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1. INTRODUCTION

The field of network dynamics has a long history in
both the Engineering and in the Applied Mathematics
communities. Many diverse scientific fields have been,
in one way or another, always interested in interacting
populations that exhibit global behavioral patterns as a
result of local interactions. Such a decentralized algorithm
for exchanging information among autonomous agents
is this of distributed linear consensus, the dynamics of
which have been vastly explored over the last decade. A
consensus system, concerns a finite population of N agents
each of which i = 1, . . . , N possesses a value of interest, say
zi ∈ R that dynamically changes according to the scheme

żi(t) =
∑
j

aij(t)
(
zj(t)− zi(t)

)
(1)

for some coupling weights aij(t) ≥ 0 that characterize the
effect of agent j to i. This is a distributed convex averaging
scheme, so that under specific connectivity conditions, the
values zi(t), i = 1, . . . , N converge, asymptotically, to a
common constant.

Consensus dynamics are by no means new. They have been
reported in the literature quite early, from independent
points of research (Tsitsiklis et al. (1986); Smith (1995)).
In fact, the underlying mathematical tool which is to be
used in the present paper as well, appears in Markov
(1906), i.e. at the dawn of the previous century!

The interest in these systems had been reheated when Jad-
babaie et al. (2003) provided a rigorous proof of a model
proposed by Vicsek et al. (1995) for asymptotic flocking
of a population of birds, zi is considered to be the velocity
value of the bird i. Asymptotic convergence of zi means
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then velocity alignment of the whole flock. For a recent
review on consensus algorithms on old and new results the
reader is referred to Somarakis and Baras (2014). Nowa-
days, the linear models have been substantially studied
and their dynamics are very well-understood. Research
have been naturally elevated to non-linear variations of
the consensus algorithm. Models of the type

żi(t) =
∑
j

fij(t, xj − xi)

żi(t) =
∑
j

gij(t, xj)− gij(t, xi)
(2)

have been proposed by Papachristodoulou et al. (2010);
Qing and Haddad (2008) as well as more complex models,
closer to flocking dynamics of the type

ẋi(t) = ui(t)

u̇i(t) =
∑
j

aij(t,x)
(
uj(t)− ui(t)

)
(3)

have been proposed by Cucker and Smale (2007).

The non-linearities in these networks are typically detected
in the coupling function scheme that controls the com-
munication between two arbitrary agents of the network.
In a series of papers, Somarakis and Baras (2012, 2014,
2015) the authors highlighted the fact that not only the
vast majority of these types of algorithms share the same
cooperative nature, but also that under appropriate con-
ditions on the coupling function, they are mathematically
handled with fairly similar techniques.

Interestingly enough, the same approach applies to delayed
versions of consensus algorithms which are of great impor-
tance to the control community, as delays are unavoidable
in real-world networked systems as they can slow the per-
formance or even destabilize the network. Consensus net-
works with delays have been previously studied in the liter-
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ature (see for example Moreau (2004); Papachristodoulou
et al. (2010); Olfati-Saber and Murray (2004)). The results
in this case are naturally considerably weaker.

1.1 Motivation & Contribution

In this work, we study two types of continuous time
consensus algorithms with multiple time-varying propa-
gation delays. The first is the classical linear consensus
system, (1) among individual agents with multiple propa-
gation delays (to be defined below). Under an increased
connectivity condition assumption, we will provide suf-
ficient conditions for convergence to a commons state,
emphasizing on the rate of convergence. The latter is to
be explicitly stated as a function of the system’s coupling
strength and the imposed delays. We will apply these
results to the non-linear flocking model of Cucker-Smale
type, presented in (3) and we will provide sufficient con-
ditions for asymptotic flocking (speed alignment). Both
algorithms evolve on a finite population of interconnected
autonomous agents which update their states after inter-
acting with the delayed states of other agents.

