
Motion Planning in Dynamic Environments with Bounded Time
Temporal Logic Specifications

Dipankar Maity and John S. Baras

Abstract— In this paper, we consider the problem of robotic
motion planning that satisfies some bounded time high level
specifications. Although temporal logic can efficiently express
high level specifications such as coverage, obstacle avoidance,
temporal ordering of tasks etc., it fails to address problems
with explicit timing constraints. The inherent limitations of
Linear Temporal Logic (LTL) to address problems with explicit
timing constraints have been overcome by translating the
planning problem from the workspace of the robot to a
higher dimensional space called spacetime where the existing
LTL semantics and grammar are sufficient to mathematically
formulate the bounded time high level specifications. A discrete
path will be generated, that will meet the specifications with all
timing constraints and, at the same time, it will optimize some
cost function. A continuous trajectory satisfying the continuous
dynamics of the robot will be generated from the discrete path
using proper control laws.

Index Terms— Temporal logic path planning, Robotics, Time
constrained motion planning, Planning in dynamic environ-
ments.

I. INTRODUCTION

Motion planning [1],[2] of a robot is mainly maneuvering
the robot from its initial position and configuration to a final
position and configuration while maintaining all physical and
environmental constraints. This started with the focus on
finding optimal trajectories to reach the goal while avoiding
obstacles [3] and then evolved into generating plans or paths
for complex planning objectives in dynamic or even more
complex environments [4],[5]. Planning problems in dynamic
or uncertain environments were approached mainly by veloc-
ity tuning method [6]. Studies have been also done on the
complexities of planning problems in dynamic environments
[7], [8]. Though these techniques along with the theories of
traditional optimal control with artificial potential functions
[3], [9] or cell decomposition or sampling based methods [2]
served as promising approaches for robotic path planning,
they failed to address problems with multiple goals or a
particular sequence of goals.

Researchers have come up with novel formulations and
efficient computational approaches to mathematically formu-
late specifications such as motion sequencing, synchroniza-
tion etc. Temporal logics such as linear temporal logic (LTL),

Research partially supported by US Air Force Office of Scientific
Research MURI grant FA9550-09-1-0538, by DARPA through ARO grant
W911NF1410384, by National Science Foundation (NSF) grant CNS-
1035655, and by National Institute of Standards and Technology (NIST)
grant 70NANB11H148.

The authors are with the Institute of Systems Research and the De-
partment of Electrical and Computer Engineering, University of Maryland
College Park, MD, USA. {dmaity, baras}@umd.edu

computational tree logic (CTL), developed for model check-
ing, have been widely accepted by the robotics community
for the purpose of motion planning [10], [11]. Development
of sophisticated model checking tools such as SPIN [12] and
NuSMV [13] made it easier to generate discrete robot paths
satisfying the objectives or to produce counter examples
proving that the objectives are not achievable. Though tem-
poral logic can efficiently overcome the previous issues with
motion sequencing, planning with multiple goals, however,
they cannot mathematically formulate a planning problem
with time bounded objectives.

In robotics and related fields, there is a class of problems
where timing constraints are common, such as simple as “go
to position 1 by time t1 and eventually go to position 2 ”.
Even in a simple navigation problem, if the environment is
dynamic, we have to face timing constraints which cannot
be handled by LTL. Planning in dynamic environments has
been done in heuristic ways which do not necessarily give the
optimal solution [6], [8]. Planning with time bounded objec-
tives are hard because the discrete path has to be generated
in such a way that one can find an equivalent continuous path
respecting all the constraints in the dynamics of the robot and
simultaneously satisfying the specifications. [14] considered
planning in dynamic environments for time bounded tempo-
ral logic specifications, however, the dynamics of the robot
were modeled using probabilistic Markov models. Mixed
Integer Linear Programming (MILP) approaches have been
also considered to solve planning problems by formulating
the problems as mixed integer linear optimization problems
[15], [16], [17].

Metric Temporal Logic (MTL) deals with model checking
under timing constraints. The complexity of MTL model
checking is undecided and MITL (Metric Interval Temporal
logic), a subset of MTL, has the complexity of EXPSPACE-
complete [18], whereas LTL is PSPACE-complete [18]. Signal
Temporal Logic (STL), similar to MTL also performs model
checking with timing constraints [19], [20]. Temporal logic
has been widely used by the robotics community [10],
[11], [14] to solve problems with complex tasks and that
motivates us to use LTL for the planning problems with time
constraints. Based on the facts that LTL is computationally
less expensive and that there is good availability of tools to
check LTL specifications, the goal in this work will be to
translate a bounded time high level specification to a purely
LTL specification.

So far the temporal logic planning problems, which gen-
erally do not include any explicit timing specification, have
been solved in the workspace/configurationspace of the robot

23rd Mediterranean Conference on Control and Automation (MED)
June 16-19, 2015. Torremolinos, Spain

978-1-4799-9935-4/15/$31.00 ©2015 IEEE 973

[10], [11], [14]. We will introduce time explicitly along with
the workspace and plan in a higher dimensional space. Here-
after this higher dimensional space will be called spacetime.
Any discrete trajectory generated in spacetime will be forced
to meet the explicit timing constraints.

