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Abstract— Mobile Sensor Networks (MSN) are used to mon-
itor large areas and collect measurements, e.g. temperature,
humidity, or pressure data. Mobile sensors try to optimize
their benefit from sensing a particular area, while keeping their
energy consumption at the lowest possible level. We formulate
this energy-aware sensor coverage problem as a potential game,
where the mobile sensor nodes are considered as agents. The
utility function of the game captures the trade-off between
the benefit from coverage and the energy consumption. We
also propose a distributed learning strategy for this potential
game. The algorithm enables a bit-valued information exchange
between the agents. Finally, it is proved that the learning rule
converges to a Nash Equilibrium.

I. INTRODUCTION

Efficient monitoring of large areas has attracted great inter-
est from the research community in the recent past. Monitor-
ing incorporates the collection and process of measurements
related to temperature, humidity and other quantities of
interest. For this purpose, mobile sensor networks (MSN) are
being used to cover large areas under surveillance. Examples
include coverage via large video cameras, environmental
monitoring, monitoring for threats, monitoring for transporta-
tion congestion and efficiency, monitoring for medical and
other emergencies. Sensor networks are also used in smart
grid technologies. Mobile sensors have limited memory and
energy and this needs to be taken into consideration while
deploying such a sensor network.

In this paper, we investigate the mobile sensor coverage
problem, while addressing the energy limitations of such
types of networks. Mobile nodes aim to collectively opti-
mize a global objective by making optimal local decisions.
The objective is to maximize the benefits from coverage
in a particular area and simultaneously minimize energy
consumption due to sensing.

The energy-aware coverage problem is modeled using a
game theoretic approach, where all the mobile sensor nodes
participate in a game. Similar approaches, which use game
theory for coverage problems have been presented in [1], [2],
[3]. The goal of this approach is to introduce an efficient
learning rule that ensures the existence of a pure Nash
Equilibrium (NE) [4] and guarantees the convergence to NE.

We propose a distributed learning rule, based on [5], which
enables a bit-valued information exchange over a communi-
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cation graph. Our learning strategy focuses on optimizing the
welfare of the game (i.e. sum of individual agents’ utilities)
for any arbitrary design of utility functions. We show that our
algorithm induces a perturbed Markov chain and moreover,
we prove convergence to a pure NE.

In our paper we present three main contributions in this
problem. Firstly, we design a suitable utility function to
capture the trade-off between sensing/processing and energy
consumption. Secondly, we propose a distributed learning
rule that enables bit-valued communication between the
agents. Finally, we analyze and prove the convergence to
a NE. Our proposed distributed learning algorithm also sup-
ports the case of continuous action space, which is essential
for the mobile sensor coverage problem and it remained
unaddressed in the vast majority of the past work.

The rest of the paper is organized as follows. Section II
provides a concise literature survey. Section III describes the
relevant preliminaries on game theory and perturbed Markov
chains for the energy-aware coverage problem. Section IV
describes the problem statement and gives an introduction
to our approach. Section V contains the description of the
distributed learning algorithm, the analysis of the proposed
algorithm, and the proof of convergence. Finally, we con-
clude our work in Section VI.

II. RELATED WORK

Several approaches have been proposed for the sensor
coverage problem including some recent advancements [2],
[3]. In [6], an optimization problem is defined to maximize
sensors’ coverage while taking into account the communi-
cation cost. Another method for sensor coverage has been
introduced in [7], where the authors propose an estimation
model consisting of a summation of n distributions and the
estimation algorithm adjusts the weighting functions of these
distributions. However, the proposed estimation scheme does
not scale satisfactorily with n.

