paths, when M = 0, as arrival rate

increases, the ratio decreases. As shown in Figure 5(a), the

ratio of GA-BP became closer to that of the back-pressure

algorithm. This is because in a heavy traffic regime, GA-BP

also exploits non-greedy paths to maintain stability. As M
increases, higher priority is assigned to send packets through

greedy links, so as expected the ratio decreases.

Next, we study the effect of M on the sum of queue

length in the network. In Figure 5(b), we illustrate congestion

in the network when using GA-BP for various values of

M . As stated in the Theorem 1, the upper-bound on sum

of instantaneous queue length in the network increases as

M increases. Our simulation results are consistent with the

theorem.

Next, we study the effect of M on delay performance.

Figure 5(c) depicts the delay performance for varying values

of M . The delays for different values of M (except 0)

are almost the same in the light traffic region. However,

in moderate to heavy traffic, small M leads to better delay

performance. This is because as stated in the Theorem 1, the

sum of queue lengths in the network is bounded by a term

proportional to M . So for large M , total congestion in the

network increases which results in larger delay. On the other

hand, for very small M(M = 0) the ratio of the packets sent

through non-greedy links increases which causes loops and

long paths in light loads. As M increases, the nodes prefer

to send the packets to greedy neighbors. Thus for heavy load

scenario, this significantly increases congestion along those

paths, leading to an increase in delay. It can be observed that

while setting M = 50 results in an improvement in delay

for light load, it has the opposite effect for heavy load. This
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Fig. 9. Performance parameters in scenario 3: (a) average delay vs. average
arrival rate; (b) ratio of total packets routed over non-greedy links to the
packets routed over greedy ones; (c) average delay vs. average arrival rate
varying M.
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Fig. 10. Spanning trees used for embedding in random network topology

clearly highlights the influence of congestion along greedy

paths as we increase the load.

Next, we study the effect of spanning tree on the per-

formance of GA-BP. As stated earlier, embedding different

spanning trees results in different set of paths between each

pair of source and destination. It is important to notice, a

node may have more than one greedy neighbor toward a

destination. This means the greedy paths are not limited to

paths of the spanning tree. We are interested in a routing

algorithm which would forward packets through short paths.

The long routes would only be used when the short routes are

heavily loaded. As a result, we are interested in a spanning

tree whose embedding results in short greedy paths. Based

on the GA-BP algorithm, as congestion in greedy paths

increases, the packets are sent through non-greedy paths

besides greedy ones.

Figure 6 illustrates the impact of the spanning tree used

for embedding on delay performance of GA-BP. The graph

is embedded by the spanning trees provided in Figure 7. As

Figure 6 shows, embedding of 7(c) results in larger delay

compared to others. The reason is that the greedy paths

obtained by embedding 7(c) do not contain short paths for all

flows. The shortest greedy path for flow from node 2 to node

9 provided by embedding of 7(c) is 4 hop long, which is one

hop larger than the length of the corresponding shortest path.

Besides that, the average length of greedy paths provided by

7(c) is larger than others.

In the second scenario, we consider a wireline network

shown in Figure 2, which represents the GMPLS network

topology of North America [12]. This network has 31 nodes

and 52 links. We assume each link can transmit 64 packets

during a time slot. Each node at each time slot chooses a

random destination and generates traffic for it with average

arrival rate equal to λ = 10 to λ = 50. We construct the

hyperbolic embedding of the graph for one arbitrary spanning

tree.

In Figure 8, we compare the delay performance of GA-

BP when M = 1000 with GBP and BP. It can be seen that

GA-BP achieves better delay performance compared to BP

and GBP.

As stated earlier, we are interested to use long routes when

the short routes are congested. We can detect congestion

over greedy paths and start sending packets through non-

greedy links by choosing a proper M . Increasing M will
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Fig. 11. Performance parameters with different spanning trees
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delay sending packets over non-greedy routes. Proper choice

of M depends on the average queue length when the packets

are sent just through greedy paths and the network is

stable. If the maximum achievable average queue length of a

network is larger compared to another network, based on the

characteristics of back-pressure, average queue differential

backlog in this network is larger. As a result, a larger M
should be chosen in order to prevent packets to be sent along

non-greedy links before the greedy ones become heavily

loaded. If the maximum achievable average queue length

is large, small M results in sending packets through non-

greedy links before congestion happens. In this scenario, the

average length of active queues when λ = 20 is equal to 31.

This average queue length is much larger than 2.5 which is

the average queue length when λ = 0.5 in scenario 1. As

a result, proper M in scenario 2 is larger than the one in

scenario 1.

For the third scenario, as illustrated in Figure 3, we

consider 15 nodes with 58 links. 4 flows are created in the

network as shown in Table II. The arrival rate of each flow

ranges from 0.05 to 1.3. We assume each link can transmit

five packets during a time-slot. We construct the hyperbolic

embedding of the graph for one arbitrary spanning tree.

In Figure 9(a), we compare the delay performance of GA-

BP when M = 10 with GBP and BP. It can be seen that the

throughput optimal region of GBP is the same as BP. And

GA-BP and GBP perform considerably better than BP. Based

on this figure, we conclude the greedy paths are performing

well for this set of sources and destinations in the network.

As expected in this scenario, proper M is larger than scenario

1. The reason is that the average queue length when λ is close

to the capacity region, using the GBP algorithm, is about 5,

which is larger than the corresponding number in scenario

1.

In Figure 9(b), we illustrate the impact of M on the

ratio of total packets routed over non-greedy links to the

packets routed over greedy ones. It can be seen that as M
increases, the ratio of the packets routed over non-greedy

links over greedy ones decreases. Since routing over the

greedy paths in this scenario achieves the capacity region of

the network, we can achieve throughput optimality without

sending packets through non-greedy links which results in

zero penalty. Based on Theorem 1, since the zero penalty is

achievable, the upper bound of average sum of queue length

would not depend on M . As a result, as M increases the

upper bound of sum of queues remains the same. On the

other hand, as M increases packets are sent through loop

free greedy paths which improves delay performance.

In Figure 11, we compare the delay performance of GA-

BP with M = 10 for different chosen spanning trees depicted

in Figure 10. Greedy paths obtained by embedding 10(c)

provide more short greedy paths compared to others. As a

result, Tree 10(c) has better delay performance.

Simulation results in this section show that the GA-BP

algorithm has better performance and it achieves the capacity

region of the network. In GA-BP, M is a critical parameter

that should be selected carefully. The selected M should

neither be too large nor too small compared to the scale of

the queue length.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a greedy-aided back-

pressure algorithm to improve the delay performance, while

maintaining the throughput-optimality property of the tradi-

tional back-pressure algorithm. We analyzed the proposed

algorithm analytically and via simulations. We demonstrated

the improvement in delay performance of our algorithm

over traditional routing schemes. Our algorithm provides

the network designer a control parameter M to tune the

delay-performance of the network. Further, our algorithm

is robust to addition of new nodes. Due to the incremental

property of hyperbolic embedding, there is no need to re-

embed the network. However, for real network deployments,

link and node failures may occur frequently. This may lead

to loss of greedy paths, causing the packets to get stuck

in local minima. This requires an adaptation in the greedy

route selection. We are currently investigating the dynamic

network scenarios that account for such node failures.
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