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Abstract— We consider the Economic Dispatch Problem
(EDP) in power systems for a smart-grid friendly environment.
We develop a consensus based decentralized optimization algo-
rithm that evolves in a time-varying communication network
that suffers from multiple propagation time-dependent delays.
This paper, being an improvisation of an earlier work of
ours, addresses the effects of time dependent delays in a fully
decentralized network. We show analytically and by simulation
that propagation delays may not only affect the performance
of the dynamic algorithm that solves the EDP but can also
destabilize the system.

I. INTRODUCTION

Energy supply systems are typically a structure of inter-
connected power generation plants that independently pro-
duce power to serve a load over a common distribution
network [10], [11], [16]. Power units, however, produce
energy at some cost. Hence, a fundamental optimization
problem associated with power grids is the operation of the
power units to serve a given load so that the cumulative cost
is minimized. This is the well-known EDP.

Over the past years many optimization methods for the
EDP have been proposed in the literature. The solution
approaches vary from the lambda iteration or gradient based
search algorithms [10], [16] to modern heuristic optimization
techniques (see for example [1], [2], [3] and references
therein). Although the performance and applicability of eco-
nomic dispatch has been improved by these optimization
techniques, they all require the maintenance of a central
control center that can access the state of the entire system.

The deregulation of the electric utilities has led to research
on a decentralized model of control where utilities, transmis-
sion system operators and independent power producers co-
operate and compete using market and other mechanisms
[16]. Therefore, centrally designed and controlled power
networks may cause performance limitations due to the
fundamental incompatibility with the modern power network
design principles.

A. Smart-Grid Architecture

The new generation of power systems is expected to satisfy
high standards of efficiency, resilience and reliability against
cyber-attacks or natural disasters, improved integration of
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renewable energy resources and plug-in hybrid electrical
vehicles. Such electrical grids, known as Smart-Grid (SG),
are designed to monitor, predict and intelligently respond to
the behavior of all electric power suppliers and consumers
connected to it in order to deliver such standards [4], [7].

A necessary requirement is the development of advanced
control and communication technology both in the physical
and the algorithmic layer. In an SG environment, the com-
munication and measurement requires a multi-agent systems
(MAS) technology [7]. MAS are computation networks in
which several agents co-operate to achieve a desired task.
The development of monitoring and measurement in SG with
the use of MAS technology involves a combination of several
agents working without human intervention, collaboratively
pursuing assigned tasks to achieve the overall goal of the
system.

B. MAS architecture and consensus based algorithms

The central feature of MAS devices is their ability to
operate in a decentralized and co-operative manner in order
to achieve a global and common goal. Each agent has
access to limited information of the network and typically
supervises a part of it. Based on the available information,
co-operative dynamic control laws are implemented so that
the desired operational state is reached.

A central algorithm in networked systems is the agree-
ment or consensus algorithm under which a collection of
autonomous agents engage in a dynamic averaging of a state
of interest so that in the long run, they all obtain the same
value. The research in consensus systems is fairly vast as they
are considered to be the underlying mathematical model for
co-operative biological, social, robotic networks (see [6], [8],
[15] and references therein).

C. Motivation & Contribution

Recent advances in consensus systems have reheated the
subject of such algorithms executed over a finite number
of processors in order to solve optimization problems in a
decentralized way. The successful and reliable implementa-
tion of complex electrical networks such as the SG, requires
advanced measurement and control methods that operate
autonomously, while taking into account the mechanical and
communication restrictions of such networks.

These limitations affect not only the performance but
also the stability of the algorithms. In a number of papers
Zhang et al. [17], [18], [19], solved the EDP using the
consensus algorithm in a centralized version with constant
weights and uniform delays. In [14] the authors extended
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the work of Zhang and Chow by proposing a generalized
linear consensus based model for the decentralized solution
of the EDP using the lambda iteration algorithm. In that
paper, the main contribution is that in addition to time-
varying communication parameters that would take into
account realistic communication phenomena such as link
failures, time-dependent delays were also considered in a
way that did not affect the stability, but only had effects on
the performance of the algorithm. For this strong result a
number of unrealistic assumptions had to be considered.

The present work revisits the problem in the framework
introduced in [14] and proposes a fundamentally decentral-
ized scheme for the solution of the EDP. In particular we
relax a number of simplifications taken in [14], such as the
connectivity scheme and the mechanical limitations of the
power generators. We demonstrate that the combination of
the communication regime, the magnitude of communication
delays and the mechanical limitations play a very important
role in the stability of the proposed algorithm.