This work can be considered as the delayed counterpart of
Somarakis and Baras (2015). The main advantage here
is that, just like the aforementioned ordinary case, the
novel use of old mathematical tools, allows for explicit con-
traction rate estimates with the coupling weights allowed
to be asymmetric and the imposed delays allowed to be
multiple, time-varying, arbitrary, yet bounded. The main
simplification condition is this of increased connectivity
among the agents. Such an assumption was imposed due
to space limitation. In the discussion section we mention
milder connectivity regimes, analyzed for the ordinary case
in Somarakis and Baras (2015).

1.2 Organization

This paper is structured as follows: In §2 the basic theoret-
ical framework is developed. In §3 we present and briefly
discuss the models that will concern us, as well as we state
fundamental hypotheses for each model separately. In §4
we state a number of preliminary results for both models.
Their proofs, if not stated, can be found in Somarakis and
Baras (2014). We state and prove the central results of this
work in §5. A thorough discussion and concluding remarks
is put in §6.

2. NOTATIONS & DEFINITIONS

N <∞ is a natural number equal to the cardinality of the
set V = {1, . . . , N} of the agents. Each agent i ∈ V has a
state of interest zi ∈ R (or xi ∈ R, ui ∈ R) that evolves
according to either of the two dynamical schemes defined
in §3. The state space is, therefore, RN (or RN ×RN ) and
a subset of interest is the so called agreement subspace
∆ = {z ∈ RN : z1 = · · · = zN} and for u ∈ RN
accordingly. Considering ∆, a quantity of interest is the
spread of a vector z ∈ RN ,

S(z) = max
i
zi −min

i
zi.

The spread is a pseudo-norm because it vanishes in ∆.
For the sake of clarification, given an appropriately defined
function z(t) ∈ RN , by z(t)→ ∆ as t→∞, we understand

that there is an fixed vector in ∆ to where all zi(t) converge

asymptotically. Finally, by 1
(t)
A we understand the set

function and by δ(·) the delta function.

The initial time is t0 ∈ R is arbitrary but fixed and all
the delays, denoted by τij(t), are smooth functions of time
defined in [t0,∞). Additionally, we will use the notation
λij(t) = t− τij(t). For any t ≥ t0, τ(t) := maxi,j τij(t) and
consequently λ(t) := t−τ(t). Also, It := [λ(t), t]. Although
we could work in locally integrable function spaces, we will
use continuous functions. In particular, Cp(It,RN ) is the
space of functions defined in It take values in RN and
have p ≥ 1 continuous derivatives. For φ ∈ C0(It,RN ) we
consider the set

Wφ
t = [ min

s∈It,i∈V
φi(s), max

s∈It,i∈V
φi(s)]

together with its length |Wφ
t |. Observe that |Wφ

t | is the
functional counterparts of the spread S.

Elaborating more on functional spaces and rigorous defi-
nitions from the theory of functional differential equations
is beyond the scopes of this paper. The interested reader
is referred to Hale and Verduyn Lunel (1993).

The communication network is modeled through a directed
graph G = {V,E} with the nodes modeling the agents,
the set E describes the connections between agents so
that an element of E is the pair (i, j) ∈ V × V for
which we say that j “affects” i where we take by default
(i, i) /∈ E. The number of agents j that affect i constitute
the “neighborhood” of i, denoted as Ni. The sum of the
communication effets on i is di =

∑
j aij , also known as

valency of a node i. A scrambling graph is this for which
there exists i∗ ∈ V such that ∀ j 6= i∗, (i∗, j) ∈ E. In other
words, there exists at least one agent that affects the rest of
the population. Examples of these communication schemes
are of increased connectivity, e.g. complete graphs, star
shaped graphs, etc. Throughout this work we shall only
consider static communication networks in the sense that
E is a time invariant set.

The 1st model, named as “consensus network”, attains
a state variable that will be denoted as the RN -valued
function z(t) =

(
z1(t), . . . , zN (t)

)T
. The 2nd non-linear

model, named as “flocking network”, attains the couple
of state variables

(
x(t),u(t)

)
∈ RN × RN .

3. PROBLEMS SETUP

In this section, we state the equations under study, the
accompanying set of assumptions and the convergence
definitions.

