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Abstract—In this paper, an event based control strategy for
linear systems under stochastic disturbances is presented where
the control input generator generates a control which tries to
mimic a state feedback control between two successive events. The
control input is generated in such a way that the error between
the state of this system and the continuous state feedback system
is bounded. The event generator triggers an event based on this
error and the control input generator modifies its control input
in such a way that it corroborates that the error generated up
to this triggering instance is reduced to zero and thus it does
not have any effect on the future states regardless of the stability
of the plant. It is also shown that under this event triggering
mechanism, the control input generator generates the control in
such a way that the error bound could be made arbitrarily small.

I. INTRODUCTION

Control of a large system generally requires continuously
reading the sensor measurements, transmitting it to the control
input generators and computing the control law. Control,
communication and computing are integrated in an inseparable
way. In a centralized system, the performance depends on
the continuity of communication and computing the control
law accurately. In a distributed system, although the con-
troller is implemented distributively, however, it also requires
continuous interaction among the subsystems. Communication
and data transmission are an indispensable part for networked
control systems. As a result, their performance is generally
determined by the available network bandwidth and computing
resources. Scarcity of communication bandwidth for continu-
ous communication is a limitation for these systems.

In the recent past, researchers have proposed novel tech-
niques that require only discrete-time communication to over-
come the problem of bandwidth limitation. Event-Based con-
trol [1], self triggered control [2], [3] and periodic time
control [4], [5], [6] are some efficient ways to reduce the
communication overhead. The essence behind these techniques
is to communicate at discrete time instances rather than
communicating continuously. In periodic time control, the
communication is done periodically after T amount of time.
The main challenge in this approach is to find suitable time
period T to guarantee acceptable performance. In self triggered
and event based control, the communication is done only when
some event has occurred. Event based control monitors the
plant measurements and it triggers for communication based
on some signal measurements. On the other hand, self triggered
control only measures the state of the system and triggers when
the state deviates by some threshold from its value at the last
triggering instance.

Event based control has been proved to be very effective
and hence it attracted a great deal of research in the last few

decades. In [7], a comparison has been made between the
performance of event based control and periodic control. It
has been shown there that under some conditions the event
based control performs better than periodic control. A simple
PID controller is proposed in [8] for event based control which
reduces large CPU computation at the cost of minor control
performance degradation. In the literature, asynchronous con-
trol [9], event based sampling [10], event driven sampling [11],
Lebesgue sampling [1], deadband sampling [12] have been
proposed to carry out the idea of supplicating communication
only when some event has been occurred. In [13], the au-
thors analyzed event based control in a stochastic setting. In
[14], [15], [16], a different approach is taken to reduce the
information content rather than reducing the communication
frequency. Recently, a state feedback approach for an event
based system is considered in [17] where the feedback control
is generated from another system which is updated every time
a trigger is introduced. Event based control for distributed
interconnected linear systems is proposed in [18] and [19].
A quadratic approximated value function is used in [20] to
perform event based control.

In event based control, self triggered control or periodic
control, the controller being unable to access the continu-
ous state, approximates the state and the approximated state
is used to produce the control input. Since the generated
control input is different from the actual feedback control,
the response of the system is not as it would have been if
there were a continuous state feedback. Hereafter, the state
of the continuous state feedback system will be denoted as
xc(t) and the state of the actual system as x(t). The main
purpose is to keep the error e(t) = x(t) − xc(t) as small
as possible. Since the continuous state feedback is not used
and the plant is affected by immeasurable noise, the reference
signal xc(t) is not available for decision making. Apparently,
it seems that no information is available about e(t) and the
triggering decision has to be taken based on some other signal
value. In [17], the authors proposed another state variable
which is used to generate the control input. This state variable,
called dummy state (xd) in our paper, was used to generate
a signal, based on which the triggering decision was taken in
[17]. In this paper, a new method will be proposed so that
the knowledge of e(t) can be obtained even though there is
no information about xc(t). The proposed event triggering
mechanism will generate events based on e(t) and ensure
satisfactory performance (Theorem IV.1). Moreover, in the
existing approaches for event triggered control, no information
about e(t) is available even at the triggering instances and
hence e(t) cannot be controlled directly. In our approach,
it will be shown that at each triggering instance the system
is updated in such a way that will reduce the error e(tk)



Fig. 1. Event based control loop with three subsystems: control input
generator, the plant and the event generator. The communication link is shown
in dashed line which allows communication only in discrete manner.

accumulated up to the k-th triggering instance.