D. Organization Of The Paper

In §II we review the nominal mathematical model for the
analysis that follows. In §III we review the classic EDP
with operation constraints and we explain the adaptation to a
decentralized environment. In §IV we continue the discussion
of §III and introduce our main algorithm. The rigorous
analysis is presented in §V where we demonstrate how the
proposed algorithm can be restated as a perturbed leader
follower consensus model with delays and we establish a
sufficient stability in variation condition. In §VI a simulation
example is presented to validate the theoretical results. A
thorough discussion on the advantages and disadvantages on
our approach together with prospects for future work is held
in §VII.

II. LINEAR CONSENSUS WITH DELAYS

A number of N < ∞ autonomous agents constitute the
set [N ] = {1, . . . , N}. Each agent is defined through a state
of interest xi, i ∈ [N ] that is dynamically updated under the
following scheme,{

ẋi(t) =
∑
j aij(t)

(
xj(t− τij(t))− xi(t)

)
, t ≥ t0

xi(t) = φi(t), t ∈ It0
(1)

where aij , τij : [t0,∞)→ R+ are the coupling weights and
the propagation delays respectively, It0 = [t0 − r, t0] is the
time interval of the appropriate initial data φ = (φ1, . . . , φN )
all of which under standard conditions ensure the existence
and uniqueness of a solution x = x(t, t0,φ), t ≥ t0
[5]. The weights aij ≥ 0 (with aii ≡ 0) constitute the
communication graph that is represented by the adjacency
matrix A = [aij ]. In [8] it is shown that if there exists
B > 0 such that

∫ t+B
t

A(s) ds constitutes a sufficiently
connected graph (routed-out branching), then {xi(t)}i∈[N ]

converge exponentially fast to a common constant.
A leader in a consensus network, is an agent that affects

the rest of the group without being affected by others. Non-
negative Matrix Theory [12] ensures that for the same con-
nectivity conditions, the existence of at most one leader in the

network forces the state of the entire group to the match the
leader’s, provided the latter is (or becomes asymptotically)
constant.

Theorem 2.1: [15] Consider (1) and its solution x. If:
(i) τij have continuous first derivative with 1− τ̇ij > 0 and

supt≥t0 τij(t) = τ <∞,
(ii) ∃ ε > 0 such that aij(t) 6= 0 implies that aij > 0 for

at least an ε interval of time in which t is included,
(iii) ∃ B > 0 such that the graph corresponding to∫ t+B

t
A(s) ds, t ≥ t0 is routed-out branching,

there exists x∞ ∈ [mins,i φi(s),maxs,i φi(s)] such that

max
i
|xi(t)− x∞| ≤ Ee−ε(t−t0).

for some E, ε > 0. In particular, if we have a leader-follower
network, then x∞ is the state of the leader.

In [15] the authors provide a unified framework for the
stability of consensus networks with explicit estimates of the
rate of convergence of (1), i.e. E, ε can be estimated by the
initial data as well as A = [aij ], B and τ = [τij ].

III. THE EDP WITH OPERATION CONSTRAINTS

The EDP [16] consists of a system of N power generating
units, connected to a single bus bar, serve a received electrical
load PL. The input to each unit, Fi, represents the cost rate of
the unit. The output of each unit, Pi, is the electrical power
generated by that particular unit. The total cost rate of this
system is the sum of the costs of each of the individual units.
We have two essential constraints:
• The sum of the output power Pi must equal the load

demand PL:
∑N
i=1 Pi = PL.

• The units operate within bounds: Pi ∈ [P , P ], i ∈ [N ]
for some P , P > 0.

This is a constrained optimization problem and it is
attacked with standard calculus that involves the Lagrange
function:

L = FT + λι

where FT =
∑N
i=1 Fi(Pi) is the objective function and

ι = 0 = PL −
N∑
i=1

Pi

The necessary conditions for an extreme value of the ob-
jective function FT result when we take the first derivative
of L with respect to each independent variables and set the
derivatives equal to 0:

∂L
∂Pi

=
dFi(Pi)

dPi
− λ = 0. (2)

Following [16] we assume quadratic cost functions:

Fi(Pi) =
1

2
χiP

2
i + ψiPi + ωi (3)

for parameters χi, ψi, ωi > 0 assumed to be known. Together
with (2) we must add the two constraints mentioned above
so that the optimal operation point must satisfy for i ∈ [N ] :

dFi(Pi)

dPi
= λ, P ≤ Pi ≤ P ,

N∑
i=1

Pi = PL. (4)
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A. decentralized approach for SG setting