In this paper, we will consider completing a task with
multiple subtasks and some subtasks have to be finished
within certain time bound while avoiding the moving and
static obstacles in a dynamic environment. We are also
interested in minimizing some cost function along the way
of task completion. For this work, we consider the cost
function to be the total time to complete the work. One
can consider any cost function with the same framework
that we are going to propose (as pointed out in section V-
A after remark 5.7). To solve the problem, we will borrow
some bounded time temporal operators from MTL and then
translate them into usual LTL operators on spacetime. To
accomplish the goals, we propose a framework to extend
the LTL to incorporate both finite and infinite (e.g. periodic
surveillance etc.) duration tasks. A method to synthesize the
suitable control laws is proposed to steer the robot while
obeying all constraints. An automata theoretic approach [21],
[22] is adopted to check whether the problem specifications
can be met. Finally, we are also interested in finding control
laws that will generate a continuous trajectory which is
equivalent to the discrete path generated by the automaton.

II. PROBLEM FORMULATION

We consider a robot whose dynamics are given by (1).

ẋ = f(t, x, u), x(0) ∈ X0, x(t) ∈ X , u(t) ∈ U (1)

x(t) is the position of the robot at time t ≥ t0, X0 ⊆ X
is a compact set that represents the set of possible initial
positions of the robot. The goal of this work is to find a
control law u(t) ∈ U so that the trajectory generated by
(1) follows some time specific high level requirements. We
consider the presence of static as well as time varying objects
within the environment where the robot stays for any time
t(≥ t0). The environment is modeled as time varying and
the dynamic properties of the environment can be used, for
example, to describe the presence of moving obstacles or to
describe the state of a door being open or closed at time t.

Let Π = {π1, π2, · · ·πn} be the set of atomic propositions
which labels X as a collection of rooms, doors, free space,
obstacles etc. As the environment is dynamic, there could be
a moving body in some part of the free space making that
part to be treated as obstacle for that time. The occupied
place becomes free space as soon as the body moves to a
new place. Thus, labeling the environment is time dependent.
We define a map, F , to label the time varying environment.

F : X × I → 2Π (2)

where I = {[a, b)| b ≥ a ≥ 0} and throughout the paper
2Ω denotes the power set of a set Ω. We also define ΠI =
{πk,I| πk ∈ Π, I ∈ I} and a mapping FI : X → 2ΠI s.t.
FI(x) = πk,I iff F (x, I) = πk.

The general problem we are interested in solving is:

Problem 2.1: Given a workspace, a bounded time high
level task (φ) and a cost function, find suitable control law
(u(t)) such that the robot with dynamics (1) complete the
given task while avoiding collision with all moving and static
obstacles in the environment and minimizes the cost function.

Given any environment, one can approximate and decom-
pose it in polygonal cells [1], [2], [3] and obtain a cellularly
decomposed environment similar to one in Fig. 1. Cellular
decomposition of the workspace is a well studied problem
and the interested readers are directed to [1], [2, Section 6.3]
and the references therein. For the rest of the paper we will
consider our planning problem in the workspace shown in
Fig. 2 where the spacetime is represented for the planning
problem. The blue segments in Fig. 2 represent walls, the
red segments represent doors and the black continuous curve
is the trajectory of the moving obstacle. The doors may be
closed for certain time period or open otherwise as shown
in Fig. 2 with the black surface. The 2D projection of this
spacetime on the workspace is given in Fig. 1. The initial
position of the robot is I (the yellow cell). Only to illustrate
the problem clearly, 2D workspace is considered and time
is represented as the third dimension; otherwise, the same
framework works for 3D workspace as well. We consider
the following example problem to illustrate our method.

Example 2.2: Starting from I , visit R3 within the time
interval I1, visit R4 within time interval I2; before visiting
R3 or R4, robot must visit R2. Eventually visit R1 and R5,
and complete the whole task in the least time.

1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

9

X

Y

R2

R1

R3

I

R5

R4

Fig. 1. Rectangular decomposition on the workspace of the robot (numbers
on the X and Y axes are only to uniquely identify a cell)

Like Problem 2.1, Example 2.2 has two aspects: first, it
requires some jobs to be done within specific time interval
and second, it has an optimization aspect of completing the
whole task in the least time. The task specification (without
the optimization part) itself cannot be expressed using LTL
logic due to the explicit timing specifications. The existing
LTL grammar and semantics have to be extended to capture
these types of explicit timing specifications, and for this
purpose, we will define some notations and operators for
LTL.

974

1
2

3
4

5
6

7
8

9

1
2

3
4

5
6

7
8

9
0

5

10

15

20

25

XY

T
im

e
(t

 /
∆τ

)

Fig. 2. Discretized spacetime with obstacles (The black surface represents
the fact that the door to that region is closed for that time duration. The
black curve is the continuous trajectory of a moving obstacle.)