3.1 Consensus network

The solution z(t), t ≥ t0 of this population satisfies:żi(t) =
∑
j∈Ni

aij(t)
(
zj(λij(t))− zi(t)

)
, t ≥ t0

zi(t) = φi(t), t ∈ It0
(4)

for i ∈ V where φ =
(
φ1, . . . , φN

)T ∈ C0
(
It0 ,RN

)
is the

given initial data so that typically, z = z(t, t0,φ), t ≥ t0.
Each agent i dynamically updates its state after comparing
it with delayed versions of the states of agents in Ni.
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Assumption 1. For all i, j ∈ V it holds that aij ∈
C0
(
[t0,∞), [0,M ]

)
and ∀ j ∈ Ni we have aij(t) > a > 0.

The convergence definition of interest for this system is:

Definition 2. We say that the solution z = z
(
t, t0,φ

)
, t ≥

t0 of the initial value problem (4) exhibits unconditional
asymptotic consensus if for any initial functions φ, the
solution is bounded and z(t)→ ∆ as t→∞.

At first we need to consider a connectivity regime that
enables the possibility of asymptotic the in the kind of
Definition 2. A natural adaptation to the graph theoretic
framework introduced in §2 is by considering a commu-
nication graph Gt(4) =

{
V,Et(4)

}
with (i, j) ∈ Et(4) if any

only if aij(t) > 0. For the sake of simplicity we discuss
only static networks with increased connectivity:

Assumption 3. For all t ≥ t0 the set E(4) does not depend
on time and Gt(4) is scrambling.

The above is a hard assumption that is taken for simplicity.
It is well known that there are much milder sufficient com-
munication condition Jadbabaie et al. (2003); Somarakis
and Baras (2015). We will revisit this point in the discus-
sion section. With a little abuse of notation, we consider
the following condition for the delays:

Assumption 4. ∀j ∈ Ni, τij(t) ∈ C1
(
[t0,∞), [0, τ ]

)
for

τ := supt τ(t) <∞ such that 1− τ̇ij(t) > 0.

As a first remark although aij are taken continuous τij(t)
are assumed smooth enough so that λij(t) are invertible.
By κij(t) we denote the inverse. Also we observe that
combining Assumptions 1 and 4 ∃ D ≤ (N − 1)M such
that

max
i

sup
t≥t0

∫ t

t−τ
di(s) ds ≤ Dτ. (5)

3.2 Flocking network

The convergence results that are to be obtained in §5 will
be applied in the next, second order consensus, protocol.
This algorithm is proposed for speed alignment of birds.
Each bird is a node i ∈ V and it is defined through its
position and speed (xi, ui) so that the overall state vector
is (x,u) ∈ RN × RN . The evolution algorithm is:

ẋi(t) = ui(t)

u̇i(t) =
∑
j∈Ni

aij
(
x(t)

)(
uj(λij(t))− ui(t)

)
, t ≥ t0

xi(t0 − τ(t0)) = x0
i , ui(t) = φi(t), t ∈ It0

(6)

where x0 and u = φ are sufficient given initial data for

the problem to be well-posed as x(t) = x0 +
∫ t
λ(t0)

u(s)ds

for t ≥ λ(t0). The definition of interest for (6) is:

Definition 5. We say that the solution
(
x(t),u(t)

)
of the

initial value problem (6) exhibits asymptotic flocking if

u(t)→ ∆ as t→∞ & sup
t≥t0

S
(
x(t)

)
<∞

The coupling rates aij
(
x
)

model the communication effect
from j to i as a function of their relative distance. In the
first appearance of the model these weights had the closed
form

aij(|xi − xj |) =
Γ

(β + |xi(t)− xj(t)|2α)

and an algebraic approach was followed (Cucker and Smale
(2007)) to establish asymptotic convergence as function of
the systems’ parameters Γ, β, α ≥ 0 and the initial data
(x0,u0). This is to model the natural working hypothesis
that the more distant two birds are (|xi − xj | large), the
weaker the effect of the one to the other is (aij small). In
more recent works, non-symmetric weights were assumed,
S. and E. (2014). In their utmost generality the coupling
weights are endowed with the following condition:

Assumption 6. For any j ∈ Ni, the coupling weights aij
posses the smoothness conditions of Assumption 1 with
the following modification: It holds that

aij(x) 6= 0⇒ aij(x) ≥ f
(
S(x)

)
for f ∈ C0

(
[0,∞), [0,M ]

)
monotonically decreasing with

the property that limy→∞ f(y) = 0.