We assume that the SG network is covered by a finite
number N of stations each of which has full access to the
parameters of their area of duty (load and generator). At
the same time they have limited (local) and asynchronous
information on the quantities of any other area of the
network. Any information is propagated through a time-
dependent communication network as well as it suffers from
delays. In particular, given a network with weights defined
through the adjacency matrix A = [aij ] (A-network), each
controller i ∈ [N ] executes the following tasks:
(1). Attains instant information of the (constant) load in
its section, P (i)

load, (consequently PL =
∑
i P

(i)
load). At this

level, agent i acts as a leader of a consensus algorithm that
transmits P (i)

load over the A-network and the rest of the agents
learn this value. Thus we have the following consensus
system for the ith agent of the network:

ṗ(i)n (t) =

{
0, n = i∑
j anj(t)

(
p
(i)
j (t− κ(i)

nj (t))− p
(i)
n (t)

)
, n 6= i

In other words, p(i) are dynamic vectors with elements that will
approach asymptotically P

(i)
load. Thus through this process every

agent will learn the load of the network by exchanging local
information with their neighbors only. Now, the ith agent’s load
observation is

P (i)
cL (t) = P

(i)
load +

∑
j 6=i

p
(j)
i (t) (5)

If the delays κ(i)jn are smooth and uniformly upper bounded
then by Theorem 2.1, there exist L, l > 0 that depend on the
network A and the delays κ(i)jn such that:

|P (i)
cL (t)− PL| ≤ Le−l(t−t0), t ≥ t0. (6)

(2). Instant information on the power the ith generator pro-
duces, denoted by Pi, updated according to the differential
equation

d

dt
Pi(t) = −γi(t)Pi(t) + γi(t)

λi(t)− ψi
χi

. (7)

This equation models the mechanical constraints of the
power generators that tend to approach the desired operation
point λi(t)−ψi

χi
. These can be time-dependent factors (e.g.

inertia, primary resources availability) that are model with
the positive function γi such that

0 < γ ≤ γi(t) ≤ γ <∞ (8)

so that convergence to λi(t)−ψi
χi

occurs exponentially fast
with rate at least γ.
(3). Asynchronous information on the produced generator
for the rest of the sensors. At this level, the observation each
controller has on the cumulative generated power is

P (i)
cG (t) =

N∑
j=1

Pj
(
t− σij(t)

)
, (9)

where σij are smooth time-dependent and uniformly
bounded delays with the convention that σii = 0.

(4). The λ update. The lambda iteration algorithm is executed
locally under the structure of the A network (see (10) below).

IV. THE MODEL

As described in previous sections, N < ∞ generators
attempt to serve a common load while at the same time
operate at an optimal point. N agents control a part of the
power generated and a part of the load. The lambda iteration
algorithm is executed under a decentralized consensus based
scheme that evolves in the A network and suffers from time
dependent propagation delays. The initial value problem is
written as follows:


λ̇i(t) =

∑
j aij(t)

(
λj(t− τij(t))− λi(t)

)
+

+wi(t)
(
P

(i)
cL (t)− P (i)

cG (t)
)
, t ≥ t0

λi(t) = φi(t), t ∈ It0
(10)

with It0 = [t0−r, t0], P (i)
cL (t) as in (5), P (i)

cG (t) as in (9) and
wi is a control coupling parameter. In the next two sections
we will discuss (10) both in theory and in simulation.

V. ANALYSIS

We conduct a theoretical analysis of (10) and derive suf-
ficient conditions for asymptotic stability. Our strategy is to
express (10) as a perturbation of a nominal consensus leader-
follower network. Then a stability in variation expression of
the solution and a fixed point theory argument will state a
general asymptotic stability criterion.

A. Construction of the nominal system

By (7), the variation of parameters formula, yields:

Pi(t) = e
−

∫ t
t0
γi(s) dsPi(t0)+

∫ t

t0

e−
∫ t
s γi(q) dqγi(s)

λi(s)− ψi
χi

ds

so that P
(i)
cG (·) is, henceforth, considered in the central

differential equation as a function of λ with the appropriate
delays σij . Now, from (4) Pi must operate within [P , P ].
A sufficient condition for this is deduced from the above
equation and it is

P ≤ Pi(t0) ≤ P and ψi + Pχi ≤ λi(t) ≤ Pχi + ψi (11)

Additionally, we will write wi(t)
(
P

(i)
cL (t) − P (i)

cG (t)
)

as the
sum of a term that makes λi tend to a constant value and
another term that if λi tends to the aforementioned value,
the latter term asymptotically vanishes. The “strength” of the
latter term determines the stability of the overall algorithm.
These remarks pave the way for the main result of this
section.

