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Abstract—Advertising activity on SNS has grown rapidly and
is now a billion dollar business. In the SNS advertising model,
the SNS serves as the advertising agent, and takes the advantage
of network diffusion to attract advertisers and charges for the
cascading impressions. The optimal ad allocation task is to choose
the ad allocation plan that maximizes the revenue. Each user
has different diffusion ability, limited daily impressions and the
advertisers have various bidding prices and budget concerns. A
feasible plan that obeys the constraints is difficult to find. The
solution of this problem lies in the space of N|Ads|×|User|0 , which
makes direct optimization unattractive. In this paper, we study
SNS advertising business models, formulate the SNS ad allocation
problem and show their connections with hyperbolic embedding.
We develop a new embedding algorithm HYPERCUBEMAP that
allows for dimension reduction. Our proposed method reduces the
dimensionality of the original problem significantly, runs two to
four orders of magnitude faster, and reaches 95% of the optimum.

I. INTRODUCTION

Social network sites (SNS) such as Facebook, Google+ and
Twitter have attracted hundreds of millions of daily users since
their appearance. In modern SNS, users expose many personal
behaviors and connect to each other based on real world
relationships, which makes SNS ideal for targeted advertising
[1]. SNS advertising has grown rapidly in the past years, for
example, Facebook has more than 1 million advertisers and
100 billion hits per day [2], [3]. As shown in Fig. 1, to
perform a marketing campaign in an SNS such as Facebook, an
advertiser first finds an agent (typically the SNS site), chooses
the target audience by specifying desirable user profiles and
provides its advertisements (ads) with a bidding price and a
budget. Then the agent allocates the ads to the set of users
whose profiles match its targeting request. For each impression
(page view) of a user, the agent chooses one or several ads
whose target audience include the user. Now the user can see
and engage with the ad, e.g. ‘like’ in Facebook , and then her
friends may see the ad and further engage. For advertising
campaigns, instead of keywords, advertisers bid for a target
group of users’ actions, which can be mille impressions (cost
per thousand impressions), engagements (e.g. click, retweet),
or actions (e.g. app installation, product purchase). The agent
runs large auctions using the bids and charge advertisers by the
user actions. There are associated billing policies, such as pay-
per-mille, pay-per-click, pay-per-action, pay-per-engagement
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[4]. The pay-per-mille is the default and most popular policy
in Facebook, and we assume this policy throughout this paper.

The SNS ad allocation problem of maximizing the agent’s
revenue by allocating ads to user impressions while respect-
ing the advertisers’ requests (targeting, bidding and budget
constraint), is a central problem for advertising agents. The
concept of paid social influence distinguishes the problem
from standard ad allocation (AdWords [5]) and influence
maximization problem [6]. Comparing with AdWords in which
advertisers bid on search query keywords, in the SNS, they
bid on users. Moreover, as the substantial role of information
diffusion in SNS [7], the users allocated to a particular ad
are allowed to engage with the ad and diffuse it to their
neighbors, while advertisers pay for all the impressions. On the
other hand, the problem differs from influence maximization
problem where one only pays the best initial user set of size
N to maximize the total users she can reach by cascading.
A. SNS Ad Allocation Problem

To formulate this problem, let A denote the set of adver-
tisers, and U be the set of users. Each user u ∈ U has a
daily impression Iu and a social influence function P (u). Each
advertiser Ai ∈ A has a target user group ti ⊆ U defined by
user attributes, a budget bi and bidding price pi. Without losing
generality, we assume each advertiser has only one ad, and on
a user’s one impression, only one ad is displayed in the sponsor
pane. Note that in the news feed, her friends’ ad engagement
is treated as common friends’ updates and displayed anyway.

Example 1: In Fig. 1, the impression of Alice, Iu=‘Alice’ =
4, shows how many times she views a refreshed Facebook
page per day, while her social influence, P (‘Alice’), means
how many users will see it eventually when she likes an ad.
On the other hand, ad1’s target user group tad1 are all graduate
students in US, her bid is pad1 = $5, and budget is bad1 = $200.