III. PRELIMINARIES

This section provides some concepts and notations on
LTL, Finite Transition System (FTS) and Büchi Automata
(BA) which will be used throughout the paper. Let us denote
the trajectory of the system (1) starting at t0 as x[t0] =
{x(s) |s ≥ t0 ẋ = f(t, x, u), x(t0) = x0}.

Definition 3.1: The syntax of LTL formulas are defined
according to the following grammar rules:

φ ::= > | π | ¬φ | φ ∨ φ | φUφ | φRφ
where π ∈ Π, > and ⊥(= ¬>) are the Boolean constants
true and false respectively. ∨ denotes the conjunction
operator and ¬ denotes the negation operator. U and R
symbolize the Until and Release operators respectively.
Other temporal logic operators such as eventually (♦), always
(�) etc. can be represented using the grammar in definition
3.1.

Definition 3.2: The semantics of any formula φ is recur-
sively defined as:
x[t0] |= π iff π ∈ F (x(t0), t0)
x[t0] |= ¬π iff π /∈ F (x(t0), t0)
x[t0] |= φ1 ∨ φ2 iff x[t0] |= φ1 or x[t0] |= φ2

x[t0] |= φ1 ∧ φ2 iff x[t0] |= φ1 and x[t0] |= φ2

x[t0] |= φ1Uφ2 iff ∃s ≥ t0 s.t. x[s] |= φ2 and ∀ t0 ≤ s′ <
s, x[s′] |= φ1.
x[t0] |= φ1Rφ2 iff ∀s ≥ t0 x[s] |= φ2 or ∃s′ s.t. t0 ≤ s′ <
s, x[s′] |= φ1.

More details on LTL grammar and semantics can be found
in [23].

Definition 3.3: A Finite Transition System (FTS) is a
tuple E = {Q,Q0,ΠID ,A, TS,→E , hE}, where:
Q is a set of states.
Q0 ⊆ Q is the set of possible initial states.
ΠID is the set of atomic propositions.
A is the set of all actions or policies.
TS : Q ×A → Q is a mapping that dictates the transition
from one state to another by applying some action.
→E⊆ Q×Q captures the transitional relationship between
the states. (Qi, Qj) ∈→E iff ∃α ∈ A s.t. Qj = TS(Qi, α).
hE : Q → 2ΠID is the map which assigns atomic proposi-
tions to the states where those propositions are satisfied.

Definition 3.4: A Büchi automaton (BA) is a tuple B =
{SB , S0B ,ΣB , δB , FB} where:
SB is a set of states and S0B is the initial state.
ΣB is the set of input alphabets.
δB : SB × ΣB → 2SB is a transition relationship.
FB ⊆ SB is a set of accepting states.

For each LTL formula φ, a corresponding Büchi automa-
ton can be generated [21] that accepts the words which
satisfy the specification φ. Generating a Büchi automaton
from a given LTL formula is a well studied problem and the
interested readers may confer [21].

IV. EXTENDED LINEAR TEMPORAL LOGIC

Two new operators UI and RI are introduced as follows:
Definition 4.1: The extension of the LTL grammar is

given by: φ ::= φUIφ | φRIφ
where I ∈ I. The semantics φ1UIφ2 means ∃s ∈ I s.t.
x[s] |= φ2 and ∀ t0 ≤ s′ < s, x[s′] |= φ1. It should be noted
that the expression φ1U[t0,∞)φ2 is equivalent to φ1Uφ2.
Once we have UI and RI, we can always define other
temporal operators such as ♦I, �I etc. Thus, this grammar
can model both finite and infinite duration tasks.
Like the LTL grammar and semantics in [23], similar
grammar and semantics can be defined over the atomic
propositions set ΠI as follows:

Definition 4.2: The syntax of LTL formulas over ΠI are
defined according to the following grammar rules:
φI ::= >I | πI | ¬φI | φI ∨ φI | φIUφI | φIRφI | (φI)I
where >I = πI ∨ ¬πI and πI ∈ ΠI .

Definition 4.3: The semantics of any formula φI is recur-
sively defined as:
x[t0] |= πI iff t0 ∈ I and π ∈ F (x(t0), t0)
x[t0] |= ¬πI iff either t0 /∈ I or π /∈ F (x(t0), t0)
x[t0] |= φI iff t0 ∈ I and x[t0] |= φ
x[t0] |= φ1,I1 ∨ φ2,I2 iff x[t0] |= φ1,I1 or x[t0] |= φ2,I2

x[t0] |= φ1,I1 ∧ φ2,I2 iff x[t0] |= φ1,I1 and x[t0] |= φ2,I2

x[t0] |= φ1,I1Uφ2,I2 iff ∃s ≥ t0 s.t. x[s] |= φ2,I2 and ∀
t0 ≤ s′ < s, x[s′] |= φ1,I1 .
x[t0] |= φ1,I1Rφ2,I2 iff ∀s ≥ t0 x[s] |= φ2,I2 or ∃s′ s.t.
t0 ≤ s′ < s, x[s′] |= φ1,I1 .
x[t0] |= (φI1)I2 iff x[t0] |= φI1∩I2
It is easy to notice that setting I, I1, I2 as [t0,∞) the usual
LTL semantics is obtained. Now we will try to express the
operator defined in definition (4.1) in terms of the grammar
in definition (4.3). Let us denote the lower and upper bound
of an interval, I , as Ǐ and Î respectively, i.e. I = [Ǐ , Î).