The model for event based control and communication
considered in this paper is similar to [17] and it is shown
in Figure 1. However, unlike [17], no stability assumption are
made for the plant dynamics (1) and the boundedness of the
perturbations. The existing techniques consider time invariant
cases [17], [18], [21], [22]; but general time varying systems
will be considered in this paper. Additional remarks are made
for time invariant systems (Theorems III.3, IV.3). It is clear that
if the system is not asymptotically stable, the residual error,
e(tk), after k-th triggering propagates up to the final time. For
an unstable system it increases exponentially. The proposed
approach assures that the control input can be designed (by
introducing additional open loop control ψ(t)) in such a way
that can mitigate this residual error.

The rest of the paper is organized as follows: Section II for-
mulates the general problem that will be addressed; Section III
provides the controller implementation, error analysis; Section
IV describes the event triggering strategy, and optimal noise
estimate for different disturbances; and Section V provides
illustrative examples.

II. PROBLEM FORMULATION

Let us consider the linear stochastic dynamics of a system
to be given by (1)

dx = Axdt+Budt+ dWt (1)

where x ∈ R
n is the state of the system and u is the control.

dWt is an n dimensional Wiener process acting as a noise
to the system. Let the control be of the form u = −Kx to
achieve some system performance. The matrices A,B and
K are time varying in general but the time dependencies
will not be shown explicitly. Unless and otherwise stated,
these matrices are assumed to be time varying. Moreover, no
stability assumptions are made for these system matrices. In
fact, in the simulations, examples will contain A,B and K
such that A − BK is not Hurwitz. Since the control input
contains feedback term, it requires the state x to be available
continuously for all time. In a distributed system it requires
continuous communication among the agents, which is not
always possible due to network limitations.

The closed loop system with this control has the form (2)

dxc = Ãxcdt+ dWt (2)

where Ã = A − BK. Since the communication is done in a
discrete time manner, the exact state of the system, x(t), is

available only at those time instances, ti. Since the state is
not available continuously, the control u has to be designed
in a way such that it does not require the continuous state
of the system and, nonetheless, it drives the new system
to approximate the closed loop system (2) within the given
tolerance level.

III. EVENT BASED CONTROL: CLOSED LOOP SYSTEM

AND ERROR ANALYSIS

This section describes the approach to calculate the control
law without continuous information about the state x. An
analysis for the error dynamics will be done in order to get
some insight about how to calculate e(t) when no information
is available about xc(t).

A. Control Input Generation

To start with this let us first find the actual control input
for the closed loop system. From (2), it can easily be found
that the state, xc(t), at time t ≥ tk, can be written as,

xc(t) = ΦÃ(t, tk)xc(tk) +

� t

tk

ΦÃ(t, s)dWs (3)

where ΦÃ(t, tk) is the state transition matrix for Ã. Therefore,
the control law at time t ≥ tk can be given by equation (4).

u(t) = −KΦÃ(t, tk)xc(tk)−

� t

tk

KΦÃ(t, s)dWs (4)

If the noise dWs were not there, it is sufficient to know only
x(0) to calculate the control law for the entire time horizon.
The presence of dWs makes it necessary to use u = −Kx
instead of (4). One suitable approach [17] will be to estimate
dWt and use that information to calculate the control. Let a
communication occur at time tk and for all t ≥ tk the control
input for (1) will take the form (5)

u1(t) = −KΦÃ(t, tk)x(tk)−

� t

tk

KΦÃ(t, s)Ŵkds (5)

where Ŵk is the estimate of the process Wt at time tk.