The solution of the allocation problem decides for each
ad what is the initial set of users to be displayed by con-
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Fig. 1. SNS Ad Campaign and Allocation
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sidering their influence capability. Let the decision variable
be X ∈ N|A|×|U |0 . For each u and Ai, one dimension of the
decision variable xu,i represents how many impressions of u
to be assigned to Ai. The optimization problem is to find the
allocation that maximizes the agent’s total revenue. Consider
users’ influence, it can be formulated as an integer program:

max
X

∑
Ai∈A

pi
∑
u∈ti

xu,i(1 + P (u)) (revenue)

subject to pi
∑
u∈ti

xu,i(1 + P (u)) ≤ bi ∀Ai ∈ A (budget)

∑
Ai∈A

xu,i ≤ Iu ∀u ∈ U (impression)

(1)

To define P (u), as the engaged ads are shown in her
friends’ news feed, we assume her friend can always see the
engagement if it happens when visiting her news feed. The
reasons are two folds, a) recent Facebook study [8] shows
a user’s newsfeed post can be read by 35% of their friends,
and 61% of them over a month, b) the news feed is ordered
by proprietary ranking algorithm [9], which may treat ads and
posts differently. We also assume 1-hop influence, as w is often
small (0.3%) in real SNS and network cascading is known to be
shallow in general [10], [11]. Accordingly, the social influence
function P (u) of user u can be defined as:

P (u) =
∑
ν∈Fu

wmin{Iu, Iν} (2)

with w the expected engagement probability (click-through
rate). The min{Iu, Iν} in Eq. 2 means regardless the engage-
ment probability, the user u’s engagement can be seen by her
friend ν ∈ Fu, min{Iu, Iν} times. If Iu > Iν , it is bounded by
the daily impression of her friend ν. If Iu ≤ Iν , the user u
at most engages Iu times. Given more SNS constraints, P (u)
can be adjusted, and we will discuss more in Sec. V.

B. Our Techniques and Contributions

The decision variable X ∈ N|A|×|U |0 lies in high dimension
as much as 1016 when considering 1 million advertisers and
billion users daily in Facebook. This makes the direct opti-
mization impractical. To make it more tractable, we propose
an approximation scheme, HYPERCUBEMAP. The key idea of
our method exploits the target group concept in the problem by
using hyperbolic embedding. Notice that in an advertiser Ai’s
target group ti, all users are considered the same by the ad,
the only difference are their influence capabilities. If we can
approximate the user impression allocation for Ai and revenue
calculation with influence on the target group level rather than
the user level, we will be able to eliminate several orders of
magnitude of dimensions for the problem. For 109 users and
103∼6 categories in a real world SNS such as Facebook [12],
we can reduce the dimension around 103∼6.

Hyperbolic embedding is a geometric mapping from a
complex network G(V,E) to a set of points and segments in
a hyperbolic space D. The hyperbolic space is continuous and
hyperbolic embedding maps arbitrary size complex networks
into a bounded area where each node is assigned a coordinate.
If SNS is embedded properly, we could use regions in the
hyperbolic space to express a set of users allocated to an ad;
then we could approximate the revenue from Ai as an integral
of the user’s influence function over a certain region Ri ⊂ D:

pi
∑
u∈ti

xu,i(1 + P (u)) ∼= pi

∫
r

∫
θ
I(Ri(r, θ))dθdr (3)

As we can use very few variables to describe a set of users
assigned to Ai with regular shapes such as fan and ring, we
can reduce dimensions of the original problem significantly.

Example 2: In Fig.2(a), two shapes on the base area rep-
resent two target groups w.r.t. Fig.1. Each user is mapped to a
coordinate in her group, e.g. Alice is assigned to the fan. The
influence function defines the top surface. Note the impressions
function defines a different surface that is not shown.

Our contributions in the paper include the following: a)
We study the SNS advertising pay-per-mille impression model
used widely in modern SNS and formulate the the SNS
ad allocation problem. b) We show the connection between
hyperbolic embedding and the SNS ad allocation problem,
and propose a novel and efficient embedding method, HY-
PERCUBEMAP, to group users with different profiles onto a
Poincaré disc. c) We approximate the problem as a hyperbolic
space region allocation problem and propose a novel optimiza-
tion framework to utilize HYPERCUBEMAP embedding, which
reduce the dimensionality of the original problem significantly,
and show 2 to 4 orders of magnitude runtime improvement
while reaching 90% of the optimum of baseline IP problem.