Proposition 5.1: The system presented in (10) is equiva-
lent to λ = (λ0, . . . , λN ) with

λ0 =
PL +

∑
j(ψj/χj)∑
j χ
−1
j

and
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{
λ̇i(t) =

∑
j aij(t)

(
λj(t− τij(t))− λi(t)

)
+ fi(t,λt), t ≥ t0

λi(t) = φi(t), t ∈ It0

for i ∈ [N ] where Ā = [aij(t)] constitutes a leader-follower
network with delays and fi(t,λt) is a state-dependent per-
turbation.

Proof: By adding and subtracting appropriate terms we
can write wi(t)

(
P

(i)
cL (t)− P (i)

cG (t)
)

wi(t)
(
PL − P (i)

cG (t)
)

+ wi(t)
(
P (i)
cL (t)− PL

)
=

= wi(t)
(
λ0(t)− λi(t)

)
+ εi(t) + ζi(t,λt)

with

ηij(t) := 1− e−
∫ t−σij(t)
t0

γj(s) ds, wi(t) := wi(t)
∑
j

ηij(t)χ
−1
j

εi(t) := −wi(t)
∑
j

(
1− ηij(t)

)
Pj(t0) + wi(t)

(
P (i)
cL (t)− PL

)
+

+ wi(t)

(
PL +

∑
j(ηij(t)ψj)/χj∑
j ηij(t)/χj

− λ0

)
ζi(t,λt) :=

= −wi(t)
∑
j

∫ t−σij(t)

t0

e−
∫ t−σij(t)
s γj(q)dqγj(s)

λj(s)− λi(t)
χi

ds

so that fi(t,λt) = εi(t) + ζi(t,λt) and A = [aij(t)] with

aij(t) =


0, i = 0

wij(t), i 6= 0, j = 0

aij(t), i, j 6= 0

Combining the consensus point λ0 with the feasibility
condition (11) we see that it is necessary for P and P to
be chosen appropriately. A relaxed sufficient condition is

max
i
ψi + P max

i
χi < λ0 < min

i
ψi + P min

i
χi (12)

B. Stability in variation

We will construct a fixed point theory representation of
the solution λ of the system of Proposition 5.1 and prove
that there is an appropriate functional space where the
constructed solution representation, acting as an operator, is
a contraction. Indeed, we will compare the aforementioned
system with the unperturbed:

{
ν̇i(t) =

∑
j aij(t)

(
νj(t− τij(t))− νi(t)

)
, t ≥ t0

νi(t) = φi(t), t ∈ It0 .
(13)

For this we need to consider C as the Banach space of
continuous function mapping the interval [t0−r, t0] into RN
with the topology of uniform convergence and the solution
segment ν(t, s,ν(s, t0,φ)) = νt(s,ν) ∈ C([t−r, t],RN+1).
By Proposition 5.1 and Theorem 2.1, ν can be represented
as

ν(t, t0,φ) = T (t, t0)φ (14)

where T (t, s) : C → C is a family of continuous linear
operators. By virtue of Theorem 2.1, we set T̃ (t, s) :=
T (t, s)− 1(1, 0, . . . , 0) that satisfies∣∣T̃ (t, s)φ

∣∣ ≤ Ee−ε(t−s) (15)

where 1 ∈ RN+1 is the column vector of all ones. From [13]
the solution λ = (λ0, λ1, λ2, . . . , λN ) can be expressed as

λt(θ) = [T (t, t0)φ](θ) +

∫ t

t0

[T (t, s)Y0](θ)f(s,λs) ds (16)

for θ ∈ [−r, 0] and Y0(θ) = 0, θ ∈ [−r, 0), Y0(0) = I and
f(s,λs) =

(
0, f1(t,λt), · · · , fN (t,λt)

)T
.

Remark 5.2: For the sake of simplicity as well as the
feasibility condition (12) we set the following initial data:

1) t0 = 0
2) φi(t) ∈

[
maxi ψi + P maxi χi,mini ψi + P mini χi

]
for t ∈ I0 as initial data for the lambda iteration
algorithm.