Game theoretic approaches have also been widely adopted
to optimize sensor coverage problems. The approach was
introduced in [8] and [9] and has been used for solving
decision making problems in a multi-agent setup. Martinez
et al. [2] propose a game-theoretic approach for distributed
coverage using a mobile sensor network and they introduce
a novel utility function that captures the trade-off between
efficient coverage and energy consumption. [3] studies a sen-
sor coverage potential game, using reinforcement learning,
with a utility function that takes into consideration energy
consumption due to sensing and movement.
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A variety of decentralized learning rules have been pro-
posed for optimal action selection. Some of them are inde-
pendent of the utility design, but are still proved to lead to
a pure NE. We propose a similar learning rule in our work,
which is optimal for a broad class of utility functions. In [10],
Marden et al. proposed a decentralized learning algorithm to
address the issue of unknown payoff structure. The proposed
algorithm allows agents to learn actions that lead to welfare
maximization without any knowledge of the functional form
of the utilities. The algorithm can be used for optimization
of complex systems with many distributed components, such
as the routing of data packets in networks and the design and
control of wind farms. However, the convergence of this al-
gorithm is guaranteed only under an assumption on the form
of the utilities called “interdependence”. To overcome this,
new decentralized learning rules were proposed by Menon
et al. in [5] and [11]. The learning rule in [5] uses a bit-
valued inter-agent communication and is proved to converge
to a NE, without the interdependence property for the utility
functions. In our paper, we modify this distributed learning
algorithm to model the energy-aware mobile sensor coverage
game and derive new (relaxed) conditions for convergence
to NE. We have introduced a variation of this algorithm for
continuous action space, which is then partitioned into a
finite set of states.

III. PRELIMINARY BACKGROUND

A. Game Theory Background

In this section, we provide some basic definitions from
game theory [2], [4], [12] that we use for our model. Based
on these principles, we formulate the energy-aware optimal
coverage problem as an exact potential non-cooperative game
among the sensor nodes.

Definition 3.1: A strategic game Γ =< V,A,U > con-
sists of:

1) A set V of heterogeneous players, where i ∈
V = {1, . . . , N}.

2) An action set A :=
∏N
i=1Ai, the space of all actions,

where αi ∈ Ai is the action of player i and an (mul-
tiplayer) action α ∈ A has components α1, . . . , αN .

3) The utility function Ui : A → R, which models the
payoff of player i over action profiles.

Definition 3.2: Let α−i be the action profile of all the
other players except i and A−i =

∏
j 6=iAj .

The notion of NE [12] is crucial in non-cooperative game
theory setup and is defined as follows:

Definition 3.3: Consider the strategic game Γ. An action
profile α∗ := (α∗i , α

∗
−i) is a NE of the game Γ, if for all

i ∈ V and for all αi ∈ Ai it holds that Ui(α∗) ≥ Ui(αi, α∗−i).

An action profile corresponding to a NE indicates an action
in which no player has benefit to deviate. Potential games
constitute of an important class of strategic games, where
the change in a player’s utility caused by a deviation can be
exactly measured by a chosen potential function.

Definition 3.4: The strategic game Γ is an exact potential
game with potential function Φ : A → R, if for every i ∈ V ,
for every α−i ∈ A−i, and ∀ αi, α′i ∈ Ai, it holds that

Φ(αi, α−i)− Φ(α′i, α−i) = U(αi, α−i)− U(α′i, α−i) (1)

The objective of the multi-agent system is to collabora-
tively maximize the welfare function W ∗ = maxα∈AW (α),
where W (α) =

∑N
i=1 Ui(α).

B. Perturbed Markov Chains
In this section, we describe the definitions and the theory

of perturbed Markov chains [5], [13]. Let P (0) be the 1-step
transition probability matrix of a Markov chain on a finite
state space S. We refer to this chain as the unperturbed chain.

Definition 3.5: A regular perturbation of P (0) consists
of a stochastic matrix valued function P (ε) on some non-
degenerate interval (0, a] that satisfies, for all x, y ∈ S,

1) P (ε) is irreducible and aperiodic for all ε ∈ (0, a],
2) lim

ε→0
Px,y(ε) = Px,y(0) and

3) if Px,y(ε) > 0 for some ε, then ∃ r(x, y) ≥ 0 such
that 0 < lim

ε→0
ε−r(x,y)Px,y(ε) <∞.

From the first condition in Def. (3.5) we conclude that
there exists a unique stationary distribution µ(ε), which
satisfies µ(ε)P (ε) = µ(ε) for each ε ∈ (0, a]. The other
two conditions indicate how the perturbed chain converges
to the unperturbed one as ε→ 0.