Therefore, u1(t) = u(t) +
� t

tk
KΦÃ(t, s)[dWs − Ŵkds]. The

control law (5) has been proposed by [17]. As can be seen
from the expression of u and u1, u1 accumulates error with
time and that affects the performance of x as well. Every time
the system communicates, it receives the value of x at that
time (x(tk) in the above case) and the control law u1(tk)
is equal to u(tk). However, there is no mechanism in this
system to reduce the error incurred in x due to the control
input mismatch between two successive events. To overcome
this fact the following control law is proposed:

û(t) = u(t) +

� t

tk

KΦÃ(t, s)[ψk(s)ds− (Ŵkds− dWs)] (6)

The purpose of ψk is to reduce the error due to the control
input mismatch. Later in this paper, an explicit expression for
ψk is derived to guarantee desired performance. The control
input (6) can be written as

û(t) = −K[ΦÃ(t, tk)x(tk) +

� t

tk

ΦÃ(t, s)[Ŵk − ψk(s)]ds]

(7)



û(t) can be written as a state feedback control law whose
dynamics are governed by the equation (8)

ẋd = Ãxd + Ŵk − ψk(t) xd(t
+
k ) = x(tk) (8)

û(t) = −Kxd(t) ∀t > tk

tk is the time when k-th event is triggered and k-th commu-
nication is done. After each communication, the dynamics of
the dummy system (8) is changed and xd(t

+
k ) is made equal

to x(tk). (8) can be implemented independently without the
knowledge of x(t) and hence can be used to generate control

û(t). The estimation of Ŵk can be done in a recursive fashion:

Ŵk = Ŵk−1 +D−1(xd(t
+
k )− xd(tk)) (9)

where D =
� tk
tk−1

ΦÃ(tk, s)ds, and clearly D−1 exists for all

tk > tk−1 (tk and tk−1 are the k-th and k − 1-th triggering
instances). This noise estimate was suggested by [17] and
proved to be effective under certain situations.
With this control, the dynamics of the system (1) become

dx = Axdt−BKxddt+ dWt (10)

B. Error Dynamics

The dynamics of the event based closed loop system are
given in (10). From (10) and (8) the dynamics of xe(t) =
x(t)− xd(t) are obtained as:

dxe = Axedt+ ψk(t)dt− Ŵkdt+ dWt (11)

xe(t
+
k ) = 0 ∀t > tk

The dynamics of the error e(t) = x(t)−xc(t) is given by (12)
with e(0) = 0

ė = Ãe+BKxe (12)

Let us define a new system, ξ(t) whose dynamics are (13),

dξ = Aξdt− Ŵkdt+ dWt (13)

ξ(t+k ) = 0 ∀t > tk

Defining φ(t) =
� t

tk
ΦA(t, s)ψk(s)ds and using (11) and (13),

(14) can be obtained.

xe(t) = ξ(t) +

� t

tk

ΦA(t, s)ψk(s)ds = ξ(t) + φ(t) (14)

Later on ξ(t) will be used to trigger communications. Using
the knowledge of x, xe, ξ and ψk, the aim is to control e
indirectly. Using (14) and (12) we get for all t > tk,

e(t) = η(t) +

� t

tk

ΦÃ(t, s)B(s)K(s)ξ(s)ds (15)

where η(t) = ΦÃ(t, tk)e(tk) +
� t

tk
ΦÃ(t, s)BKφ(s)ds and it

satisfies the system (16)

η̇ = Ãη +BKφ η(tk) = e(tk) (16)

(15) relates e with ξ and (16) defines an independent system
with control φ. Although e is not controllable in general, a
part of e (i.e. η) is directly controllable using φ.

From the definition of φ(t) and (16), a new system z =
[ηT ,φT ]T is formed which follows the dynamics given in (17)

ż = Pz+Qψk ∀t ≥ tk z(tk) = [e(tk)
T , 0T ]T (17)

where P =

�

Ã BK
0 A

�

and Q = [0n×n, In×n]
T .

The dynamical system (17) is very useful since it contains
an independent control ψk and the system can be stabilized
(17) at the origin under certain conditions. Controlling z to ori-

gin will make the error e(t) to be
� t

tk
ΦÃ(t, s)B(s)K(s)ξ(s)ds

i.e. the effect of the error accumulated up to time tk, e(tk),
on the future time will be nullified.

Theorem III.1. If ∃δ > 0, γ ∈ R
n such that (R11 −

R12R
−1
22 R21)γ = e(tk), where Rij =

� tk+δ

tk
Si(t)S

T
j (t)dt

i, j ∈ {1, 2}, S1(t) = ΦA(tk, t) − ΦÃ(tk, t) and S2(t) =
ΦA(tk, t), and the control law ψk(t) = −[S1(t) −
R12R

−1
22 S2(t)]

T γ for t ∈ (tk, tk + δ) and zero otherwise is

applied, then e(t) =
� t

tk
ΦÃ(t, s)BKξ(s)ds for all t ≥ tk+ δ.