Proposition 4.4: LTL formula φ1UIφ2 is equivalent to
φ1,[t0,Î)

Uφ2,I

Proof: Let x[t0] |= φ1,[t0,Î)
Uφ2,I then ∃s ≥ t0 s.t.

x[s] |= φ2,I and ∀ t0 ≤ s′ < s, x[s′] |= φ1,[t0,Î)
. Using

definition 4.3, x[s] |= φ2,I is rewritten as s ∈ I and x[s] |=
φ2. Since s ∈ I and s′ ∈ [t0, s), then always s′ ∈ [t0, Î).
Therefore, x[t0] |= φ1,[t0,Î)

Uφ2,I if ∃s(≥ t0) ∈ I s.t. x[s] |=
φ2 and ∀ t0 ≤ s′ < s, x[s′] |= φ1 which is equivalent
to say x[t0] |= φ1UIφ2. Similarly it can be proved that
x[t0] |= φ1UIφ2 implies x[t0] |= φ1,[t0,Î)

Uφ2,I .

975

Remark 4.5: LTL formula φ1RIφ2 is equivalent to
φ1,IRφ2,[t0,∞).

Any bounded time high level specification can be repre-
sented by the usual and extended LTL grammars described
in definitions (3.1) and (4.1) and can be converted to an
equivalent formula of definition (4.2) which only contains
the usual LTL operators. The advantage of having usual LTL
operators is that we can easily translate the formula to a
Büchi automaton which is an important and necessary step
for model checking.

The explicit time dependent part of example 2.2 can
be represented by the LTL formula φ = (¬OUI1R3) ∧
(¬OUI2R4); where O represents the set of obstacles (the
walls, moving obstacles or the closed doors).

V. ROBOT MOTION PLANNING

In this section a discrete path that will satisfy the require-
ments of example 2.2 for the robot will be generated.

A. Generating Discrete Path

To proceed with the formal verification, the workspace is
discretized. There exists several techniques for cell decom-
position in polygonal environments [2], [3]. We will divide
our workspace, X , in rectangles. Let Q = {q1, q2, ..., qm}
be a partition in the workspace. Let us define a map T :
X → Q to partition the continuous workspace X . ∀x, y ∈
X and I ∈ I, the map T has the following properties:
a) if T (x) = T (y), then F (x, I) = F (y, I), and b) if
T (x) = T (y) and x′ ∈ qj is reachable from x ∈ qi, then
∃y′ ∈ qj such that y′ is reachable from y. The set Q0

denotes the set of states where the robot can stay initially i.e.
∪q0∈Q0

T−1(q0) ⊆ X0. Discretization on the set I is defined
as ID = {[t0 + n1∆τ, t0 + n2∆τ)| n2 > n1 = 0, 1, · · · }.
Like the choice of cell size in cell decomposition, the choice
of ∆τ determines how accurately the dynamicity of the
environment is captured.

Let us also define Q = {(q, Ik)| q ∈ Q, Ik = (t0 +
k∆τ, t0 + (k + 1)∆τ] ∈ ID} as the discretization of the
continuous spacetime. The mapping L : Q → 2ΠID is
defined as L(q, Ik) = πI iff F (x, I) = π s.t. T (x) = q
and Ik ⊆ I , ∀I , Ik ∈ ID . Let A denotes the set of actions
the robot can take in this discretized spacetime. The set of
actions available at any particular state q ∈ Q will be denoted
by Aq (⊆ A).
The discretized spacetime for example 2.2, given in Fig. 2,
contains sixty four blocks (8 × 8) in each time layer. Fig.
3 illustrates the numbering scheme and transitional relations
that have been adopted. x, x+ 1, x+ 8 and x− 64 in Fig.
3 denote the numbers of the blocks. The arrows show the
possible transition from one block to another. The letters
(f, b, l, r, u) represent the action to be taken in order to
perform that transition. The discretized spacetime can be
represented by an FTS(E) similar to that given in definition
(3.3).

Definition 5.1: The equivalent FTS(E) of the discretized
spacetime is given by a tuple {Q,Q0,ΠID ,A, TS,→E , hE}
where Q is the set of states.

Fig. 3. Transitional relationship among the blocks in discretized spacetime.