II. HYPERBOLIC EMBEDDING FOR SNS AD ALLOCATION

A. Preliminary: Hyperbolic Space and Complex Networks

Hyperbolic space is a non-Euclidean geometrically smooth
space that generalizes the idea of Riemannian manifolds with
negative curvature. In our formulation, we use Poincaré disc
model, D = {z ∈ C | |z| < 1}. The connection between
complex network and hyperbolic space lies in the Gromov’s δ-
hyperbolicity of a metric space [13]. By assuming a hyperbolic
geometry underlies complex networks, Krioukov et al. [14]–
[16] study the connection between topology of hyperbolic
geometry and the characteristics of complex networks. They
show that power law degree distributions and strong clustering
in complex networks can be viewed as reflection of the nega-
tive curvature property of the underlying hyperbolic geometry.
They design a mapping between hyperbolic space and complex
networks, which can accommodate arbitrary size network and
successfully captures important features in complex networks,
i.e., small world effect, scale-free and community structure.

B. HYPERCUBEMAP: Hyperbolic Embedding Method

As advertisers bid on heterogeneous user groups and users
have different impressions and influence capability. To apply
the embeded SNS for dimension reduction via integration, the
hyperbolic embedding should have the following properties:

1) Both node density and degree distribution should be well-
defined along angular and radial axises to support integrals.
2) The social influence function defined on the user’s coor-
dinate (r, θ) should be continuous on the Poincaré disc D,
otherwise the column with the related surface is not integrable.
3) The embedding method should embed users within the same
targeting group onto connected regions, otherwise a user group
have to be described by a collection of discrete points and the
dimension reduction would not be achieved.

To the best of our knowledge, the existing embedding
methods [14]–[17] do not obey all of these prerequisites.
In [15], Papadopoulos et al. propose an embedding scheme
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Fig. 2. Hyperbolic Embedding

satisfying the first prerequisite, the node density and the
expected value of degree along the radial coordinate is well-
defined. However, their model does not help SNS ad allocation
as the target groups, impression, and influence are not taken
into considerations. By extending [15], we propose HYPER-
CUBEMAP embedding algorithm. It first ensures the node
density and degree are well-defined along radical axis:

ρ(r) = aer (node desnity)
ω(r) = ce−r/2 (degree distribution)

(4)

a and c are constants derived from embedding; Then it orga-
nizes the Poincaré disc into dimension reduction feasible cubes
(Sec. II-B1) and calculates the minimal set of groups to boost
dimension reduction effectiveness (Sec. II-B2). In Sec. II-B3,
we give the whole embedding algorithm which satisfies all
three prerequisites. To improve precision and ease tuning, we
propose uniform node density embedding (Sec. II-B4).

1) Isolate Cubes and Degree Spectrum: To let the adver-
tisers specify the target user group, the agent often provides
a set of categorical filters, each of which has fixed number
of options. In Facebook’s case, there are seven major user
attributes for filtering, e.g. location, gender, age, language and
interests. The target user group of a campaign is the selection
of given options. The size of option profiles is not very large,
e.g. Facebook has common option profiles bounded by 106 and
discourages too fine-grained filters by giving warnings [12].

To capture these aspects, we propose the concept of isolate
cube to express user groupings, and degree spectrum to divide
Poincaré disc into finer and more regular shapes which ease the
calculation and improve the precision, as shown in Fig. 2(b).

Definition 1: Isolate Cube: An isolate cube is a set of unit
targetable user groups having the same set of campaigns.

Users in the same isolate cube are shared by the same
set of campaigns. Any two users in an isolate cube are
interchangeable in an allocation solution. As the isolate cubes
are related to dimension reduction performance, the fewer
isolate cubes we have, the better performance we can benefit
from the embedding. In the worst case, considering the ad
platform that defines F categorical filters, and each f ∈ F has
vf distinct options, there are at most

∏
f∈F vf isolate cubes.