Proof: Considering the dynamics (17) we have

z(t) = ΦP (t, tk)z(tk) +

� t

tk

ΦP (t, s)Qψk(s)ds (18)

It can be shown that Φp(s, r) has the following form (19)

ΦP (s, r) =

�

ΦÃ(s, r) ΦA(s, r)− ΦÃ(s, r)
0 ΦA(s, r)

�

(19)

Therefore, ΦP (s, r)Q =

�

ΦA(s, r)− ΦÃ(s, r)
ΦA(s, r)

�

.

For all t ≥ tk + δ, from (18),

z(t) = ΦP (t, tk)[z(tk) +

� tk+δ

tk

ΦP (tk, s)Qψk(s)ds]

From the expressions of S1, S2 and ΦP (tk, s), we get

z(t) = ΦP (t, tk)[z(tk) +

� tk+δ

tk

�

S1(s)
S2(s)

�

ψk(s)ds]

Substituting the expression for the control ψk(s),

z(t) =ΦP (t, tk)z(tk)−

ΦP (t, tk)

� tk+δ

tk

�

S1(s)
S2(s)

�

[S1(s)−R12R
−1
22 S2(s)]

T dsγ

=ΦP (t, tk)
�

z(tk)−
� tk+δ

tk

�

S1(s)S1(s)
T − S1(s)S2(s)

TR−1
22 R

T
12

S2(s)S1(s)
T − S2(s)S2(s)

TR−1
22 R

T
12

�

γds
�

Clearly from the expression of Rij , Rji = RT
ij . Therefore,

z(t) =ΦP (t, tk)
�

z(tk)−

�

R11 −R12R
−1
22 R21

0

�

γds
�

Since z(tk) = [e(tk)
t, 0T ]T and (R11 − R12R

−1
22 R21)γ =

e(tk), z(t) = 0 for all t ≥ tk+δ and this implies that η(t) = 0
for all t ≥ tk + δ. Thus, from the expression of e(t) in (15),

e(t) =
� t

tk
ΦÃ(t, s)BKξ(s)ds ∀t ≥ tk + δ.

The existence of a unique γ can be assured if (R11 −
R12R

−1
22 R21) is invertible. Using Schur complement condi-

tion for positive definiteness, it can be shown that (R11 −

R12R
−1
22 R21) is invertible iff R(tk + δ, tk) =

�

R11 R12

R21 R22

�



is invertible. From the expressions of Rij , it can be writ-

ten that R(tk + δ, tk) =
� tk+δ

tk
S(t)dt, where S(t) =

�

S1(t)S1(t)
T S1(t)S2(t)

T

S2(t)S1(t)
T S2(t)S2(t)

T

�

is a positive semidefinite matrix.

Therefore, the rank of R is a nondecreasing function of δ.

Theorem III.2. If ∃t′k > tk such that the smallest singular

value of the matrix ΦÃ(tk, t
′

k)−ΦA(tk, t
′

k) is strictly positive,

then the δ in Theorem III.1 is t
′

k − tk.

Proof: To guarantee the existence and uniqueness of γ, δ

has to be such that R(tk + δ, tk) =

�

R11 R12

R21 R22

�

is invertible.

Let τ be such that tk + τ ≥ t
′

k and R(tk + τ, tk) is singular.
Therefore, ∃q ∈ R

2n such that qTR(tk, τ, tk)q = 0. Hence,
� tk+τ

tk
qTS(t)q = 0. Letting q = [qT1 , qT2 ]

T , where q1, q2 ∈

R
n,

� tk+τ

tk
S1(t)

T q1 + S2(t)
T q2

2
2dt = 0 is obtained. This

requires for all t ∈ [tk, tk + τ ],

S1(t)
T q1 + S2(t)

T q2 ≡ 0 (20)

Since S1(tk) = 0n×n and S2(tk) = In×n, evaluating (20) at tk
gives q2 = 0. Therefore, for all t ∈ [tk, tk+τ ], S1(t)

T q1 = 0.
Since S1(t) = ΦA(tk, t) − ΦÃ(tk, t), by the hypothesis of

this theorem, S1(t
′

k)
T q1 = 0, which is a contradiction. Thus,

R(tk + τ, tk) is nonsingular.