The structure of the model and nature of the assumptions
is postponed for §6. At the moment we only mention
that the vanishing property of the function f constitutes
the crucial difficulty in these systems and the study
of their stability with respect to Definition (5) require
the combination of an explicit estimate on the rate of
convergence of the speed alignments and an appropriate
Lyapunov functional.

4. PRELIMINARIES

A first remark is the obvious connection between (4) and
(6) that leads to the following result.

Lemma 7. Under Assumption 1 the solution z of (4)

satisfies zi(t) ∈Wφ
t0 for any t ≥ t0.

Proof. Let t∗ ≥ t0 be the first time that zi escapes

Wφ
t0 for some i ∈ V , say to the right. Then zi(t

∗) =
maxj∈V,s≤t̄ zj(s) and żi(t

∗) > 0. But from (4) and
Assumption 1

żi(t
∗) =

∑
j

aij(t)
(
zj(λij(t

∗))− zi(t∗)
)
≤ 0.

A similar argument can be made for the lower bound.
Hence the result follows by contradiction.

Two elementary yet crucial remarks are to be made now:
The first is that the solution z, together with (x,u), exist
in the large for arbitrary initial conditions. The second is
that t0 is arbitrary hence it holds that

|W z
t1 | ≤ |W

z
t2 |, ∀ t1 ≥ t2 ≥ t0. (7)

The latter condition is instrumental for the next result:

Proposition 8. Let Assumptions 1,3 and 4 hold. The solu-
tion z = z(t, t0,φ), t ≥ t0 of (4) satisfies:

S
(
z(t)

)
≤ (1− ρ)|W z

t−τ−B | (8)

for ρ := a 1−e−mB
m ∈ (0, 1).

Proof. Fix B > 0, m := supt≥t0 maxi di(t) ∈ (0,∞) that
after inversion from t−B to t it reads:

zi(t) =

N∑
j=1

∫ t

t−τ−B
bij(t, s)zj(s) ds, t ≥ t0 + τ +B

where

bii(t, s) = 1
(s)
[t−B,t]e

−m(t−s)(δ(s− (t−B)) + (m− di(s))
)
,

bij(t, s) = 1
(s)
[λij(t)−B,λij(t)]e

−m(t−κij(s))aij(κij(s)).
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In vector form:

z(t) =

∫ t

t−τ−B
B(t, s)z(s) ds (9)

with B(t, s) := [bij(t, s)]. It can be easily shown that∫ t
t−2τ

B(t, s)ds is a stochastic matrix with the properties

that ∀t ≥ t0 + τ +B and ∀t1, t2 ∈ [t− τ −B, t]

(1)
∑
j

∫ t2
t1
bij(t, s)ds ≡ const.

(2)
∑
j

∫ t
t−2τ

bij(t, s)ds ≡ 1.

We fix h, h′ ∈ V and from (9)

zh(t)−zh′(t) =
∑
j

∫ t

t−τ−B

(
bhj− bh′j

)
(t, s)zj(s) ds. (10)