Let L = {f ∈ C∞| f(ε) ≥ 0, f(ε) =
L∑
i=1

aiε
bi for some

ai ∈ R, bi ≥ 0, Dom(f) = (0,∞)} for some large enough
but fixed L ∈ N, where C∞ is the space of smooth functions.

We introduce some notation that will be helpful while stat-
ing the main result regarding perturbed Markov chains. The
parameter r(x, y) is called the 1-step transition resistance
from state x to y. Notice that r(x, y) = 0 holds only for
the one step transitions x→ y allowed under P (0). A path
h(a → b) from a state a ∈ S to b ∈ S is an ordered set
{a = x1, x2, . . . , xn = b} ⊆ S, such that every transition
xk → xk+1 in the sequence has positive 1-step probability
according to P (ε). The resistance of the path is define as

r(h) =

n−1∑
k=1

r(xk, xk+1) (2)

Definition 3.6: For any two states x and y, the resistance
from x to y is defined by ρ(x, y) = min{r(h)| h(x→ y) is
a path}.

Definition 3.7: Given a subset A ⊂ S, its co-radius is
given by CR(A) = max

x∈S\A
min
y∈A

ρ(x, y).

Hence, ρ(x, y) can be defined as the minimum resistance
over all possible paths starting at state x and ending at state
y. The co-radius indicates the maximum resistance that must
be overcome in order to enter it from outside. We extend the
definition of resistance to include resistance between two
subsets S1, S2 ⊂ S:

ρ(S1, S2) = min
x∈S1,y∈S2

ρ(x, y). (3)
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Since P (ε) is irreducible for ε > 0, ρ(S1, S2) < ∞ for all
S1, S2 ⊂ S.

Definition 3.8: A recurrence or communication class of
a Markov chain is a non-empty subset of states E ⊆ S such
that for any x, y ∈ E, ∃ h(x → y) and for any x ∈ E and
y ∈ S \ E, @ h(x→ y).

Let us denote the recurrence classes of the unperturbed
chain P (0) as E1, ..., EM and E = {E1, E2, · · ·EM}. Let
us consider a directed graph GRC on the vertex set {1, ...,M}
with each vertex corresponding to a recurrence class. Let a
j-tree be a spanning subtree in GRC that contains a unique
directed path from each vertex in {1, ...,M} \ {j} to j and
denote the set of all j-trees in GRC by T jRC .

Definition 3.9: The stochastic potential of a recurrence
class Ei is

γ(Ei) = min
T∈T i

RC

∑
(j,k)∈T

ρ(Ej , Ek). (4)

Let γ∗ = minEi γ(Ei). Finally, we can state the main
result regarding perturbed Markov chains, based on [13].

Theorem 3.10 ([13]): Let E1, ..., EM denote the recur-
rence classes of the Markov chain P (0) on a finite state
space S. Let P (ε) be a regular perturbation of P (0) and let
µ(ε) denote its unique stationary distribution. Then,

1) As ε → 0, µ(ε) → µ(0), where µ(0) is a stationary
distribution of P (0) and

2) A state is stochastically stable i.e. µx(0) > 0 ⇔ x ∈
Ei such that γ(Ei) = γ∗.

IV. PROBLEM STATEMENT

In this paper, we analyze a scenario of a Mobile Sensor
Network (MSN), where sensors are randomly deployed in
an area and their task is to monitor this area. The tasks of
the sensors are to optimally move in the area since not all
parts of the area are equally valuable at all time. In addition,
sensors are equipped with limited battery power that should
be spent judicially throughout the monitoring procedure.
Hence, mobile sensors aim at maximizing the payoff from
sensing specific portions of the area, while minimizing the
overall energy consumption. Since the ultimate task is global
for all the sensors, they unanimously have to decide their
actions, in order to perform the above mentioned trade-off.
This multi-agent trade-off problem can be formalized as a
multi-player game [2].