Since R(tk + τ, tk) is positive definite for all τ ≥ t
′

k − tk,

R(t
′

k, tk) is positive definite and hence δ = t
′

k − tk

Theorem III.3. For a time invariant system, δ in Theorem III.1
can be made arbitrarily small iff (A,BK) is a controllable
pair.

Proof: From Theorem III.1, it is clear that once R(tk +
δ, tk) has full rank, it can be ensured that for any finite value
of e(tk), a unique γ always exits. This theorem aims to prove
that δ can be arbitrarily small if (A, BK) is controllable. Let
us assume δ can not be arbitrarily small and d > 0 be the
duration such that R(tk + d, tk) does not have full rank.

Proceeding in a way similar to Theorem III.2 leads to the
fact that for some q1(= 0) ∈ R

n, qT1 S1(t) = 0 ∀t ∈ [tk, tk +
d]. It will be shown that q1 has to be zero and that will prove
the claim of this theorem. It is clear from the expression of
S1(t) that it satisfies the differential equation (21).

˙S1(t) = −(S1)A− ΦÃ(tk, t)BK (21)

Since qT1 S1(t) ≡ 0 for all t ∈ [tk, tk + d], all
the derivatives of qT1 S1(t) must be 0 as well in that
interval. Therefore using (21), it can be written that

qT1
˙S1(t) = −qT1 ΦÃ(tk, t)BK. The m-th derivative of qT1 S1(t)

is qT1 (S1(t))
(m) = (−1)mqT1 ΦÃ(tk, t)Ã

m−1BK. Evaluating
all these derivatives (only n of them are needed because
using Cayley-Hamilton theorem Ãn can be represented
as linear combination of Ãi, i = 1, 2, ...n − 1. n is the
dimension of the state- space) at tk and equating them to 0
leads to qT1 Ã

m−1BK ≡ 0 for all m = 1, · · ·n. With simple
calculations it can be shown that qT1 A

m−1BK ≡ 0 for all
m = 1, · · ·n.
Therefore q1 ∈ ∩n

m=1Kernel((Am−1BK)T ) =

∩n
m=1[Range(Am−1BK)]⊥ =[∪n

m=1Range(Am−1BK)]⊥.
Since (A,BK) is a controllable pair, ∪n

m=1Range(Am−1BK)
=Rn and consequently [∪n

m=1Range(Am−1BK)]⊥ = 0
leading to the fact that q1 = 0, which is the desired
contradiction.

For the only if part, R(t, tk) is invertible for
all t > tk. Therefore, for all q ∈ R

2n \{0},
qTR(t, tk), q > 0. Furthermore, let q = [qT1 , q

T
2 ]

T where
q1 ∈ ∩n

m=1Kernel((Am−1BK)T ) and q2 = 0.

Thus L(t)
Δ
=

� t

tk
qT1 S1(s)S1(s)

T q1ds > 0 for all t > tk.

L(tk) = 0 and that makes it imperative that at least one of
the derivative of L(t) at tk (L(m)(tk)) should be positive.
With simple calculations it can be noticed that for q1 ∈
∩n
m=1Kernel((Am−1BK)T ), L(m)(tk) = 0 for all m. This

contradicts the fact that L(t) > 0 for all t > tk unless q1 = 0.
Hence ∩n

m=1Kernel((Am−1BK)T ) = {0} and equivalently
(A, BK) is a controllable pair.

Note that we only considered the controllability assumption
on (A,BK) and this does not necessarily mean that Ã is
Hurwitz or the dynamics of the system (1) is stable.

IV. EVENT TRIGGERING STRATEGY AND OPTIMAL NOISE

ESTIMATION

A. Event Generating Function

Since û is used to drive the system (1), the system
will fluctuate from its expected behavior. An event triggering
strategy is implemented so that the system determines when
the exact state x(t) has to be transmitted to the control input
generator and the behavior of the system does not go beyond
the tolerance level. The goal is to keep e(t) within the given
tolerance level. It should be noted at this point that system (1)
is run with control û and there is no reference xc available,
hence e is not usually known to the event generator. The event
generator is designed in such a way that it actually calculates
e with arbitrary precision and makes decisions, based on e(t),
whether to trigger an event or not. Theorems III.1, III.2 and
III.3 ensure that if ψk(t) is chosen properly, the effect of the
error, e(tk), on the future time (t > tk + δ) can be nullified.
In fact for a time invariant controllable system, it can be done
in arbitrary small time. Let us define for all t > tk,

y(t) =

� t

tk

ΦÃ(t, s)BKξ(s)ds (22)