Q0 = {(q0, I0) | q0 ∈ Q0}.
A = {f, b, l, r, u} where f, b, l, r, u are the abbreviation of
forward, backward, left, right and up respectively.
TS denotes the possible transitions upon applying action
α ∈ A on a robot residing at block q. As the names suggest,
applying Aq = r at a block q makes the robot to move to
the block right to q, provided there is a block right to q. If
there is no block right to q, r /∈ Aq .
→E⊆ Q×Q captures the topological relationship between
the blocks.

(
(qi, Iki), (qj , Ikj)

)
∈→E iff

(
ki = kj and qi,

qj share a common edge, i.e. (qj , Ikj) ∈ TS
(
(qi, Iki),Aq

)
with Aq ∈ {f, b, l, r}

)
or (qi = qj , ki+1 = kj i.e. Aq = u).

hE : Q → 2ΠID is the map same as L.
The up action corresponds to movements in the time

direction and since time is unidirectional, there is no down
action present in the FTS.

Let p : N → Q be a path for the robot in the discretized
spacetime (Q) with p(0) ∈ Q0 and (p(i), p(i+1)) ∈→E . The
sequence of actions taken is denoted by α = α0α1 · · ·αn
which satisfies the fact that ∀i = 0, · · · , n, p(i + 1) =
TS(p(i), αi).

Analogous to the continuous LTL formulas given in defini-
tions (4.2) and (4.3), we can also have discrete LTL formulas
and grammars, on the set of atomic propositions

(
ΠID

)
, as

given in definitions (5.2) and (5.3).
Definition 5.2: The syntax of bounded time discrete LTL

formulas are defined in the following grammar rules:
φID ::= >ID | πID | ¬φID | φID ∨ φID | φIDUφID |

φIDRφID | © φID | (φID)ID
where πID ∈ ΠID ,>ID = πID ∨ ¬πID and © is the next
operator.
We define two projection functions pr1 : p(i)→ Q and pr2 :
p(i)→ ID on a path p = p(0)p(1) · · · p(l) in the discretized
spacetime. Let p(i) = (qi, Iki) ∈ Q then pr1(p(i)) = qi and
pr2(p(i)) = Iki . We will use the short hand notation p[i0]
to denote the portion of the path p that starts from p(i0) i.e.
p[i0] = p(i0)p(i0 + 1) · · · p(l) (with this notation, p ≡ p[0]).

Definition 5.3: The semantics of any formula φID on a
discrete path p is recursively defined as:
p |= πID iff pr2(p(0)) ⊆ ID and πID ∈ L(p(0))
p |= ¬πID iff either pr2(p(0)) * ID or πID /∈ L(p(0))
p |= φID iff pr2(p(0)) ⊆ ID and pr1(p) |= φ.
p |= φ1,ID1

∨ φ2,ID2
iff p |= φ1,ID1

or p |= φ2,ID2

p |= φ1,ID1
∧ φ2,ID2

iff p |= φ1,ID1
and p |= φ2,ID2

976

p |=©φID iff p[1] |= φID
p |= φ1,ID1

Uφ2,ID2
iff ∃i ≥ 0 s.t. p[i] |= φ2,ID2

and ∀
0 ≤ j < i, p[j] |= φ1,ID1

p |= φ1,ID1
Rφ2,ID2

iff ∀i ≥ 0 p[i] |= φ2,ID2
or ∃j s.t.

0 ≤ j < i, p[j] |= φ1,ID1

p |= (φID1
)ID2

iff p |= φID1∩ID2
.

The FTS(E) of the environment can be translated into an
equivalent Büchi automaton as given in definition 5.4.

Definition 5.4: The Büchi automaton (E ′) correspond-
ing to the FTS(E) in definition (5.1) is a tuple E ′ =
{Q′, qe, 2ΠID , δE′ , FE′} where:
Q′ = Q∪ qe for qe /∈ Q.
δE′ : Q′ × 2ΠID → 2Q

′
s.t. (qi, Iki) ∈ δE′

(
(qj , Ikj), π

)
iff
(
(qi, Iki), (qj , Ikj)

)
∈→E and π ∈ hE(qj , Ikj), and

(q0, Ik0) ∈ δE′
(
qe, π0

)
iff (q0, IK0) ∈ Q0 and π0 ∈

hE(q0, Ik0)
FE′ is the set of accepting states.

The aim is to find a path on E ′ that satisfies a given LTL
formula φID (representing the time bounded task specifica-
tion). That is to find the language, L, which is accepted by
both automata BφID and E ′. This can be done by constructing
a product automaton BφID × E

′ whose language will be
L(BφID) ∩ L(E ′).

Definition 5.5: The product automaton P = {SP , S0P ,
2ΠID , δP , FP} where:
SP = Q′ × SBφ and S0P = {(qe, S0Bφ)}.
δP : SP × 2ΠID → 2SP s.t.