As one can envision, the population in each user group
may vary a lot, not to mention the degree distributions in each
of them. When embedding, it means different isolate cube can
results in very different shapes in a Poincaré disc. To make
the embedding useful and ensure accuracy, we introduce the
concept of degree spectrum to regularize the embedding shape.

Definition 2: Degree Spectrum: A degree spectrum, Λ, is a
series of annuli centered at (0, 0) on 2-D Poincaré disc. Each

annulus λ ∈ Λ with radius (rs, re), represents all the users
with degree in the range of (ω(rs), ω(re)].

As shown in Fig. 2(b), the annuli are the degree spectrum.
Within each annulus, isolate cubes are allocated in fans whose
area is proportional to the number of users in an isolate cube.
Each advertiser Ai targets at a set of isolate cubes, ICi, each
of which has locations in some or all annuli in the spectrum
Λ, thus the allocation is represented by at most |ICi| · |Λ|
dimensions for Ai comparing with |{u|u ∈ ti}| in Eq. 1. Note
|Λ| is a tuning parameter of our method, which can be tuned
by fixing the degree range d. In the extreme case, d = 1, each
annulus only contains the users with the same degree.

2) Optimal Isolate Cubes: As the size of isolate cubes is
important for the dimension reduction performance, we show
how to get the minimal set of isolate cubes. Assume the ad
platform designs a set of filters F , where each f ∈ F has a
set of possible values, v. Each advertiser Ai selects targeting
values (f, vi) for each filter, denoted by Oi = {(f, vi)|f ∈ F},
which defines a set of target users Ti = {u|(f, vi) ∈ Oi, u[f ] ∈
vi}. Given all advertisers A and their targeting profiles O,
we can cluster them together and derive the optimal isolate
cubes (opt ic), which is the smallest set of isolate cubes and
gives the best dimension reduction performance. We propose a
hashing based approach to derive the opt ic in O(O) time. By
scanning O, for each filter value (f, vi), we build a signature
based on the set of advertisers bid it. Then we scann all (f, vi)
and combine those share the same signature to get the opt ic.

3) Embedding Algorithm: In Alg. 1, we give the hyper-
bolic embedding algorithm HYPERCUBEMAP. Given a SNS
G(U,E), advertisers A, targeting profile O and a spectrum
design Λ, it places each user u ∈ U to (ru, θu). It first
generates the optimal isolate cubes opt ic, and then for each
spectrum annulus λ(rs, re), it assigns each ic ∈ opt ic an
angular coordinate range (θs, θe). To ensure the uniform node
density along angular axis, the range is proportional to the ic’s
target user size portion in this spectrum annulus. To ensure the
same targetable user groups are allocated together, we assign
the angular coordinate of each user in its associated isolate
cube ic. β is a mitigating factor determined by the power law
exponent γ: β = 1

γ ; γ can be found for a given network. The
algorithm complexity is linear given users sorted by degree.

Algorithm 1 HYPERCUBEMAP
Let opt ic be the Optimal Isolate Cube
Let each annulus λ(rs, re) ∈ Λ and its user size be Na
θs = 0
for each λ(rs, re) ∈ Λ do

for each ic ∈ opt ic do
Let isolate cube ic’s user size be ic.na
θe = θs + 2π · ic.na/Na
Let ic’s angular range icang [λ] = (θs, θe)
θs = θe

end for
end for
Sort U by degree in descending order d1 > d2 > · · · > dn and break ties
arbitrarily. Let u’s degree be du
Let r1 = 0, and θ1 is chosen randomly in [0, 2π]
for u from 1 to n− 1 do

Let ru = 2β log u+ 2(1− β) logn
Find spectrum λ′(rs, re), satisfying ru ∈ λ′(rs, re)
Find isolate cube ic satisfying u[f ] ∈ vic, ∀(f, vic) ∈ ic
Let u’s angular coordinate θu be chosen randomly from icang [λ′]

end for

2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

359



HYPERCUBEMAP produces an embedding that satisfies
our prerequisites. On the Poincaré disc, the degree distribution
and node density are well defined along angular and radial
axises, node density ρ(r) = aer, and correspondingly expected
degree ω(r) = ce−r/2, r ∈ [0, R). The same targeting group
users are embedded into connected regions. With a continuous
social influence function, we can reformulate the problem to
a region allocation problem with much fewer dimensions.

