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Abstract: We describe a framework for Health Care Management Systems using modern Model-Based Systems
Engineering methodologies and apply it to Diabetes Mellitus. We describe the desired architecture of such systems.
We include a Controlled Hidden Markov Chain model for diabetes disease progression with three states, three
diagnostic tests, ten interventions, three types of patients. We develop three methods for computing tradeoffs
between health care cost and health care quality. One is an exhaustive Monte Carlo simulation and the other two use
multi-criteria optimization with full and partial disease state information. The latter obtain similar results at a
fraction of the time of the first. We demonstrate the powerful capabilities of such a framework via examples and
problems of practical healthcare significance.
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1. INTRODUCTION AND SIGNIFICANCE OF THE PROBLEM

Improving health care delivery and management is a major goal of governments around the world, and a centerpiece
of many reform efforts [1-7]. Healthcare systems around the world are facing unprecedented challenges and global
issues [2-5]. Healthcare costs are rapidly increasing (rose 2.6% in 2013, accelerating to an average of 5.3% per year
over 2014-2017) as years go by, and unfortunately coverage and offered services are decreasing. There are four
major issues that governments, health care providers, payers, and consumers face: aging population and chronic
diseases; cost and quality; access to care; and technology. A key trend creating increased health care demand is the
spread of chronic diseases [2]: heart disease, stroke, cancer, chronic respiratory diseases, diabetes, and mental
illness, among other. This trend has major implications on healthcare costs.

Health care technology changes will be rapid and, in some parts of the world, disruptive to established health care
models [1-7]. Some exciting advancements are taking place at the intersection of information technology and
medical technology. Providers can leverage vast amounts of patient data, gathered from a variety of sources, to
determine the clinical value of specific treatments and how to improve them [1-7]. Adoption of new digital health
information technologies (HIT) such as electronic medical records (EMRs), telemedicine, mobile health (mHealth)
applications, and electronic medical prescriptions is driving change in the way physicians, payers, patients, other
stakeholders interact [1-7]. Health Information Technology (Health IT) [1-7] has great potential to ameliorate
these problems, and is being aggressively pursued in the US, Europe and other countries [1-7]. Health IT is of
central interest for the problems addressed in this paper. Health IT systems are complex systems and even systems
of systems [1] and need to be treated as such; that is taking a holistic and integrative systems view [1]. The
challenge is even greater because humans of various capabilities, functionalities and roles are essential parts of
health care systems.

This grand challenge provides the main motivation for the work reported in this paper. We address a specific class
of health care management systems (HCMS), as a first but important step towards the systematic application of
modern Model-Based System Engineering (MBSE) methodologies, frameworks and tools for the design,
construction, operation and maintenance of such systems [1]. We selected as a focus application the modeling and
management of Diabetes Mellitus (or Diabetes 2) for its high impact, as it affects tens of millions of people world-
wide. In the USA alone [8], 29.1 M people (or 9.3% of the population) have diabetes, with estimated annual diabetes
cost of $245B (2012 data). What is even more important is the fact that it is predicted that both figures will keep
growing dramatically [9, 10].
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We describe a methodology and a framework that utilizes recent advances in MBSE and associated tools, to develop
a conceptual architecture for such a HCMS for Diabetes 2 with the following capabilities and characteristics:

(i)

(i)
(iii)
(iv)
(v)
(vi)

(vii)

Is scalable to millions of patients, and tens of thousands of healthcare providers;

Is expandable, in the sense that it can continuously accommodate new data and knowledge, new tests,
new, models, new treatments;

Is linkable to distributed medical databases;

It has capabilities to “learn”;

It can be easily used by healthcare providers, health insurance managers, patients;

It can operate in a distributed collaborative manner and be linked to extensive communication and data
networks and large heterogeneous sensors and databases;

It can provide quantitative answers to “what-if” type of questions such as: what is the effect of using
modern monitoring wearable technology, what is the most effective test, what is the most effective
treatment, what are the tradeoffs between costs and tests and treatments.