(
(qi, Iki), Sn

)
∈

δP
(
((qj , Ikj), Sm), π

)
iff (qi, Iki) ∈ δE′((qj , Ikj), π) and

Sn ∈ δBφ(Sm, π)
FP = FE′ × FBφ

By construction, the language of this product automaton
is the common language of both automata E ′ and Bφ, i.e.
L(P) = L(E ′) ∩ L(Bφ). A run, r : N → SP of P , is a se-
quence of states which is obtained by applying an input trace
ω; i.e. r(0) ∈ S0P and ∀i ≥ 0, r(i + 1) ∈ δP(r(i), ω(i)).
An accepting run of an automaton contains at least one
final state. More precisely, a run r of P over an infinite
trace ω is accepting if and only if iof(r) ∩ FP 6= ∅, where
iof(r) is the function that returns the set of states that are
encountered infinitely often in the run r. If L(P) 6= ∅, there
exists accepting run(s) for P . An infinite length accepting
run consists of two parts a prefix and a periodic suffix.

Remark 5.6: Let pr : SP → Q′ be a projection function
such that pr(q, s) = q; where q ∈ Q′ and s ∈ SBφ . If r is an
accepting run of P , p is a path on E; where p(i) = pr(r(i)).

Let us define RP = {r |r is an accepting run of P}.
Note that the cardinality of RP can be more than one.

Remark 5.7: Problem 2.2 is feasible iff RP 6= ∅.
We will convert this product automaton P to a directed

weighted graph G(V,E,W). V is the set of nodes and
E, the set of edges, is a binary relation on V , and W
is the set of weights associated with the edges. Through
this conversion process, the states of the automaton become
the nodes of the graph and the transitional relation (δP)
defines the set of the edges (E). Thus, SP and V are
basically the same set and hence can be related using a
bijective mapping Z(say). (Vi, Vj)

4
= Eij ∈ E iff ∃πID

s.t. Z−1(Vi) ∈ δP(Z−1(Vj), πID). Depending on the cost
function to be minimized, the weights on the edges can
be constructed accordingly. Since each edge represents a
transition from one node (position and time) to another with
the proper application of an action, the position, time and
action information are available at each edge. Any cost that
is a function of position, time and action can be calculated
easily for the edges and can be put as a weight on the edge.
For example 2.2 the weight wij associated with the edge
Eij is defined to be wij =

(
pr2 ◦ pr ◦ Z−1(Vj) − pr2 ◦

pr ◦ Z−1(Vi)
)
/∆τ [where f ◦ g(h) = f(g(h))]. From the

topological and transitional relation given in definition 5.1,
one can easily check that wij ∈ {0, 1}, and wij = 1 only
when Aq = u. Let us denote V0 = {v | Z−1(v) ∈ S0P}
and VP = {v | Z−1(v) ∈ FP}. Let PG be the set of all
paths on the graph G that start on a node v ∈ V0 and end
on a node v ∈ VP . pg : N → V be a path on G such
that pg(0) ∈ V0, (pg(i), pg(i + 1)) ∈ E and pg(l) ∈ VP
(l is the length of the path). Cost associated with the link
pg(i) → pg(i + 1) is Ci,i+1 =

(
pr2 ◦ pr ◦ Z−1(pg(i +

1))− pr2 ◦ pr ◦Z−1(pg(i)
)
/∆τ . Therefore, a path with the

least cumulative link cost will complete the given task in the
least time. In other words, the solution of example 2.2 is
the solution of the optimization problem 5.8 which can be
solved efficiently by using a suitable graph search algorithm.

Problem 5.8:
min
pg

Σl−1
i=0Ci,i+1

subject to pg ∈ PG
Due to the equivalence between P and G, an equivalent

run r on P can be obtained for the path pg ∈ PG . Let
p be the projection of r on Q i.e. p(i) = pr(r(i)). The
time and space sequence of pg are pr2 ◦ pr(r(i)) and
pr1 ◦ pr(r(i)) respectively. It is possible to find a path
pg ∈ PG such that ∀i = 0, 1, · · · l, pr2 ◦ pr(r(i)) = I0.
Such a path requires the whole task to be done in ∆τ
amount of time and hence the cost for that path will be
zero. This discrepancy arises since the dynamics or the
physical constraints of the robot have not been considered
in the formulation of problem 5.8. Practically, it may not
be plausible to complete the whole task in that small time.
The reachability property of the robot has to be incorporated
in this planning problem. We will consider the reachable
set from a cell qi ∈ Q to be the set of cells that can be
reached from any point in qi within ∆τ amount of time. For
this paper, we consider ∆τ to be the smallest time s.t. for
every x ∈ B0 in Fig. (4), ∀i ∈ {1, 2, · · · , 12}, ∃y ∈ Bi
which is reachable from x within ∆τ time. This particular
reachability property enforces the requirement that between
two successive applications of action u, there can be at most
two actions from the set {f, b, l, r}. Let us define a new
atomic proposition ξk such that p[i] |= ξk iff pr2(p(i)) = Ik.
ζk = �

(
(ξk ∧ ©ξk ∧ ©© ξk) ⇒ ©©©(¬ξk)

)
ensures

no more than two transitions within the k − th time layer.
Thus, the equivalent LTL specification of the reachability
constraint is given by φreach = ∧

∀k=0,1,···
ζk . If φ1 is the LTL

representation of example 2.2, φ = φ1 ∧ φreach ensures

977

Fig. 4. Set of reachable cells within time ∆τ from cell B0.

that any path satisfying φ will solve example 2.2 with the
reachability constraint.