We define the action profile (in game theoretic sense) at
time t by at and the corresponding action for the the i-
th agent is (at)i in our game. The action in this scenario
consists of selecting the position ot and the radius of sensing
rt. We treat the sensors to be points in the space and
they can sense a circular region centering itself for some
prespecified radius. We consider a two-dimensional area,
which is discretized into a lattice. Each square of the lattice
has unit dimensions and is labeled with the coordinate of
its center p = (px, py). The collection of all squares of the
lattice is denoted by P . The sensors can place themselves
only at these lattice centers and they have the privilege to

choose a sensing radius around them. As can be predicted the
higher the radius the higher the energy expenditure to sense
the region. The location of the sensor (agent) in our scenario
is denoted by (ot)i = ((pxt )i, (p

y
t )i) ∈ P . The sensing area is

defined by a disc with radius (rt)i that takes values within a
range [rmin, rmax] ⊂ R. Each agent’s action can be modeled
as a tuple of the position and the radius. Hence, for agent
i the action is denoted as (at)i := ((ot)i, (rt)i) ∈ (At−1)i,
where (At−1)i is the available action set for agent i at time t.
The action profile for all agents is at = ((at)1, . . . , (at)N ) ∈
A =

∏N
i=1(At−1)i. The current available action set contains

the time index t−1, since this set may be constrained based
on the action chosen at time t − 1, i.e. formally speaking
At−1 = A(at−1).

V. GAME THEORETIC APPROACH

In this section, the utility function for the game is formu-
lated and we also describe a distributed algorithm, which can
be used to achieve a NE for the underlying game.

A. Utility Design

As described before, the utility function should capture the
trade-off between the effectiveness of sensor coverage and
the energy consumption caused by sensing. At this point,
suppose that we want to optimize a stochastic process f :
X → R, distributed over the space X where the sensors
are placed, with a given probability density function µ over
the space X . The lattice structure P is constructed over this
space X . In order to find the covered area by a sensor, we
define a disk Di((ot)i, (rt)i) centered at (ot)i with radius
(rt)i around the sensor-agent. Hence, the total area which is
sensed by the sensors can be expressed as Xcovered(at) =
(
⋃N
i=1Di((ot)i, (rt)i)

⋂
P ).

The coverage gain is expressed with the function F (at)
that is defined as

F (at) =

∫
Xcovered(at)

f(ξ) · µ(ξ)dξ (5)

We also need to define the energy consumption caused
by sensing, transmitting and receiving packets from other
agents. The energy consumption due to sensing and reception
is proportional to the covered region. This can be modeled
by Econsi = Ci((rt)i)

2, where Ci > 0 is a constant that
depend on the sensor.

The trade-off between the coverage gain and energy con-
sumption for agent i is captured in Ui in the following way

Ui(αt) = F ((αt)i)− Econsi ((αt)i) (6)

It can be shown that our game is indeed an exact potential
game by introducing a potential function Φ(αt). Potential
games have a key property that the extrema values of the
potential function Φ correspond to a pure NE for the game.

Lemma 5.1: The formulated game is an exact potential
game with potential function defined as

Φ(αt) =

N∑
i=1

F ((αt)i)−
N∑
i=1

Econsi ((αt)i) (7)
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Proof: As stated in [3] and [14], a state-based potential
game should satisfy

Φ((α′t)i, (αt)−i)−Φ(αt) = U((α′t)i, (αt)−i)−Ui(αt) (8)

In order to verify the above property of potential games,
we used the definition of Φ and U from Eq. (6) and (7)

Φ((α′t)i, (αt)−i)− Φ(αt) =
N∑

j=1,j 6=i

[F ((αt)j , (αt)−j)− Cj((rt)i)2] + [F ((α′t)i, (αt)−i)

− Ci((r′t)i)2] +

N∑
k=1

[−F ((αt)k, (αt)−k) + Ck((rt)k)2]

= F ((α′t)i, (αt)−i)−F ((αt)i, (αt)−i)−Ci[((r′t)i)2−((rt)i)
2]

= Ui((α
′
t)i, (αt)−i)− Ui((αt)i, (αt)−i) (9)

where all terms are being eliminated except from agent i
that changes action from (αt)i to (α′t)i. Hence, our game is
proved to be an exact potential game.