From the equation of e(t) in (15), if the error at tk is known
and the ψk(t), given in Theorem III.1, is chosen to update the
dynamics (8), the error can be calculated for all t ≥ tk by
keeping track of y(t). The event generator implements (22)
and makes decision based on the value of y(t). The (k+1)-th
event is generated when

y(t) = ǫ (23)

where ǫ is a given tolerance level, tk+1 denotes the time
when (k + 1)-th event is triggered. The event generator will
implement a copy of the dynamics (8) so that xd(t) and
consequently xe(t) are available at the event generator. The
event generator depends on ξ(t); and ξ(t) can be calculated
using (14) since xe(t) and ψk(t) are known to the event



generator. With ψk(t) = 0, the dynamics of xe(t) and ξ(t)
are the same and in the literature, there are several [17], [21]
event triggering schemes that make decisions based on the
value of ξ(t). The noise being random (even for bounded
amplitude noise also) causes ξ(t) to fluctuate excessively, but
the integral in (22) mitigates some of these fluctuations and
hence results in a smaller number of communications. From
theorem (III.3), it is evident that for a time invariant system,
Ω(xc) = {x| x− xc ≤ ǫ} is an invariant subspace.

Theorem IV.1. For a time invariant system with (A,BK) as a
controllable pair, the error e(t) = x(t)− xc(t) is always
bounded from above by ǫ if events are triggered according to
(23).

Proof: From theorem III.1, e(t) = y(t) for all t ≥ tk + δ.
This δ can be made arbitrarily small (Theorem III.3) for a time
invariant system. Therefore, e(t) = y(t) for all t > tk. The
event triggering mechanism in (23) ensures that e(t) < ǫ
for all t > tk.

Theorem IV.2. For a system with event triggering mechanism
as given in (23), the time between two successive triggerings
is bounded from below.

Proof: Let the k-th event be triggered at time tk and tk+T
be the time such that y(tk+T ) = ǫ. Therefore the time between
the k-th and k + 1-th event is T .

Using the expression for y(tk + T ), it can be written

ǫ = y(tk + T ) =
� tk+T

tk
ΦÃ(tk + T, s)BKξ(s)ds.

� tk+T

tk
ΦÃ(tk + T, s)BKξ(s)ds ≥ ǫ.

� tk+T

tk
ΦÃ(tk + T, s)BKξ(s)ds ≥ ǫ.

The process ξ(s) has the property that ξ(t+k ) = 0 and
using the Kolmogorov Continuity Theorem [23], it can be
easily show that the process ξ(s) has a continuous sample

path probability almost surely. Therefore, F(s)
Δ
= ΦÃ(tk +

T, s)B̃(s)K(s)ξ(s) is also continuous almost surely and its
value at s = tk is zero. F(s) being a continuous function
almost surely in a compact domain [tk, tk + T ] will have
finite value almost surely and hence ∃Tmin > 0 such that for

all T < Tmin,
� tk+T

tk
F(s)ds < ǫ. Therefore the interval

between two successive triggerings is bounded from below by
Tmin.

Theorem IV.2 ensures that infinite triggerings are not gen-
erated within a finite amount of time, i.e. the event generator
does not exhibit Zeno behavior [24].

Theorem IV.3. For a time invariant system, with event trig-
gering mechanism governed by (23), the expected duration
between triggerings at tk and tk+1 does not depend on the
history {ti}

k
i=1.

Proof: Let τk be the expected amount of time between
events at tk and tk+1. Therefore,

E

�

|
� tk+τk
tk

ΦÃ(tk + τk, s)BKξ(s)ds|
�

= ǫ.

E
�

|
� τk
0

ΦÃ(tk + τk, tk + r)BKξ(tk + r)dr|
�

= ǫ.

E
�

|
� τk
0

ΦÃ(τk, r)BKξ(tk + r)dr|
�

= ǫ.