Now, for fixed t we consider the partition t̄0 < t̄1 < · · · < t̄l
with t̄0 = t − τ − B and t̄l = t is defined so that for any
interval [t̄k−1, t̄k], (bhj − bh′j)(t, s) does not change sign.
Within this interval we apply the mean value theorem for
integrals, the right hand-side of (10) is∫ tk

tk−1

(
bhj − bh′j

)
(t, s) dszj(s

∗
j )

for some s∗j ∈ [tk−1, tk]. Let j′ denote the indeces for

which ukj′ :=
∫ tk
tk−1

(
bhj′ − bh′j′

)
(t, s) ds > 0 and j′′ :

ukj′′ :=
∫ tk
tk−1

(
bhj′′−bh′j′′

)
(t, s) ds < 0. Noting, by Property

(1), that
∑
j u

k
j ≡ 0 we set

0 < θk : =
∑
j′

ukj′ =
∑
j′

|ukj′ | =

= −
∑
j′′

ukj′′ =
∑
j′′

|ukj′′ | =
1

2

∑
j

|ukj |.

and we have

zh(t)− zh′(t) =
∑
k≥1

∑
j

∫ tk

tk−1

(bhj − bh′j)(t, s)zj(s) ds =

=
∑
k≥1

∑
j

ukj zj(s
∗
j (k))

≤
∑
k≥1

θk

(∑
j′ |ukj′ |zj′(skj′)

θk
−
∑
j′′ |ukj′′ |zj′′(skj′′)

θk

)
≤
{∑
k≥1

θk

}(
max
k,i

zi(si(k))−min
k,i

zi(si(k))
)

≤ 1

2
max
h,h′

∑
j

∫ t

t−2τ

∣∣(bhj − bh′j)(t, s)∣∣ ds|W z
t−τ−B |.

The last step is justified because of Lemma 7. We take

now βhj(t) :=
∫ t
t−τ−B bhj(t, s)ds and in view of the identity

|x−y| = x+y−2 min{x, y}, Property (2) and the fact that
h, h′ ∈ V are fixed but arbitrary we obtain the contraction
estimate:

S
(
z(t)

)
≤
(

1−min
h,h′

N∑
j=1

min
{
βhj(t), βh′j(t)

})
|W z

t−τ−B |

From Assumptions 1 and 3 and the form of B(t, s) we note
that

inf
t≥t0+2τ

min
h,h′

N∑
j=1

min
{
βhj(t), βh′j(t)

}
>

δ

m
(1− e−mB)

and the proof is complete.

The above Proposition is a novel use of an old tool of the
theory of non-negative matrix, known as the coefficient of
ergodicity adapted for the case of continuous time dynam-
ics. See also Hartfiel (1998). It illustrates the contractive
nature of stochastic matrices when they operate on vectors
with respect to ∆. Here due to the presence of delays
the contraction takes place over W z

t and the analysis will
conclude when an upper bound of |W z

t | will be established.
This is the topic of the next section.

5. MAIN RESULTS

The stability analysis of the present section relies on the
rate at which |W z

t | contracts. We begin with the linear
consensus model and conclude with the nonlinear flocking
model.

5.1 Convergence of (4).

Theorem 9. Let Assumptions 1,3 and 4 hold. Fix B > 0.
The solution z = z(t, t0,φ), t ≥ t0 of (4), satisfies

max
i
|zi(t)− k| ≤

|Wφ
t0 |

1− ρe−Dτ
e−γt (11)

where γ = − ln(1−ρe−Dτ )
2τ+B , k ∈Wφ

t0 and D as in (5).

Proof. Fix t and consider the set W z
t . Let i, j and t1, t2

be the indeces and the times on the solution segment
such that |W z

t | = zi(t1) − zj(t2). Assume without loss of
generality that t1 ≥ t2. Then, recalling Lemma 7, we work
as follows:
|W z

t | =

= e
−
∫ t1
t2
di(s) ds(

zi(t2)− zj(t2)
)
+

+

∫ t1

t2

e
−
∫ t1
s
di(w) dw

∑
l

ail(s)
(
zi(λil(s))− zj(t2)

)
ds

≤ e
−
∫ t1
t2
di(s) ds

S(z(t2))+

+

∫ t1

t2

e
−
∫ t1
s
di(w)dw

di(s)ds|W z
t−2τ |

≤ e
−
∫ t1
t2
di(s)ds

(1− ρ)|W z
t2−τ−B |+

+ (1− e
−
∫ t1
t2
di(s) ds

)|W z
t−2τ |

≤
[
e
−
∫ t1
t2
di(s) ds

(1− ρ) + (1− e
−
∫ t1
t2
di(s)ds

)