Therefore, in our case, the objective is to maximize W =∑N
i=1 Ui and hence we seek for actions:

A∗ = {arg max
a∈A

W (a)}

In the following section, we state the distributed learning
strategy for our energy-aware coverage game. However, it
should be noted that the algorithm defined and analyzed in
the following section is general for all similar multi-agent
games and we use the sensor coverage problem as an direct
application of the algorithm.

B. Distributed Learning Strategy

In this section, we describe the distributed learning strat-
egy that is used to reach a NE. The distributed algorithm
is based on the recent work [5], [10]. However several
modifications were needed for our purpose. The algorithm
incorporates a bit-valued agent interaction though a simple
directed interaction graph. The interaction graph GI , as
defined in [5], is a directed graph and consists of the set
of agents, whose actions can affect the payoff of other
agents. Our framework also consists of the communication
graph Gc, which is a directed graph representing the explicit
information exchange between the agents. The directed edge
(i, j) in Gc(at) indicates that agent i is able to send a
message to agent j at time t, when the joint action at is
chosen. We define the neighbors of agent i at time t for the
action profile at in the communication graph as Ni(at).

We partition the continuous action space into finite number
of states such that R = {ri|i = 1, 2, .., k} where ri’s are
disjoint intervals within [rmin, rmax] satisfying ∪ki=1ri =
[rmin, rmax]. Each agent selects the radius by a Gibbs
distribution, given in Eq. (10). Let (At−1)i be the set of
feasible actions for agent i at time t, (At−1)ri denote the
feasible components corresponding to the radius and (At−1)oi
correspond to the position of the mobile sensor.

The conditional probability for agent k choosing a radius
from set rj given the center of the sensor to be at o and the
immediate past join action to be aj is considered to be

ptk(r ∈ ri|o, aj) =
1

m(ri)

∫
r∈ri ε

−Uk(r,o,a−j)
t dr∑

rl∈(At−1)rk

∫
r∈rl ε

−Uk(r,o,a−j)
t dr

(10)
where m(ri) is the measure of the set ri i.e. the length of
the corresponding interval in this case.

Using Mean-value-Theorem for integrals, each of the
integrals in (10) can be represented as

∫
r∈ri ε

Uk(r,o,a−j)dr =

m(ri)ε
Uk(r̂i,o,a−j); where r̂i is an interior point of the

interval ri determined by the mean value theorem. Let us
denote a finite set R̂ = {r̂1, r̂2, · · · r̂k}. With slight abuse of
notation, representing Uk(a, b, c) = Uak for fixed b and c, we
can write (10) as follows

ptk(r ∈ ri|o, aj) =
ε
−U r̂i

k
t∑

rj∈(At−1)rk
m(rj)ε

−U
r̂j
i

t

(11)

Let r̂∗ ∈ (At−1)rk ⊆ R̂ such that U r̂∗i =

maxrj∈(At−1)rk
U
r̂j
i . It can be easily verified that,

lim
ε→0

ptk(r ∈ ri|o, aj)
ε(U

r̂∗
i −U

r̂i
i )

=
1

m(r̂∗)
(12)

This gives us the resistance between actions [Def. 3.5]. Since
the game is a potential game, we can denote: U r̂∗k − U

r̂i
k =

Φ(r̂∗)−Φ(r̂i). Let us denote the maxrk∈(At−1)ri
Φ(rk) = Φ∗

and hence U r̂∗i −U
r̂i
i = Φ∗−Φ(r̂i). Note that Φ∗ and Φ(r̂i)

both depends on a−j as well but to maintain brevity we
suppress this information.

Each agent i is endowed with a state (xt)i = [(at)i, (mt)i]
at time t, where (at)i corresponds to the action taken and
(mt)i is a {0, 1}-valued mood of the agent i at time t. As
described in [5], (m)i = 1 is defined as the content state and
(m)i = 0 is defined as the discontent state of the agent i. The
collection of the states of all agents at time t is represented
as xt = [at,mt].