ξ(tk + r) =
� tk+r

tk
ΦA(tk + r, s)dWs is a Gaus-

sian random variable with zero mean and variance

Σ(tk + r) =
� tk+r

tk
ΦA(tk + r, s)ΦT

A(tk + r, s)ds =
� r

0
ΦA(r, s)Φ

T
A(r, s)ds = Σ(r). Since a Gaussian variable

is fully characterized by its mean and variance, the ran-
dom variables ξ(tk + r) and ξ(r) have the same statisti-
cal properties. Hence E

�

|
� τk
0

ΦÃ(τk, r)BKξ(tk + r)dr|
�

=
E
�

|
� τk
0

ΦÃ(τk, r)BKξ(r)dr|
�

= ǫ.
Clearly τk does not depend on any of the tis for i =
1, 2, · · · , k.

Theorem IV.3 implies that if some apriori knowledge of
expected inter-event times is available, which can be estimated
from the history of previous triggerings, the expected time for
the future triggerings and the expected numbers of triggerings
that will be generated in a given time horizon can be calculated.

B. Optimal Noise Estimate

The noise estimate has certain influence on the trigger-
ing mechanism and this section describes the optimal noise
estimate and how it can be computed. In section III-A, (9)
represents one way to improve the noise estimate in a recursive
fashion. From (13), the solution of ξ(t), for all t > tk, can be
written as,

ξ(t) =

� t

tk

ΦA(t, s)[dWs − Ŵkds] (24)

Using (24) with (22), it is obtained that

y(t) =

� t

tk

ΦÃ(t, r)BK
�

� r

tk

ΦA(r, s)[dWs − Ŵkds]
�

dr

After some simplifications,

y(t) =

� t

tk

(ΦA(t, s)− ΦÃ(t, s))[dWs − Ŵkds] (25)

If dWs is a constant value disturbance i.e. E[Ws] = ŵ,

and V ar(Ws) = 0, y(t) = E[y(t)] =
� t

s=tk
(ΦA(t, s) −

ΦÃ(t, s))[ŵ − Ŵk]ds which can be made zero if Ŵk = ŵ.
This can be achieved by the recursive estimation given in (9).

If dWs is a Wiener process - i.e. E[dWs] = 0 and
E(dWsdW

T
t ) = 1n×nδ(t − s)dt, where δ(·) is the delta

function- y(t) will be a Gaussian process with mean

µt = −
� t

s=tk
(ΦA(t, s) − ΦÃ(t, s))Ŵkds and variance

Σt =
� t

tk
(ΦA(t, s)− ΦÃ(t, s))(ΦA(t, s)− ΦÃ(t, s))

T ds.
Therefore, when Σt is invertible,
P (y(t) < ǫ) =

�

y<ǫ
1

(2πdet(Σt))n/2 e
− 1

2
(y−µt)

TΣt
−1(y−µt)dy.

This probability will be maximized iff µt = 0. This implies

that the optimal Ŵk has to be zero for all k. The optimal Ŵk

increases the probability that y(t) < ǫ and hence it reduces
the expected number of triggerings.

Remark IV.4. For a time invariant system, Σt is positive

definite for all t > tk iff (Ã, BK) is a controllable pair.

Remark IV.4 can be proved by following steps similar to
that in Theorem III.3.
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Fig. 2. Performance of the system under noise modeled by Wiener process.
The first plot represents one noise component. The second and third plots
represent the 1st and 2nd components of x, xc, xd and e. The blue dotted
curve represents xd, the red one represents xc, the black one represents x and
the green dashed line represents the error e. The fourth plot shows the time
instances when the events were triggered.

V. SIMULATION RESULTS

Let us consider the dynamics (26),

d

�

x1

x2

�

=

�

0 1
0 0

� �

x1

x2

�

dt+

�

0
1

�

udt+ dWt (26)

The aim is to maintain a circular phase portrait and hence u
is chosen to be −x1. Therefore, for this system K = [1, 0],

BK =

�

0
1

�

[1, 0] =

�

0 0
1 0

�

, Ã =

�

0 1
−1 0

�

. The initial

condition for this system is [1, 1]T . Clearly (A,BK) is a

controllable pair. The matrix Ã is not Hurwitz and the closed
loop system is not asymptotically stable (it has poles on
imaginary axis).