4) Uniform Node Density Embedding: From Alg. 1 we
can notice that the inner area of the Poincaré disc is very
sparse due to the exponential node density along the radius,
which effects the optimality of approximation and makes it
difficult for parameter tuning and allocation scheme design.
Thus, corresponding to our application scenario, we propose
to adjust the node density and make it uniform along the radius
by moving nodes inside as an alternative embedding method.
For a point at (r, θ) by Alg. 1, its new coordinate is (r′, θ), then
the uniform density function ρ′(r′) can be derived as follows:

ρ′(r′) =

∫R
0

∫ 2π
0 ρ(τ)dθdτ

πR2
=

2a(eR − 1)

R2
(constant) (5)

the mapping ψ(r) from r to r′ is:

r′ = ψ(r) =

√
R2 ·

(er − 1)

(eR − 1)
= R

√
er − 1

eR − 1
(6)

Thus the expected degree at new coordinate (r′, θ) is:
ω′(r′) = ω(r)|r=ψ−1(r′) =

cR√
r′2eR − r′2 +R2

(7)

III. REGION ALLOCATION IN HYPERBOLIC SPACE

A. General Optimal Region Allocation

Using HYPERCUBEMAP, we can reformulate the ad al-
location problem as region allocation problem on the 2-D
Poincaré disc D. On D , each user u ∈ U with impression
Iu ∈ I is placed at (ru, θu) in polar coordinates with expected
degree du = ω(ru) = ce−ru/2 by HYPERCUBEMAP. Given a
set of advertisers A, each Ai ∈ A has a budget bi and bidding
price pi on a set of bidding isolate cubes (target users) denoting
as Ti = {ic1, ic2, ..., icn}. T = ∪Ti are the optimal isolate
cubes (opt ic). Given the degree spectrum Λ, the allocation
profile for Ai is defined as Si = {Sλ,ci |λ ∈ Λ, c ∈ T}, where
λ denotes the annulus, c specifies the isolate cube. Si is a set
of fans {(θλ,ci,s , θ

λ,c
i,e )}, each of which describes how to allocate

users in an isolate cube c on a degree spectrum annulus λ. The
optimal region allocation problem is to derive an allocation
profile S for A to maximize the revenue of the agent while
respecting the budget and impression constraints:

max
S

∑
Ai∈A

pifi(S, I)

subject to Si ⊂ Ti ∀Ai ∈ A
0 ≤ pifi(S, I) ≤ bi ∀Ai ∈ A

φu(S, I) =
∑
Si∈S

φu(Si, I) ≤ Iu ∀u ∈ U

θλ,ce ≥ θλ,ci,e ≥ θ
λ,c
i,s ≥ θ

λ,c
s ∀c ∈ T, λ ∈ Λ

(8)

where fi(S, I) is Ai’s actual sum of impressions considering
social influence. φu(Si, I) is u’s impressions assigned to Ai.

As we can see, comparing with the original optimization
problem, now a set of users is assembled as a fan shape on
the Poincaré circle, which reduces the dimensions significantly.
On the other hand, angular coordinates are continuous values

instead of discrete values as before. If we can give closed
forms for each ad Ai’s assigned impressions fi(S, I) and each
user u’s allocated impression φu(S, I), then we can solve the
problem directly. In order to do so, we need to specify how
to incorporate with social influence, and address two major
challenges: a) the impression distribution may not be well-
defined and uncorrelated with degree, b) the overlapping fans.
The first issue prevents us to apply integral, while the second
one makes the optimization problem much more complicated.