For a given state x, we denote the joint action by ax and
joint mood by mx; and similarly the action and the mood of
i-th agent is denoted by (ax)i and (mx)i respectively.

Let {εt}t∈N with limt→∞ εt = 0 and constant l > 0,
are pre-specified. The agent i performs the following rules
sequentially to update its action when the joint action in the
last step was at−1. The performance does not depend on
the initialization of the algorithm and it can be initialized
randomly.

Algorithm 5.2:
Start

Step 1: Receive (mt−1)j from all j ∈ Ni(t − 1) i.e. the
neighbors of i in Gc(t − 1). Calculate the temporary mood
m̃i as follows:

1) If (mt−1)j = 1 ∀j ∈ {i} ∪ Ni(t− 1) set m̃i = 1;
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2) else set m̃i = 0.
Step 2: Pick (at)i = (oi, ri) as follows:
pti(o, r|at−1) = pti(o|at−1)pti(r|o, at−1), and pti(r|o, at−1)

as given in (11). The choice of o is independent of at−1 i.e.
pti(o|at−1) = pti(o).

1) If m̃i = 1, pick oi from (At−1)oi according to the
following rules:

p(o) =

{
1− εlt if o = (ot−1)i

εlt
|(At−1)oi |−1

otherwise
(13)

2) Else if m̃i = 0, pick oi uniformly from (At−1)oi i.e.

p(o) =
1

|(At−1)oi |
(14)

Step 3: Measure the payoff

(Umest )i = Ui((at)i, (at−1)−i) (15)

and we define U∗i = max(at)i(U
mes
t )i.

Step 4: Update the mood (mt)i as follows:
1) if m̃i = 1 and ((at)i, (U

mes
t )i) = ((at−1)i, (Ut−1)i),

set (mt)i = Ber(1− εlt);
2) if m̃i = 0 or (m̃i = 1 and ((at)i, (U

mes
t )i) 6=

((at−1)i, (Ut−1)i)) set (mt)i = Ber(εU
∗
i −(U

mes
t )i

t ).
where Ber(·) is the Bernoulli distribution.

Step 5: update (Ut)i ← (Umest )i
Step 6: Broadcast (mt)i to the neighbors in Gc(t).

Stop

Thus the learning strategy induces a non-homogeneous
perturbed Markov chain P (εt) with state space in A ×
{0, 1}N . Let us denote U∗i − (Umest )i by βi3 which in general
depends on the joint action a and hence on the state x.
Sometimes, we will refer the same as βi3(x) to explicitly
show the dependence of βi3 on x.

C. Algorithm Analysis

Let E =
{n(ε)
d(ε) | n(ε), d(ε) ∈ L and deg(n(ε)) ≥

deg(d(ε))
}

, where deg(f(ε)) is the lowest exponent of ε
present in f(ε).

Proposition 5.3: The distributed learning Alg. (Alg. 5.2)
induces a perturbed Markov chain.

Proof: Firstly, it is trivial to check that ∀x, y ∈ S
limε→0 Px,y(ε) = Px,y(0). This is a direct consequence of
the fact that Px,y(ε) ∈ E for all x, y ∈ S.

Secondly, consider any state xt−1 = [at−1,mt−1] at
time t − 1; for an agent i, irrespective of the modes of
itself and others, it can choose the same action (at)i =
(at−1)i = [oi, ri] at time t with a probability at least
min{(1− εlt), 1/|(At−1)oi |}p(ri|oi, at−1) [Alg. 5.2, Step 2].
Similarly the agent can choose any other action at time t with
some probability strictly great than 0 (the exact lower bound
on this probability can be calculated from step 2 of Alg. 5.2).
The mood (mt)i can be changed to 1 with probability at

least min{(1− εlt), ε
βi
3
t }, and can be set to 0 with probability

greater than min{εlt, 1− ε
βi
3
t }. Hence the chain is irreducible

and aperiodic at the same time.
From the structure of the probabilities defined in (11) and

