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Abstract—Distributed monitoring and sensing networks are
ubiquitous in current technological systems. Security and ef-
ficiency of the data aggregation and fusion process are key
determinants in the adoption of these systems. The principal
thesis investigated in this paper is the role of privacy in providing
security guarantees for such networks. We demonstrate that two-
level hierarchy (or partition) in information fusion networks
can be used to ensure security in several adversarial scenarios.
We propose a privacy preserving physical layer framework to
generate such a hierarchical structure. We illustrate the security
of this framework and its application to low power sensor
networks.
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I. INTRODUCTION

Recent advances in sensor technology have significantly
increased the adoption of these devices in current systems.
Distributed networks of low powered sensors with limited
capability have been deployed in several critical systems such
as cyberphysical systems for monitoring and regulation of
power grids, large scale intrusion detection systems or civil
infrastructure monitoring systems.

A typical requirement in several such applications is the
ability to effectively and efficiently extract data from the net-
work. Significant research efforts have been directed towards
increasing the efficiency of the information retrieval process.
This includes selection of a subset of nodes for observation,
[1], [2], [3], utilizing compressive sensing techniques [4], [5],
[6] or distributed signal processing techniques [7].

The critical nature of the deployment scenarios has made
such systems a valuable target for adversarial action. The
risk is compounded by the fact that typically, such networks
are composed of unattended devices with limited protection.
Additionally, such networks are expected to operate efficiently
in dense environments and over long periods of time. Thus
efficient security is a key requirement for such systems. Several
techniques have been proposed in literature to ensure security
in such systems, e.g. [8], [9], hop-by-hop encryption [10],
end-to-end encryption [11], or secure data aggregation [12],
[13]. However, such techniques introduce both, significant
processing and communication overhead.

In this paper, we present an efficient framework to ensure
security in the network. We investigate the role of privacy
in ensuring security of the network. Intuitively, we select
a subset of nodes to act as ‘pseudo-adversaries’, and inject
malicious (noisy) data in the network. The creation of such

a partition in a privacy preserving manner, i.e. such that the
partitions are unknown to the adversary, can obfuscate the
adversarial view. Systems where data acquisition requires a
subset of measurements, e.g.: [1], [2], [4], we may create such
a hierarchy by sacrificing only the communication efficiency.

Further, we utilize the physical layer watermarking in [14]
to define a privacy preserving method to select nodes. This
serves as an efficient method to define ‘pseudo-adversarial’
partitions and guarantee security.

The rest of this paper is organized as follows. In Section II,
we discuss the systems under consideration and describe the
overall scheme. In Section III, we describe the privacy preserv-
ing messaging scheme and illustrate its security properties. In
Section IV we validate our results via MATLAB simulations.

II. SYSTEM DESCRIPTION

Consider a network M = {M1,M2, . . . ,MN}, of N
sensor nodes distributed uniformly over a region. Consider a
central entity that, over a wireless interface, gathers data (or a
function of the data) from the sensor nodes. We denote such
an entity by FC (Fusion Center). The data acquisition (or state
computation) is based on periodic measurements collected by
the FC from the N nodes.

We restrict our study to systems with dynamics (partially
known) that enable the FC to utilize techniques to reduce com-
munication or processing overhead, e.g.: systems described
in [1], [2], [4]. We assume that the optimization strategy
is determined by the FC based on the system state. For
optimization, the FC may partition the network based on
significance of the information.

Consider the scenario where at sampling instance n, only
observations from the set Mc(n) ⊂ M are significant for the
FC. To reduce system overhead, only the nodes Mc(n) may
transmit the measurements and nodes Md(n) = M\Mc(n)
do not transmit any data.

For simplicity, consider the scenario where the FC can
communicate directly with the nodes M, i.e.: one hop sce-
nario. We may trivially extend the framework to multi-hop
scenarios, by iterative application of the security strategy of
the fusion center to cluster-heads (one hop neighborhoods).

A. Adversarial Model

We consider an external eavesdropping adversary A. Since
the nodes M communicate over a wireless medium, we
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assume that the adversary may obtain complete data trans-
missions. e.g. for the single hop scenario, all observations of
the FC.