B. From Discrete Path to Continuous Trajectory

The solution of problem 5.8 is a discrete path, on the
discretized spacetime, that satisfies the temporal specification
and minimizes the given cost function. The goal is to find
some input u(t) ∈ U for all t ≥ t0 so that the robot can
follow the discrete trajectory. In this paper, the unicycle robot
dynamics given in (3) are considered. ẋ

ẏ

θ̇

 =

 cos(θ) 0
sin(θ) 0

0 1

[v
ω

]
(3)

x and y are the position coordinates and θ is the orientation
or heading angle. v and ω are the control inputs. The discrete
path is essentially a sequence of blocks that has to be visited.
While transitioning from one block to another, the robot must
be confined inside those blocks. This imposes some extra
conditions that have to be taken care of while generating
the continuous trajectory. A state feedback technique is used
to achieve this. Let the robot is currently at block q1 with
positions and orientation given by [x1, y1, θ1] and it has to go
to block q2. For this transition we consider the final position,
[x2, y2], to be the center of the block q2 and θ2 is determined
by the following rule:

θ2 =

0o if |∆x| ≥ |∆y| and ∆x ≥ 0
180o if |∆x| ≥ |∆y| and ∆x < 0
900 if |∆x| < |∆y| and ∆y ≥ 0
−900 if |∆x| < |∆y| and ∆y < 0

where ∆x = x2 − x1 and ∆y = y2 − y1. With these initial
and final conditions, the robot starts moving and let at time t,
it is at [x(t), y(t), θ(t)]. At this time t, angular velocity, ω(t),
is along θ2−θ(t) and |ω(t)| ≤ ωmax. Linear velocity, v(t), is
chosen to be min(dist(x(t), δX), dist(y(t), δY), vmax). δX
is the set of boundary points of the blocks q1 and q2 along
the x-axis; similar definition for δY along y-axis as well.
dist(a,A) = inf{‖x−a‖2 | x ∈ A} is a function that gives
the minimum distance from a to the set A. These choices
of inputs for the dynamics (3) ensure that the continuous
trajectory never leaves the blocks q1 and q2. The continuous
trajectory being confined within blocks q1 and q2, and the
properties of the map T ensure that the continuous trajectory
satisfies the temporal specification.

VI. SIMULATIONS

We consider example 2.2 in a dynamic environment to
test our approach. Noting that the choice of t0 does not
matter under this setting, we consider t0 = 0. The dynamic
environment contains a moving obstacle and the door to
region R2 is closed for the time interval [0, 8∆τ]. The
dynamic behaviors are incorporated in formulating the FTS
(E) and the Büchi automata (E ′). The reachability of the
robot is considered to be the same as what given in Fig. 4.
I1 and I2 in example 2.2 are considered to be [14∆τ, 17∆τ]
and [16∆τ, 21∆τ] respectively. The discrete path is obtained
by solving problem 5.8 using Dijkstra’s algorithm [24]. The
continuous path is generated by the controller described in
section V-B with ωmax = π/4 rad/s, vmax = 0.4 m/s and
the cellsize (Fig. 5) is 1 × 1 m2. The initial configuration
of the robot is assumed to be [x0, y0, θ0] = [8.5, 1.5, 135o].
The projected (in workspace) trajectories, both discrete and
continuous, are shown in Fig. 5. The continuous trajectory in
spacetime is shown in Fig. 6. For this example we considered
total planning time upto 25∆τ and hence the FTS E has 1600
states and the automata for the LTL specification consists of
128 states.

1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

9

X

Y

R2

R3

R4

R1

I

R5

Fig. 5. Projected continuous and discrete trajectories. (Dashed black line
is the discrete path and the red curve is the corresponding continuous
trajectory.)

1
2

3
4

5
6

7
8

9

1
2

3
4

5
6

7
8

9
0

5

10

15

20

25

X
Y

T
im

e
 (

t/
 ∆

τ
)

Fig. 6. Continuous trajectory in spacetime. (Red curve is the trajectory
generated for the robot and the black curve is the obstacle trajectory.)

VII. CONCLUSIONS

In this paper, we presented a method to generate con-
tinuous trajectories of a robot in a dynamic environment
subject to some bounded time temporal logic specifications
and optimization objective. We extended the rules of LTL

978

to incorporate timing constraints and we also projected the
planning problem into a higher dimensional space to formally
generate a path. minimize the task completion time but one
can consider other objectives under the same framework.
One possible way to find control inputs, for the continuous
system (3), is proposed to make the robot follow the discrete
optimal path obtained by solving problem 5.8. In this work
we considered task of finite duration, however, task with
infinite duration can also be formulated using the proposed
framework. The generated continuous trajectory has high
curvature at some points, solely because no constraint on
the curvature of the trajectory was imposed while generating
the continuous trajectory.