the steps 1.3, 2.1 and 4 in the Alg. 5.2, it is clear that for
every state x, y ∈ S, Px,y(ε) ∈ E . Let, Px,y(ε) = n(ε)

d(ε) , where
n(ε) =

∑Ln

i=0 α
n
i ε
bni ; αni ∈ R, bni+1 > bni ≥ 0, Ln ∈ N and

similarly d(ε) =
∑Ld

i=0 α
d
i ε
bdi ; αdi ∈ R, bdi+1 > bdi ≥ 0

and Ld ∈ N. Therefore deg(n(ε)) = bn0 and deg(d(ε)) =

bd0(≤ bn0 ). Hence, limε→0 ε
deg(d(ε))−deg(n(ε))Px,y(ε) =

αn
0

αd
0

.
Therefore, Px,y(ε) satisfies all the three properties of a
perturbed Markov chain enlisted in definition 3.5.

Remark 5.4: A direct consequence of Proposition 5.3
is that P (ε) is a regular perturbation of P (0) and P (ε)
has a stationary distribution µ(ε) that converges to µ(0) (a
stationary distribution of P (0)) as ε→ 0 [Theorem 3.10].

Definition 5.5: Let, C0 = {x ∈ S| mx = 1, (ax)i =
(o, r) s.t. r = r̂∗(o, a

x)} and D0 = {x ∈ S| mx =
0, (ax)i = (o, r) s.t. r = r̂∗(o, a

x)}
where r̂∗(o, a

x) = arg minr∈R̂ p(r, o, (a
x)−i) and

p(r, o, (ax)−i) =
ε
Ui(r,o,(a

x)−i)

t∑
r̂n∈R̂m(rn)ε

Ui(r̂n,o,(ax)−i)

t

. rn ∈ R

is the interval such that r̂n ∈ rn.

Lemma 5.6 ([5]): If for every a ∈ A, Gc(a) ∪ GI(a) is
strongly connected, the recurrence classes of the unperturbed
chain P (0) are D0 and the singletons z ∈ C0.

Proof: Setting εt = 0 in the Alg. 5.2, we can easily
notice that mt−1 = 0 implies mt = 0. So D0 is a recurrence
class according to P (0). Similarly, mt−1 = 1 implies all
(mt)i = 1 by step 1 of the algorithm. The step 2.1 of Alg.
5.2 along with (11) ensures all the agents select their previous
actions. Hence each element of C0 is a separate recurrence
class.

Lemma 5.7: Under the same assumption as in Lemma
5.6, for any x, x′ ∈ C0, y, y′ ∈ D0, and z ∈ S\(C0 ∪D0):

ρ(x, y) = kl, (16)

ρ(y, x) =

N∑
i=1

βi3(x), (17)

ρ(x, x′) = l|η|, s.t. η = {i : (ox)i 6= (ox
′
)i}, (18)

ρ(y, y′) = 0, (19)
ρ(z, y) = 0, (20)

Proof: Let k be the smallest number such that one can
choose a set I ⊂ {1, 2, .., N} of k agents in a way that
I ∪ (∪i∈INi) is the whole set of agents V = {1, 2, · · · , N}.
To change from a state in C0 to a state in D0, the agents
i ∈ I should change their moods using either step 4.1 or the
combination of steps 2.1 (changing action) and 4.2. Both of
these changes incur the same resistance l. ∀j ∈ Ni, m̃j = 0
as soon as mi = 0. Mood mj can be changed to 0 via a zero
resistance path by step 4.2. Therefore k such agents need to
change their moods so that all the agents can change their
moods and hence the new state belongs to D0. Note that, the
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change of the action a = [o, r] under m̃i = 0 can be done
with zero resistance using step 2.2 and (11). This proves Eq.
(16) and obviously k ≤ N .