1) Incorporating Social Influence: The actual impressions
resulted from user u is different from Iu due to her social
influence in the network. All exposed qualified impressions
have a cost to the advertiser, thus actual profit of the agent is:

pi · Iu · (1 + P (u)) (9)
As discussed in Sec. I, u’s influence function P (u) can

be defined using its 1-hop degree. After applying hyperbolic
embedding, the influence function of user u is:

P (u) = P (ru, θu) = w · du = w · ω(ru, θu) = w · ce−ru/2 (10)

where w is a constant representing the engagement rate. Under
uniform node density, the influence function P ′(u) is:

P ′(u) = P (r′u, θ
′
u) = w ·

cR√
r′2eR − r′2 +R2

(11)

which are both continuous functions, and can be used in
integral to express fi(S, I) over the Poincaré disc.

B. Unit Impression Decomposition & Fan-shaped Allocation

The unknown user impression distribution in the hyperbolic
embedding of the SNS significantly affects our formulation.
Complex region intersection may not have an analytical ex-
pression or convexity. Also the unknown impression distri-
bution forces us to discretize fi and inevitably increase the
complexity. To address these issues without introducing strong
assumptions (e.g. disallow overlapping, enforce well-defined
impression distributions), we extend the Unit Impression De-
composition optimization framework [18]. The main idea is to
decompose the SNS into a series subgraphs where u ∈ U has
an impression Iu = 1, so there cannot be any intersections (i.e.
one impression cannot be shared by advertisers). A sub step
optimization can be conducted in each subgraph by adding a
non-overlap constraint. Moreover, fi(S, I) can be formulated
as fi(Si), as the volume assigned to Ai is independent.

With the Unit Impression Decomposition, we can solve the
original problem using a multi-stage optimization process. It
finishes when all impressions are allocated or all budgets are
used. In the mth stage, given the unit impression graph G(m),
we apply HYPERCUBEMAP to embed G(m) in the hyperbolic
space. For each advertiser Ai ∈ A(m) whose budget bmi > 0,
the sub-step of the optimization problem is given in Eq. 12.

max
S(m)

∑
Ai∈A

pifi(S
(m)
i )

subject to S
(m)
i ⊂ T (m)

i ∀Ai ∈ A(m)

0 ≤ pifi(S
(m)
i ) ≤ b(m)

i ∀Ai ∈ A(m)

S
(m)
i ∩ S(m)

j = ∅ ∀Ai, Aj ∈ A(m) ∧ i 6= j

A(m)⋃
Ai

S
λ,c(m)
i ⊂ Sλ,c(m) ∀c ∈ T (m), λ ∈ Λ(m)

(12)

We then solve the non-overlapping problem stated in
Eq. 12, and record its optimal solution S(m)∗ and optimal
value

∑
Ai∈A fi(S

(m)∗
i ), the budget vector is updated as
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b
(m+1)
i = b

(m)
i −pi ·fi(S(m)∗

i ), and the m+1th unit impression
graph is generated with residual impressions and removing
users with no impression left and their edges. It ends when all
advertisers’ budgets are used, or all impressions are exploited.

With exponential node density and degree distribution, the
allocation fi(S

λ,c
i ) can be calculated as:

fi(S
λ,c
i ) = fi(θ

λ,c
i,s , θ

λ,c
i,e ) =

∫ rλe

rλs

∫ θ
λ,c
i,e

θ
λ,c
i,s

ρ(τ)(1 + P (τ, θ))dθdτ

= a

∫ rλe

rλs

eτ (1 + wce−
τ
2 )

∫ θ
λ,c
i,e

θ
λ,c
i,s

dθdτ = ∆λθ
λ,c
i

(13)

where ∆λ = a(2wce
rλe
2 − 2wce

rλs
2 + er

λ
e − erλs ) is a constant

related to the annulus λ and θλ,ci = θλ,ci,e − θ
λ,c
i,s is the angle

range of the region Sλ,ci . Now the function fi(S
λ,c
i ) is actually

a linear function of θλ,ci , irrelevant to its start and end angles.

If we apply the uniform node density transform, the volume
fi can be calculated with a different boundary (r′λs , r

′λ
e ), then:

fi(S
λ,c
i ) =

∫ r′λe

r′λs

∫ θ
λ,c
i,e

θ
λ,c
i,s

ρ′(τ ′)(1 + P ′(u))dθdτ ′ = ∆′λθ
λ,c
i (14)

where ∆′λ = a(2wce
ψ−1(r′λe )

2 − 2wce
ψ−1(r′λs )

2 + eψ
−1(r′λe ) −

eψ
−1(r′λs )), still a constant related to λ and Λ, and fi is linear.