]
|W z

t−2τ−B |

≤
(
1− ρe

−
∫ t1
t2
di(s)ds)|W z

t−2τ−B |
≤
(
1− ρe−Dτ

)
|W z

t−2τ−B |
Then for any t ≥ t0 + B + 2τ , there exists n ≥ 1 such
that t0 + n(B + 2τ) ≤ t ≤ t0 + (n + 1)(B + 2τ) and so a
recursive argument yields the estimate (11) which proves
asymptotic exponential convergence.

Now, from Lemma 7 the solutions are bounded and the
forward limit set exists with all the nice properties known
from the theory of functional differential equations, (see
Hale and Verduyn Lunel (1993)), among which the one of
interest is that any solution that starts at t0 from this set
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will have with initial data φ, that satisfy |W z
t0 | = 0 and

hence any solution from the forward limit set must satisfy
żi ≡ 0, equivalently zi(t) ≡ k for any i ∈ V and the proof
is complete.

5.2 Convergence of (6).

Proving convergence of the flocking network according
to Def. (5) occurs if one can provide conditions so that
S
(
x(t)

)
remains bounded. Then Theorem 9 takes over to

prove flocking. Following Somarakis and Baras (2015) we
implement a type of Lyapunov functionals firstly intro-
duced in Ha and Liu (2009), appropriately modified for the
delayed case. Indeed, from Assumption 6 f(y) substitutes δ

and consequently ρ = 1−e−mB
m f(S(x)). The stability result

is stated as follows:

Theorem 10. Let Assumptions 3, 4 and 6 hold. Consider
the solution (x,u) of (6). Then asymptotic flocking occurs
according to Definition 5, if the initial data satisfy

|Wφ
t0 | <

1− e−mB

m(2τ +B)
e−Dτ

∫ ∞
P 2τ+B

x0,φ

f(s) ds (12)

where P 2τ+B
x0,φ := max{S(x0), |S(x0)−|Wφ

t0 |(2τ +B)|} and

D as defined in (5).

Proof. At first we note that d
dtS
(
x(t)

)
≤ S

(
u(t)

)
≤ |Wu

t |
and we introduce the Lyapunov functional

V (x,u) =

∫ t

t−2τ−B
|Wu

s | ds+

+
1− e−mB

m
e−Dτ

∫ S(x)

0

f(s) ds.

We evaluate it along x,u and take the time derivative to
obtain

d

dt
V (t) ≤ 0,

in view of the contraction estimate obtained in the proof
of Theorem 9. Then we have that V (t) ≤ V (2τ + B) for
t ≥ t0 + 2τ +B∫ t

t−2τ−B
|Wu

s | ds+
1− e−mB

m
e−Dτ

∫ S(x(t))

0

f(s) ds ≤

∫ 2τ+B

0

|Wu
s | ds+

1− e−mB

m
e−Dτ

∫ S(x(2τ+B))

0

f(s) ds

(13)

Assume the condition:∫ 2τ+B

0

|Wu
s | ds <

1− e−mB

m
e−Dτ

∫ ∞
S(x(2τ+B))

f(s) ds

(14)
Then we can pick q such that∫ 2τ+B

0

|Wu
s | ds =

1− e−mB

m
e−Dτ

∫ q

S(x(2τ+B))

f(s) ds

(15)
Substituting (15) into (13) we get∫ S(x(t))

0

f(s) ds ≤
∫ q

S(x(2τ+B))

f(s)ds+

∫ S(x(2τ+B))