For a change of state from D0 to any state in C0, the
actions can be selected via a zero resistance path as in step
2.2. Since all m̃i = 0, mi has to be made equal to 1 via step
4.2 with a cumulative resistance of

∑
i∈V β

i
3(x) and hence

Eq. (17) is obtained.
For a change from x ∈ C0 to x′ ∈ C0, if any agent i has

its center oi different from its previous value, it can make
such a change in action via a path of resistance l by step
2.1 or it can change its mood with resistance l and then
choose the action ax

′
with a zero resistance path using step

2.2, and finally change its mood with resistance βi3 by step
3.2. However, for the latter case, since agent i’s change of
mood will affect m̃j ∀j ∈ Ni. Thus, the neighbors need a
change from m̃j = 0 to mj = 1 by resistance βj3 . Therefore,
the minimum resistance for such a change will be used to
adopt the former strategy, i.e. changing action using step 2.1,
incurring a resistance l. By denoting η = {i : (ox)i 6= (ox

′
)i}

and the cardinality of η by |η|, we arrive at Eq. (18), where
(ox)i is the center of the i-th agent at state x.

All the states in D0 are accessible from one another under
the unperturbed Markov chain P (0) and Eq. (19) holds.

Note that the Gc(a) ∪ GI(a) is strongly connected and
we divide the agents into two groups V0 = {i| m̃i = 0}
and V1 = {i| m̃i = 1}. Due to the strong connectivity
assumption, for all i ∈ V1, ∃j ∈ V0 such that there is a
path from j to i. Therefore, agents in V0 can change their
actions with 0 resistance (step 2.2) in a way that affects the
utility of some i ∈ V1 and as a consequence mi = 0 with
zero resistance (step 4.2). Thus finally for all i ∈ V , mi = 0.
This fact along with Eq. (19) implies (20).

Lemma 5.8: The stochastically stable set of states is
{xi ∈ C0| W (axi) = W ∗}.

Proof: The proof follows the similar line of thoughts
as done in [5] by constructing the j−trees (Def. 3.9) rooted
at {xi ∈ C0| W (axi ) = W ∗} and comparing it to the other
j − trees rooted at other nodes. However few difference
should be noted here that:

1) An outward edge from D0 to xi has a resistance of 0
(Alg. 5.2 step 4.2). In [5], it was W ∗.

2) The above fact required l > W ∗ in [5] but we do not
require any such constraint on l.

Theorem 5.9 (Main Result): Let for every action a ∈
A, Gc(a) ∪ GI(a) be strongly connected. Let xt = [at,mt]
denotes the state of all agents at time t, then

lim
t→∞

P (at ∈ A∗) = 1

Proof: This Theorem is similar to Theorem 1 in [5].
Only difference in our theorem is that we have relaxed
the condition

∑∞
t=1 ε

κ
t = ∞ where κ = minEi∈E CR(Ei)

and E is the set of recurrence classes of P (0). By careful
observation, we can say that κ = 0. To show this, we proceed

by finding the co-radius of xi ∈ C0 such that W (axi) = W ∗.
Let us take v ∈ D0, then ρ(v, v′) = 0 by Lemma 5.7 for all
v′ ∈ D0. Let us choose v′ = (av

′
,mv′) such that av

′
= axi .

Therefore, clearly ρ(v′, xi) = 0 [Alg. 5.2 step 4.2] and hence
ρ(v, xi) = ρ(v, v′)+ρ(v′, x) = 0. Now, if v ∈ S\(C0∪D0),
then ρ(v, v′) = 0 for all v′ ∈ D0 and since we already have
proved that ρ(v′, xi) = 0 for all v′ ∈ D0, we can conclude
ρ(v, xi) = 0 for all v ∈ S\(C0∪D0). Therefore CR(xi) = 0
and that implies κ = 0.

VI. CONCLUSION

In this paper, we present a game theoretic methodology
to solve the energy-aware coverage problem for mobile
sensor networks (MSN) in a decentralized fashion. The utility
function captures the trade-off between the efficient coverage
and the energy consumption due to sensing, receiving pack-
ets and localization. The decentralized learning algorithm
incorporates the exchange of certain bit-valued information
between the agents over a directed communication graph.
Finally, we prove that this algorithm converges to a NE.
However, unlike the previous work [5], the convergence of
εt is not constrained and consequently the convergence to
NE.
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