Combining the unit impression decomposition and fan-
shaped allocation strategy , we can elaborate the optimal region
allocation problem in Eq. 12 as a linear program:

max
Θ(m)

∑
Ai∈A(m)

pi
∑

λ∈Λ(m)

∆λ

∑
c∈T (m)

i

θ
λ,c(m)
i

subject to pi
∑

λ∈Λ(m)

∆λ

∑
c∈T (m)

i

θ
λ,c(m)
i ≤ b(m)

i ∀Ai ∈ A(m)

∑
Ai∈A(m)

θ
λ,c(m)
i ≤ θλ,c(m)

e − θλ,c(m)
s ∀c ∈ T (m)

i , λ ∈ Λ(m)

(15)
where the decision variable Θ ∈ R≥0

|A|×|Λ|×|T |. ∆λ is the
constant in Eq. 13. The uniform node density setting can be
derived accordingly by replacing ∆λ to ∆′λ (shown in Eq. 14).

If the optimization stops after n stages, then the allocation
of ad Ai is the aggregation of optimal solutions: ∪nk=1S

(k)∗
i .

Note that while in one iteration there is no overlap, the
final aggregated regions do have overlaps, as each iteration is
based on a different Poincaré disc. Comparing with Eq. 1, the
dimensions of unknown Θ in our formulation in the worst case
is |A|×|Λ|×|T |, which is the number of campaigns multiplied
by the degree spectrum and the optimal isolate cubes, while the
original problem has |A|×|U |. The improvement is significant
as |A| is around one million [19], but |U | is in billions.

IV. EVALUATION

We conduct experiments on HYPERCUBEMAP based re-
gion allocation formulation and the baseline IP formulation
SNSIP on synthetic data using IBM CPLEX optimizer (v12.6).
We implement the hyperbolic embedding algorithm mentioned
in Sec. II and the unit graph impression optimization routine
in Sec. III-B. We refer HEMBEXP to the linear program of
exponential node density distribution in Eq. 15, and HEMBUNI
to the one using uniform node density distribution in Eq. 14.
As hyperbolic embedding is essentially an approximation
algorithm through dimension reduction, our experiments aim

at showing the advantages of hyperbolic embedding over the
original IP formulation in terms of runtime, scalability and
optimality. We also show tuning degree spectrum parameter d
to trade-off between runtime and optimality. All experiments
run on a linux server with two 2.66 GHz 6-core Xeon X5650
CPUs and 128G memory. The CPLEX is configured to utilize
all 24 threads; for the IP, we fix the MIPSearch parameter to
branch and cut. The time metric are in seconds via CPLEX
timer representing actual CPU time used in the optimization.

Dataset Description: We construct our dataset using distri-
butions observed from public available real world advertising
datasets. On the advertiser side, we look at keyword bidding
and budget distributions from the Yahoo! Webscope dataset
A1 [20] and open advertising dataset collected from Google
AdWords used in [21]. We find that campaign bidding prices
fit well with lognormal distribution, and the advertiser budget
follow Pareto distribution approximately. On SNS activity side,
we use SNAP 2.2 [22] to generate power law networks by
setting α = 2.2. The real impression distribution of well-
known SNS is not available to the public to the best of
our knowledge, we assign daily impression to each node
using a Poisson distribution. To cluster users with different
profiles into targetable user groups with different sizes, we
use |GR| = 0.0005 to represent the group/user ratio, and
use a Dirichlet prior to generate a multinomial distribution
over group size. We then embed the generated networks with
default spectrum width d = 10. Finally, for bidding prices,
we use |AR| = 0.001 as the advertiser/user ratio and use
bipartite preferential attachment with two Zipfian distributions
to represent the popularity. We vary the number of users from
10K to 100M, derive the optimal isolate cubes and summarize
it in Table I. All data and codes are available online1.