0

f(s) ds

so that if S(x(t)) ≥ S(x(2τ + B)) then necessarily
S(x(t)) ≤ q. Hence supt S(x(t)) < ∞ throughout the

solution and the exponentially fast alignment of the flock
velocity is achieved. It is only left to show that the imposed
condition (12) implies (14). Indeed, on the one hand the
left part of the inequality in (14) is upper bounded by

|Wφ
t0 |(2τ+B). On the other hand, unless S(x(t)) ≤ S(x0),

the rate at which S(x(t)) may shrink can be deduced from
the extreme scenario x0 = (x0, 0, . . . , 0) with x0 6= 0 so
that S(x0) = 0 and φ(s) = (φ1(s), 0, . . . , 0), s ∈ [−τ, 0].
Neglecting the averaging effect which will inevitably di-
minish |Wu

t |, x0 < 0 implies that the first agent will
have approached or bypassed the rest of the group by
−|x0|+|u0|t. Finally, at t = 2τ+B the spread of x(2τ+B)
is lower bounded by

S(x(2τ +B)) ≥ max{S(x0), |S(x0)− |Wφ
t0 |(2τ +B)|} =

= P 2τ+B
x0,φ

and the proof is concluded.

The following corollary is a straightforward application of
Theorem 10:

Corollary 11. Consider the initial value problem (6) and
its solution (x,u). Under Assumptions 3, 4 and 6, uncon-
ditional flocking occurs according to Definition (5) if:∫ ∞

f(s) ds =∞

where f(·) is as in Assumption 6.

6. DISCUSSION

In this paper we addressed the problem of the effect of
delays in distributed consensus systems. The delays con-
sidered are time-varying and of propagation type. It is
assumed that the signal that agent i receives on the state
of agent j arrives with some delay. Convergence results
have already been established showing that the effect of
propagation delays does not cause any problem in the
asymptotic stability. The reader is referred to Moreau
(2004); Papachristodoulou et al. (2010). However, those
methods relied on Invariance Principles which provide no
estimate on the rate of convergence. This defect made
the study of delayed flocking networks of Cucker-Smale
type (i.e. the initial value problem (6)) impossible. For the
latter type of systems it is necessary for the researcher
to establish an explicit estimate on the rate that is a
mathematically tractable function of the systems coupling
and delayed parameters, so that the Luapunov functional
method can be implemented as this in the proof of Theo-
rem 10.

In recent years the authors studied the effect of delays
on the rate of convergence in consensus systems using
Fixed Point Theory methods (e.g. Burton (2006); So-
marakis et al. (2014b); Somarakis and Baras (2013b,c,a);
Somarakis et al. (2014a)) but the majority of these results
suffered from delayed dependent conditions. Here we im-
prove these results using a different approach. The price to
pay is that the estimate is much weaker and the interested
reader is refereed to a relevant discussion for a qualitative
similarly scalar case in Somarakis et al. (2014a).

If one would categorize our method, the fact that we
examine the contraction on sets of functions puts our
results into these of Lyapunov-Razumikhin type, Hale and
Verduyn Lunel (1993).
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Let us at this point to make a small remark on this
Assumption 4 as its contribution is two-fold: The delays
are assumed uniformly bounded, a feature that preserves
the exponential speed of convergence. A relaxation to
unbounded case may be achieved with considerable effort
and on condition that aij(t) vanish as t gets large. Then
the speed is likely to be degraded to sub-exponential
Somarakis et al. (2014a). Moreover, the smallness on the
growth of τ̇ is a standard feature in the theory of delayed
equations and, it allows λij(t) to be invertible and it is
imposed mainly for consistency reasons Burton (2006).

For the flocking model we imposed delays on the observed
velocity of the neighboring agents only and not on the ob-
served position. We assumed that that each bird, although
receives instant information on the position of its fellow
neighbors, the information for the speed is delayed. This
is not an unrealistic claim as, in general, it is much easier to
estimate the position of a moving objects than its velocity.
The latter quantity can be subjected to environmental
factors which allow only a distorted or, in our case, delayed
version of it.

All the above results can be generalized to simply con-
nected populations of agents or even switching signals just
as in Somarakis and Baras (2015). Such a setup is to be
developed for the journal version of this work.
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