In the first experiment, a Wiener process noise is applied
and the performance of the system is shown in Figure 2. The
norm in (23) is chosen to be the supremum norm i.e. y(t) =
max{|y1(t)|, |y2(t)|} and ǫ = 0.2. The blue dotted curves in
the second and third plots in Figure 2 are the components of
xd(t). Since at each event triggering the dynamics of xd are
updated by introducing ψk(t), the dynamics of xd show some
large deviation from x. The phase portrait of the system is
given in Figure 3, where the blue curve is for x, the red one
for xc and the black dashed curve for xd , and the blue and red
circles represent the time instances the events were triggered.
As seen from Figure 3, at the triggering instances, xd updates
its dynamics with proper ψk(t) (obtained using Theorem III.1)
and that reduces the error between the red and blue curve. As
found in section IV-B, the noise estimate used is 0. The system
does not show Zeno behavior and 8 triggerings are needed in
the time interval [0, 10].

In the second experiment a constant noise signal is consid-
ered. The noise and the performance of the system is plotted
in Figure 4. Since noise is constant, only one triggering is
sufficient to determine the noise value. After the triggering,
the x and xd processes follow the same trajectory. The phase
portrait in Figure 5 shows that there was some error due to
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Fig. 3. Phase portrait for x, xd and xc. The blue curve represents x, while the
red and dashed black ones represent the xc and xd respectively. To maintain
some clarity xd is plotted for some initial time only. All the trajectories start
at the point (1,1).
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Fig. 4. Performance of the system under constant noise. The first plot
represents both components of the noise. The second and third plots represent
the 1st and 2nd components of x, xc, xd and e. The blue curve represents x,
the red one represents xc, the black one represents xd and the green dashed
line represents the error e. The fourth plot shows the time instances when the
events were triggered.

control mismatch but the error diminishes gradually due to the
control ψ1(t).

In the same set up another experiment was performed
where ψk(t) = 0 was used. The phase portrait for this case is
shown in Figure 6 where it can be seen that the error between
the blue and red curves never decreases. This ensures that
ψk(t) is equally important even in the case of a constant noise.

The error is periodic due to the structure of the Ã matrix.

In the next experiment, a Wiener process noise is consid-
ered again but two different approaches were used to estimate

the noise. From Section IV-B, the optimal estimate Ŵk is zero
for all k, and (9) also provides an estimate of the same. With

Ŵk = 0, only five triggerings (excluding the one at time 0)
are required whereas using (9) requires eight triggerings. This
is shown in Figure 7. The triggering at time 0 sets the initial
values for the states of systems.

In summary, it is demonstrated that ψk(t) is equally
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Fig. 5. Phase portrait for x, xd and xc. The blue curve represents x, while the
red and dashed black ones represent the xc and xd respectively. To maintain
some clarity xd is plotted for some initial time only. All the trajectories start
at the point (1,1).
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Fig. 6. Phase portrait for x, xd and xc. The blue curve represents x, while the
red and dashed black ones represent the xc and xd respectively. To maintain
some clarity xd is plotted for some initial time only. All the trajectories start
at the point (1,1). There is a constant error between x(t) and xc(t) and it
never decreases.

important to make the event based system mimic the closed
loop system and results from Theorem III.1 is used to obtain
ψk(t). From the simulation results, it is clear that the error
between event based system and closed loop system is bounded
as stated in Theorem IV.1.

VI. CONCLUSION

In this paper, a controller and an event triggering mecha-
nism is proposed for an event based control scheme. Despite of
the lack of continuous state feedback, the error e incurred by
this event based scheme can still be calculated accurately. The
event triggering scheme triggers an event based on this error.
The controller updates the system in such a way that decreases
the error accumulated due to control input mismatch. Theorem
III.1 provides an explicit formula for the control that minimizes
this error. Theorem III.2 gives an indication how fast this error
can be minimized. Theorem IV.2 proves that there is minimum
time between two triggerings and hence the triggering mech-
anism does not exhibit Zeno behavior. These results are true
for any linear system (stable or unstable) expect for a few
features that are only applicable for time invariant systems
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Fig. 7. Performance of the system under same Wiener process noise but
with different noise estimate. The first plot represents the 1st component of
x, xc, xd and e and the second plot is the corresponding event triggering
instances with optimal noise estimate to be zero. The third and fourth plots
are similar to first and second respectively but with the noise estimate given
in (9).

with certain controllability assumption (Theorems III.3, IV.1,
IV.3). The experimental results justify the theoretical findings.

A possible future work would be to extend this analysis
for non-linear systems or systems with delays and dropouts.
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