We further focus on a key component of such a HCMS, which is the Reasoning Engine to perform efficiently the
required difficult tradeoffs in many key decisions. We want to demonstrate the huge potential of systematically
utilizing modern MBSE methods towards reaching the goals and needs described in [1], and encourage the use and
development of such systems linked to real-life data over extensive periods of time. The overall architecture of the
type of HCMS we have in mind, as illustrated in Figure 1, provides a variety of connectivity to facilities, labs,
hospitals, shareholders (patients, doctors, insurance managers, etc.). The dotted lines indicate a modern
communication and data network between healthcare actors. Such networks have been developed and are under
development in many countries including the USA, as an example in Massachusetts [11-13].
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Fig 1: Illustrating the MBSE-based Health Care Management System for
diabetes mellitus and its functional connectivity.

The organization of the rest of the paper is as follows. In Section 1, we describe the MBSE approach we follow, in
Section 2 we describe the disease model, the metrics we used, and trade off analysis methods we developed and
used, in Section 3 we provide some representative results of tradeoff analysis.
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1. APPROACH: MODEL-BASED SYSTEMS ENGINEERING AND SYSTEM ARCHITECTURE
MODEL AS A SYSTEM INTEGRATION FRAMEWORK

The term “Model Based System Engineering” could be described as a rigorous, quantitative representation of system
structure and behavior components to support system requirements management, design, verification and validation
activities beginning with the conceptual design phase and continuing through-out development, operations, and later life
cycle phases [14-17]. In comparison to the document centric approach, here the component models and their
interconnections are the main artifact of each procedure and are used for the communication between the dissimilar
groups that participate in the development. In Figure 2 the essential phases of the MBSE process are indicated [14-
17]. For each systemtheinitial step of the process is the offered evidence. Subsequently, the initial system requirements
and the anticipated measures of effectiveness (MoE) are developed (captured). The MoE are used subsequently at the
trade-off phase to guide the selection of components, selection of design parameters and other design space
exploration functions.
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Fig. 2: MBSE process information centric abstractions

System architecture is the abstract model that describes the structure, behavior, their components and
interconnections, the mapping of behavior onto structure and various views of a system. An architecture narrative is
a formal explanation and illustration of a system, organized in a way that supports rationale about
the structure and behavior of the system. System architecture can include system components, the outwardly
perceptible properties of those components, the relationships (e.g. the behavior) between them.

Figure 3 shows the essential components of the System Architecture integration framework including hardware
models, software models, analysis models, verification, and requirements components. The main challenge and need
is to develop scalable holistic methods, models and tools for enterprise level system engineering. Therefore
integration of multiple domain modeling tools, trade off tools, validation/verification tools, databases and libraries
annotated and component models from all disciplines is required.

2. EVALUATION METRICS, PERFORMANCE EVALUATION AND TRADEOFF ANALYSIS

A key component of our framework is the modeling of disease evolution incorporating medical tests and
interventions. We have incorporated the advantages and relevant information from many models and we have
integrated them into a new system model that is more complete and detailed [18-26]. We have developed a model
for diabetes progression as a Controlled Hidden Markov Chain (CHMC) [27]; see Figure 4. The model has three
states for diabetes mellitus, The states we use have the following interpretation: State 1 represents the Healthy
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(disease free) condition of a generic patient. State 2 represents the Pre-diabetic condition of a generic patient. State
3 represents the Diabetic condition of a generic patient.
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Fig. 3: System architecture integration framework for a healthcare management system
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Fig. 4: Graphical representation of the CHMC model developed for Diabetes 2 progression

Our framework provides a systematic methodology for evaluating the quality of health care provided to a generic
patient (meaning the sequence of tests and interventions applied), the associated costs, associated tradeoffs and
many other important evaluations of individual tests and interventions, over a particular time period. The purpose
of our study is not to provide a specific medical model with all its complexities and ramifications, but rather
develop, use and demonstrate the significant benefits of a MBSE framework for analyzing these problems.
Furthermore, our MBSE framework is by construction modular and composable allowing many tools and models

to be easily integrated within its structure. This is in great contrast with the current state of the art in healthcare IT
systems, even with the most advanced ones.