3) P 0
i = P as initial data for the generated power at each

unit.
4) p(i) : p

(i)
i ≡ P

(i)
load, p(i)j (t) ≡ 0 for t ∈ I0 as initial

data for the parallel learning of the network load PL.
5) We set the mechanical reaction γ < ε < γ, for γ and

γ as in (8).
6) we set the load learning rate l < ε.

The last two assumptions are taken without loss of generality.
Had either not being valid only would lead to a minor
alternation of the following condition:

Assumption 5.3: It holds that

Ξ

(
1− 2wEmax

{
1

ε
,
eγσ − eε σ

γ − ε

}∑
j

χ−1
j

)
>

wE

[
L

( l
ε

)ε − ( l
ε

)l
l − ε +

( γ
ε

)ε − ( γ
ε

)γ
γ − ε eγσJ

]
where

J :=

(
NP + PL + 2

∑
j

ψjχ
−1
j

)
Ξ := min

{
λ0 −max

i
χiP −max

i
ψi,min

i
χiP + min

i
ψi − λ0

}
and E, ε > 0 as in (15), γ, γ > 0 as in (8), L, l > 0 as in
(6) and w = maxi supt wi(t), σ < σij < σ.

We are ready now to state and prove the main result of
this work:

Theorem 5.4: Assume the following:

1) The A-network and the delays [τij ], [σij ] and [κ
(i)
nj ]

satisfy the conditions of Theorem 2.1.
2) Assumption 5.3 is true.
Then the EDP as it is stated in (10) has a unique solution

and all units asymptotically tend to the optimal operating
condition.

Proof: [Sketch] The proof is an application of the
Contraction Mapping Principle [9]. We consider the space
of functions.
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M =
{
y ∈ C0([−r,∞),RN+1) : yi(t) = φi(t)|i∈[N ]

t∈I0 ,

y0 = λ0,max
i
|yi(t)− λ0| ≤ Ξ, t ≥ 0, yi(t)→ λ0

}
that together with the metric ρ(y(1),y(2)) =

supt≥0 maxi |y(1)i (t) − y
(2)
i (t)| constitute a complete

metric space [9]. Observe that (16) can be rewritten as

λt(θ) = [T̃ (t, 0)φ](θ) + 1λ0 +

∫ t

0

[T̃ (t, s)Y0](θ)f(s,λs) ds

(17)

Consequently we define the operator

(Py)t(θ) =

{
φ(θ), t = 0

yt(θ)(17), t ≥ 0

where yt(θ)(17) stands for the right-hand side of (17). The
first step is to show that for any y ∈ M we have Py ∈ M:
Indeed, Py coincides with (λ0,φ) in I0 and as t→∞

(Py)t(θ)→ 1λ0

in view of (15), the asymptotic behavior of εi(t) → 0,
ζi(t,y)→ 0 and consequently f(t,yt)→ 0, then the integral
in (17) vanishes as the convolution of an L1 function with
a function that goes to zero. Finally, careful calculations
of the estimates on εi, ζi provided in Proposition 5.1 with
the convolution integral yield that condition in Assumption
5.3 is sufficient to prove that P maps M to itself and it is
also a contraction under the metric ρ. Then the Contraction
Mapping Principle ensure the existence of a unique fixed
point in M, i.e. a solution that solves the EDP with the
operation constraints.

The purpose of the simulation example that follows is to
illustrate Theorem 5.4 and to show that for large delays σij
our algorithm becomes unstable.

VI. A SIMULATION EXAMPLE
A network of N = 5 agents each of which controls a

portion of the load and a portion of the generated power are
interconnected and the objective is the decentralized solution
of the EDP. The simulations were run with the ddesd
routine of MATLAB and Euler approximations with dt = 0.01
sec.

a) The A-network and its delays.: The network is
represented through the adjacency matrix

A = a(t)


0 1.5 0 0 0

1.3 0 0.9 0.8 0
0 1.3 0 1.6 0
0 0.7 0.1 0 0.8
0 0 0 0.3 0


where a(t) = 50

(
1 + sin(t)

)
. The delays with respect to λ

and Pgen respectively:

T = 0.1


0 1 0 0 0
1 0 1 1 0
0 1 0 1 0
0 1 1 0 1
0 0 0 1 0

 ,Σ = σ(t)


0 1 2 2 3
1 0 1 1 2
2 1 0 1 2
2 1 1 0 1
3 2 2 1 0

 ,

for some smooth function σ(t) ∈ [σ, σ]. The learning delays
κ(i) are taken identical to these of Σ but with σ(t) = 1 +
0.5 sin(t). The network load is Pload = 2000MW and the
cost functions are in the form (3).