Experimental Results: We first show the runtime perfor-
mance by varying network size in Fig. 3(a). In general, hy-
perbolic embedding methods HEMBEXP and HEMBUNI finish
the optimization process two to four orders of magnitude faster
than the baseline SNSIP. Besides runtime, hyperbolic methods
require much less memory than the IP model. Network 50M
and 100M cannot run under SNSIP as out of memory, while
HEMBEXP and HEMBUNI only use 2G memory for network
100M due to the dimension reduction.

Next in Fig. 3(b), we show the optimality result using
approximation factor P, for instance, in HEMBEXP case:

PHEMBEXP =

∑max iter
i=1 OPTHEMBEXP

OPTSNSIP
(16)

As IP cannot run on 50M and 100M network, we omit
those SNSIP data points. The solution of HEMBEXP and
HEMBUNI reach about 90% of the original IP solution on
average, and when network size increases, hyperbolic embed-
ding methods have better solutions. In our experiments, the
minimum value of P is 85.97% while the maximum is 96.07%.
Also HEMBUNI always performs better than HEMBEXP with
little cost. The exponential node density distribution makes
the embedding coefficient less accurate in the center regions,
where the users have high influence. If the engagement rate w
becomes larger, the difference will become larger as well.

In Fig. 3(c), we show the accumulated revenue and time in
the unit decomposition optimization process in the HEMBUNI

1http://www.cs.umd.edu/˜hui/code/hypercubemap
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(a) Run Time by Varying Problem Size (b) Approximation Factor (c) Accumulated Time and Revenue

Fig. 3. Evaluation Results of SNS Ad Allocation Formulations, SNSIP, HEMBEXP and HEMBUNI

|NU | edge |A| ic optic
∑
u Iu

5M 13.1M 5000 2500 1462 50M
10M 26.8M 10K 5000 2722 100M
50M 137.0M 50K 25K 11308 500M

100M 276.2M 100K 50K 21063 1B

TABLE I. SUMMARY OF DATASET

experiment on 100M network; HEMBEXP has very similar
performance. The left y axis in red is accumulated time per-
centage, and the right y axis in blue is accumulated objective
value. Our optimization process spends most time on the early
iterations which also contribute similar percentage in revenue.

Next we show the parameter tuning of our hyperbolic
approach in Fig. 4. The degree spectrum width d affects dimen-
sion reduction directly and is independent with the SNS itself.
We vary d in {1, 5, 10, 50, 100, 500, 1000} to see its impact
w.r.t. runtime speedup and the approximation factor P. In the
extreme case, d = 1, each annulus only contains users with
the same degree.Increasing d reduces more dimensions, thus
the speedup (left y axis) increases, while the approximation
becomes less accurate and the approximation factor decreases.
HEMBEXP and HEMBUNI have similar benefit, and it is easier
to tune d in HEMBUNI as expected. For the speedup and
precision tradeoff, we suggest to set d around 10.

Fig. 4. Effect of tuning Degree Spectrum width d

V. CONCLUSIONS & DISCUSSION

In this paper, we develop a novel formulation and dimen-
sion reduction method of the SNS ad allocation problem. We
introduce a new hyperbolic embedding algorithm, HYPER-
CUBEMAP, which fulfills the requirements of SNS Ad alloca-
tion. We also propose an optimization framework to handle
the challenges such as uncorrelated impression distribution
and region overlapping issues in the embedding. With our
framework, the original integer program can be approximated
by a series of linear programs, which successfully reduces the
dimensionality and complexity of the optimization and enables
application in real world SNS with billions of users.

Discussion: Social Influence Function: To embed other influ-
ence model is an open problem. For example, recent work [23]
shows popular photo cascading may not be shallow. In general,

HYPERCUBEMAP will work well with minor modifications,
if the approximate influence function is continuous in degree.
Allocation Strategy: In fan-shaped allocation, as the influence
surface is uniform, HYPERCUBEMAP assigns similar influence
demographic users to competing advertisers. Different shape
design can represent different influence constraints. In [18], we
explore fairness meaning and complexity of different shapes in
a simplified setting where ads have no target group preference.
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