Our analysis specifies a time horizon for the study denoted by T; in most of our experiments we take T to be ten
years. It is defined by the user of the framework: heal care provider, policy maker.
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If the disease state is known, or, as is more appropriate for the most realistic models, estimated on the basis of
diagnostic tests results, medical practice standards and the reasoning and experience of medical practitioners result
in a selection process for these interventions; one can think of these selections as ranking the interventions in some
order of preference.

We have included several metrics in our studies; our MBSE framework is particularly suitable for multiple metrics.

One performance metric that we are interested in, is cost. The cost model we use is pretty straightforward. There is

a cost for every test and every intervention used, denoted by Culu)=c, and Culp) = c, respectively. The cost model
k |

we use is additive, that is the total cost for anyone time history for each patient is the sum of the cost of the tests,
denoted by C;?ta' (i,m,), and of the cost of the interventions, denoted by C'** (i,m.), used in the particular time

history m.. Our cost values include equipment, personnel and other costs. Clearly one could easily develop more

detailed models by breaking down the components of each cost. Also, we can use costs data from doctors and
hospitals directly in our model, or indirectly by using them to fit a functional model of each cost and its components.
Thus for our work and analysis we have

crR (G, m) = 'i Cc,u@)’ C:f’ta' (,m)= i C,, (z(t)) ,and c (i, m;) = C;?tal @Gi,m;) +C:|mal @Gi,m;)

Where, in these sums, the tests and interventions used at each time step of this particular time history are considered.

Patients are of different types. Indeed behavioral characteristics of patients with respect to their healthcare are a very
important, albeit very difficult to model, factor. In this paper we consider three types of patients (the “Risk
Averse” (with respect to the risk of getting sick with diabetes) patient, the “Risk Indifferent” patient and the “Risk
Taker” patient) with respect to the attention and systematic care that they apply to their health care. We introduce
weights representing the value (or significance) each patient places for being in each state of the model (recall

Healthy, Pre-diabetic, Diabetic)Vli,Vzi,Vgi , respectively. These weights take real nonnegative values between 0

and 1, and their values sum to 1. They are a simple, albeit efficient representation of the “profile” of each user.

The number of periods that each patient, in each generated time history, finds herself/himself in each of the three
states is an important health condition metric. As state transitions depend explicitly on the tests and interventions
applied at each time period, the three counting statistics below, for each patient and each time history, constitute a
practical and useful health care value (or quality) metric.

Oj (m;) = number of periods, from N, , total, patient i is at state 1 (i.e. is Healthy)
0,(m,) = number of periods, from N, , total, patient i is at state 2 (i.e. is Pre-diabetic)

O, (m,) = number of periods, from N, , total, patient i is at state 3 (i.e. is Diabetic)

Using the weights Vli,Vzi,Vai and these counting statistics Oli, O;, Osi, we can define several metrics for health

care quality value for each patient and each time history, generated by our model. For example we consider the
following Health Care Quality metric:
Jpe (i, M) =V, = O (M) +V, *OL(mM;) +V,; +O;(m;)

We developed and exercised three methods for tradeoff analysis. One of the methods uses the model in an
exhaustive straightforward generation of all possible sample paths (time histories) for any number of patients, which
we call Evaluation by Monte Carlo simulation (EMCS). The EMCS method has the following steps: Step 1: Run
the model for the number of patients, horizon, time step, set of tests, set of interventions, and transition probabilities
provided. Step 2: Store the results of Step 1, as triples of arrays (vectors). The first contains the sequence of health
states of this specific patient and the specific time history, the second the sequence of tests used at each time step
and the third the sequence of interventions used at each time step. Step 3: Using these arrays compute the cost