Sensor χi ψi ωi Load (MW)
1 0.003124 7.92 561 200
2 0.00388 7.85 310 500
3 0.00964 6.2 78 400
4 0.01752 3.2 150 300
5 0.0027 7.97 358 600

TABLE 1. The control loads and the properties of the cost
functions Fi of the network in the simulation example. For
instance sensor 1, controls 200 MW of the overall load
and generates P1 with fuel cost function F1(P1) = 561 +
7.92P1 + 0.001562(P1)2.

Table 1 enlists all the load and cost data that each sensor
of the network supervises. We assume that each generator
works within [P , P ] = [10, 500] as (4) requires. The optimal
operation point λ = λ∞ is explicitly calculated:

λ∞ =
2000 +

∑5
l=1

ψl
χl∑5

l=1
1
χl

= 9.32$/MWh

and the generators produce the optimal powers (in MW):
P∞1 = 448.1503, P∞2 = 378.8715, P∞3 = 323.6537, P∞4 =
349.3163 and P∞5 = 500.0080.

b) Decentralized load learning : Figure 1 depicts the
learning process of the overall network load, where each
sensor acts both as a leader to the rest of the A-network and
a follower.

Under Remark 5.2 we numerically calculate

|P (i)
CL
− 2000| ≤ 1800e−0.09t

or L = 1800 and l = 0.09 of (6).
c) Leader Follower Model: Given the cost parameters

we calculate Ξ = 1.1748 and we appropriately chose initial
values for φi so that E = 0.001 and e = 12 of (15).

d) Power generators.: Under the Remark 5.2 we set
γ = 3 and γ = 13. Consequently if σ is small enough,
Assumption 5.3 is calculated to be correct. As σ increases,
it is not guaranteed that the system will operate within the
bounds and as σ increases even more it is not guaranteed
that the system will be stable. Indeed in Figs. 2 (a) and (b)
we have small σ(t) = 0.2(1 + sin(t)) that satisfies (5.3) and
solve the problem in terms of λ and Pi respectively. In Figs.
3 (a) and (b), we have taken σ(t) = 1.5 − 0.5 sin(t) large
enough that does not satisfy 5.3 and we see instability of the
algorithm.

VII. DISCUSSION

We developed a rigorous framework for the solution of the
EDP in a time varying network with multiple communication
delays and a network scheme that is compatible with the
modern SG architectures. The dynamics algorithm is moti-
vated by a consensus model with delays and turns out to
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Fig. 1: Parallel learning of the example. Each sensor that
controls part of PL, acts as a leader in a leader-follower
scheme under the A network and the prescribed delays.
Adding each sensor’s learning variable we obtain the quantity
in (5).
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Fig. 2: Small σ delays that satisfy Assumption 5.3. The
distributied solution of the EDP in terms of λi (a) and Pi
(b).

a system of functional integro-differential equations. In this
work, the delay on the generated power Pi is put under study.
We demonstrated by theory and simulation that large delays
may drive units out of bounds or even destabilize them.

There are a number of important parameters that are yet to
be examined. We took into consideration multiple different
types of delays but we suppressed most of them in order to
study the effect of one of them (i.e. σij). Simulations suggest
that there are still parameter areas to be explored (such as wi,
κi, γj etc). Among the advantages of the followed method, it
is the fact that it can handle general linear non-autonomous
systems. The price to pay is conservative estimates (like As-
sumption 5.3). Moreover rate estimates from [15], although
explicit, these are very conservative. Sharper rate estimates
and stability conditions require frequency-based methods. In
this case, however only networks with linear and constant
parameters should be considered.

The main disadvantage of the modeling approach is that
it is assumed that each sensor attains a delayed image of the
generated power of every other sensor in the network. This
is hardly a decentralized feature of the network dynamics.
It is however critical for the performance of the algorithm.
The sensor must somehow have information of the overall
produced power so that it will know how much power to con-
tribute from the unit it controls. The design of information
networks that distribute critical global dynamically updated
quantities is a challenging future research question.
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Fig. 3: Large σ delays that do not satisfy Assumption 5.3.
The EDP in terms of λi (a) and Pi (b).
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