As a future direction, one might consider this framework
for multi-robot planning probelms or planning in a dynamic
environment to incrementally improve the solution while
satisfying the timing constraints.

REFERENCES

[1] J.-C. Latombe, Robot Motion Planning. Boston, MA: Kluwer Aca-
demic Publishers, 1991.

[2] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006. [Available at http://msl.cs.uiuc.edu/planning/]

[3] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, 2005.

[4] R. Sharma, “Locally efficient path planning in an uncertain, dynamic
environment using a probabilistic model,” IEEE Transactions on
Robotics and Automation, vol. 8, no. 1, pp. 105-110, 1992.

[5] S. LaValle and R. Sharma, “On Motion planning in changing, partially-
predictable environments,” International Journal of robotics Research,
vol. 16, no. 6, pp. 775-805, 1997.

[6] K. Kant, and S. W. Zucker, “Toward efficient trajectory planning: The
path-velocity decomposition, ”The International Journal of Robotics
Research vol. 5, no. 3, pp. 72-89, 1986.

[7] J. Reif, and M. Sharir, “Motion planning in the presence of moving
obstacles, ”Journal of the ACM (JACM), vol. 41, no. 4, 764-790, 1994.

[8] M. Erdmann, and T. Lozano-Perez, “On multiple moving ob-
jects,”Algorithmica, vol. 2, no. 1-4, pp. 477-521, 1987.

[9] W. Xi, X. Tan and J. S. Baras, “A Hybrid Scheme for Distributed
Control of Autonomous Swarms, ” In Proceeding of 2005 American
Control Conference, Portland, OR, USA, June 8-10, 2005.

[10] G. E. Fainekos, A. Girard, H. Kress-Gazit and G. J. Pappas. “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no.
2, pp. 343-352, 2009.

[11] A Ulusoy, S. L. Smith, X. C. Ding and C. Belta, “Robust multi-robot
optimal path planning with temporal logic constraints,” In Procced-
ing of IEEE International Conference on Robotics and Automation,
RiverCentre, Saint Paul, Minnesota, USA, May 14-18, 2012.

[12] G. Holzmann, “The model checker SPIN,” IEEE Transaction on
Software Engineering, vol. 25, no. 5, pp. 279-295, 1997.

[13] A. Cimatti, E. M. Clarke, E. Giunchiglia, F Guinchiglia, M. Pistore,
M. roveri, R Sebastiani and A Tacchella, “NuSMV 2: An openSource
Tool for Symbolic Model Checking,”In Proceeding of International
conference on Computer-Aided Verification, Copenhagen, Denmark,
July 27-31, 2002.

[14] A. I. Medina Ayala, S. B. Anderson and C. Belta, “Probabilistic
control from time-bounded temporal logic specifications in dynamic
environments,” In the Proceeding of IEEE International Conference
on Robotics and Automation, RiverCentre, Saint Paul, Minnesota, USA
May 14-18, 2012.

[15] A. Richards, and J. P. How, “Aircraft trajectory planning with collision
avoidance using mixed integer linear programming, ”In Proceedings
of 2002 American Control Conference, vol. 3, pp. 1936-1941, 2002.

[16] E. M. Wolff, U. Topcu, and R. M. Murray, “Automaton-guided
controller synthesis for nonlinear systems with temporal logic, ”
In Intelligent Robots and Systems (IROS), IEEE/RSJ International
Conference on, pp. 4332-4339, 2013.

[17] Karaman, Sertac and Frazzoli, Emilio, “Vehicle routing problem with
metric temporal logic specifications, ”Decision and Control, 2008.
CDC 2008. 47th IEEE Conference on, pp. 3953-3958, 2008

[18] J. Ouaknine and J. Worrell, “Some recent results in metric temporal
logic,” In Formal Modeling and Analysis of Timed Systems, pp. 1-13,
Springer Berlin Heilderberg, 2008.

[19] A. Donz, O. Maler, E. Bartocci, D. Nickovic, R. Grosu, and S. Smolka,
“On temporal logic and signal processing, ” In Automated Technology
for Verification and Analysis, pp. 92-106, Springer Berlin Heidelberg.

[20] A. Donz, and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals, ”, Springer Berlin Heidelberg, 2010.

[21] E. M. Clarke, O. Grumberg and D. Peled, Model checking. MIT Press,
1999.

[22] M. Y. Vardi and P Wolper, “An automata-theoretic approach to
automatic program verification,” Logic in Computer Science, pp. 322-
331, 1986.

[23] C. Baier and J. P. Katoen, Principles of Model Checking, vol.
26202649, Cambridge: MIT Press, 2008

[24] S. Skiena, “Dijkstra’s Algorithm,” Implementing Discrete Mathemat-
ics: Combinatorics and Graph Theory with Mathematica, Reading,
MA: Addison-Wesley, pp. 225-227, 1990.

979