C(i,m), C™ (i,m;), C*(i,m), the counting statistics O} (m,), O%(m,), Oi(m,), and the healthcare value
metric  J,.(i,m,) . Step 4: Plot for each patient and time pair (i,m,), the pair of values
(C*® (i,m,), J,.(i,m,)) inthe positive quadrant of the plane (where the vertical axis (y-axis) corresponds to the
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total cost C™ and the horizontal axis (x-axis) to the Health Care Quality metric Jhc) and determine the Pareto
points. Figure 5 provides a graphical illustration of the EMCS method.
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Fig. 5: A graphical illustration of the EMCS information processing flow

The number of patients we have used is 10,000 or 100,000, the time period is 10 years. We have 3 tests that can be
given to a patient (denoted by x), we have 10 interventions that can be applied to a patient (denoted by u), and 3
disease states (denoted by x). A set of 30 matrices describing state transition probabilities, parametrized by the tests
and interventions is an input. The second important input is the values for the costs for each test available and every
intervention available. The third important input is input of variables used for the computation of the Health Quality
metric. We only need to enter the values for the weights for each patient type.

We have created a very versatile system, which can be used for various types of studies, tradeoffs and answering
“what-if” type of questions, as we discuss in the next section.

3. DISCUSSION OF DECISION MAKING AND ANALYTICS CAPABILITIES

A key output form our Reasoning Engine system, employing the ECMS method is the computation of Pareto points
that describe succinctly the relative value of treatments and tests vs the overall health care quality of a patients time
history. Running ECMC with two metrics (and 2-D graphs) for 10,000 patients and 32 runs, took for the whole
experiment 783sec. Running ECMS with three metrics (and 3-D graphs) for 100,000 patients took for the whole
experiment 1,385 sec. So EMCS is definitely scalable and much better performance can be obtained with more
powerful machines. Nevertheless as we are interested in superior efficiency, we developed and analyzed two
alternative methods that decrease the execution time by two or more orders of magnitude. The other two
methods employ a multi-criteria optimization approach to directly compute the Pareto points and associated
selection of tests and interventions. The methods use feedback between the disease states, or the estimates of the
disease states respectively, and the selection of the tests and interventions to be applied at each time instance. More
precisely the second method automatically computes the tests and interventions to be applied at time t as functions
of x(t), and uses explicitly the state of the disease. It is thus called Fully Observable. The third method employs
multi-criteria optimization also with the important difference that the disease state is not available, and only
estimates of the state based on the scores and results of diagnostic tests are available. We show that the second
method, which we call Fully Observable Multi-criteria Optimization (FOMCO) saves tremendously in
computational time in achieving similar tradeoff analysis as the exhaustive simulation based EMCS method.

We are interested in analyzing the tradeoff between different pairs of sequences (M, U) from the perspective of the
total Cost C* (i, m, u) and average Health Care Quality 3, (i,m, u) metrics. This tradeoff analysis is important
as it is necessary in order to find the “best” tradeoffs between the two conflicting objectives of maximizing
J,.(i,m,u) and minimizing C**®' (i,m, u) . These “best” tradeoff points are the Pareto points (also known as

non-dominated solutions). To compute these Pareto points for tradeoff analysis using the FOMCO, we utilized the
fastest technique of combining the two metrics in a convex combination, resulting in a single criterion stochastic
optimization problem; fully observed. Such methods are called scalarization methods. We used Dynamic
Programming analytics for both of these methods and computations [28].
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The Figures 6 and 7 below show typical tradeoff results from our system using the EMCS method and the FOMCO
method respectively.
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Using our Reasoning Engine we can provide answers to many practical questions, queries, problems, from health
care management perspective, like: Evaluate patient risk behavior impact on health care quality; Evaluate “best”
health care achievable; Can learn from new data, treatment results, improve models; Evaluate “value” of new
proposed tests and interventions; Provide aggregate statistics for insurance policies calibration; Find best tests and
interventions for patient type, disease state; Evaluate effects of incentives and rewards for health “maintenance”;
Evaluate sequences of tests and treatments for reversing disease.
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