We assume that to effectively attack the network, the
adversary, A, requires at least the information obtained by
FC, i.e. the system view of A should be the same as FC. We
assume the existence of a pre-shared secret (key k), unknown
to the adversary. Further, we assume that the randomness
(specific instantiations) in the optimization strategy of the FC
is unavailable to the adversary.

B. System Operation

At a collection instance n, the FC selects a set Mc(n) ⊂
M to query. The particular set may depend on the particular
technique being used by FC and state of the system, i.e. [1],
[2], [4], and is unknown to the adversary. The Fusion Center
utilizes a privacy preserving framework (described in Section
III) to covertly query (message) the selected nodes Mc(n).
(Note: For scenarios where |Md(n)| < |Mc(n)|, we query
Md(n).)

Upon receiving the query message, the nodes Mc(n) reply
with the true network measurements Oc(n) = {Mo

i (n) | i ∈
Mc(n)}. The remaining nodes transmit decoy measurements
Od(n) = {g(Mo

i (n)) | i ∈ Md(n)}.

Consider the operation by FC to be a function of the
observations, i.e. the view of FC is VFC = v(Oc(n)). The
adversary, in the absence of knowledge of Mc(n), possesses
the view VA = v(Oc(n)∪Od(n)). By careful selection of g(·),
we ensure VFC 6= VA, i.e. the system view of the adversary is
different from the FC, thus fulfilling our security requirement.

For example, consider the scenario where v(·) is the
averaging function. Even a simple selection of g(·), i.e. g(x) =
∆ = 0, is sufficient to distort the view of the adversary.

It should be observed that our scheme incurs a transmission
overhead due to the decoy transmissions, thus decreasing the
system efficiency due to optimizations by the FC. However,
we achieve security guarantees without the use of crypto-
graphic primitives. For low capability nodes, as is the case in
typical sensor networks, that lack a cryptographic co-processor,
this leads to a significant reduction in the energy overhead.

C. System Example

Consider the state estimation system described in [1]
consisting of m sensor nodes (M). The FC estimates the
state of the system xn ∈ R

s from c ≥ s linear measurements
corrupted by Gaussian noise. The FC uses a greedy approach
to select c nodes (Mc).

Utilizing our scheme, the FC covertly queries the c nodes
to obtain the sensor measurements. Nodes that have not been
queried sample a Bernoulli random variable with success
probability pd. Upon a successful outcome, the node transmits
a decoy measurement g(x) = x + ǫ, where x is the true
measurement and ǫ ∼ N (∆, σ2

d). This causes the adversary
to converge to a false system state (similar to the adversarial
noise injection scenario demonstrated in [15]).

The system incurs an average communication and process-
ing overhead, d ≈ pd(m−k), due to the decoy measurements.

In the absence of any knowledge of k, at each step, the search
space for the adversary grows by O(2k+d). We select pd based
on the acceptable overhead vs. adversarial effort tradeoff for
the given application.

III. PRIVACY PRESERVING MESSAGING SCHEME

We describe the messaging scheme to covertly convey
information to the selected nodes. We utilize the idea of low
power tagging developed in [14]. Here we briefly describe
important notation and aspects of the scheme relevant to our
discussion. For details, constraints and performance metrics
of the single tag scheme, the reader is referred to [14]. The
goal here is to describe our framework based on [14] and the
corresponding security properties.

A. Tagging Scheme

Consider the sender selecting the nodes by transmitting a
query message, s = {s1, s2, . . . , sL}, of length L symbols, to
a set Mc ⊂ M of nodes. The sender assigns a tag,

ti = f(k, s, i) ∀i ∈ Mc,

to each node in Mc. Here i denotes the identity of the
node and k denotes the common shared key in the network.
f(·) represents a ‘secure’ tagging scheme (e.g: keyed hash
function). We require that for f(·), the distribution of the
output is uncorrelated to the input. This requirement can
typically be satisfied by cryptographic one way functions.
Further, via proper encoding, we ensure ti ∈ {−1, 1}L. The
intuition is to tag the message s such that a node j with the
key can identify whether j ∈ Mc.

The sender superimposes the tag on the signal waveform
to transmit as

x = ρss+ ρt
∑

i∈Mc

ti,

where ρs, ρt ∈ (0, 1) represent the power allocation to the
signal and tag. Let us assume that for the system,

max |Mc| = Kmax.

If we consider the number of tags superimposed at any time
instant to be a random quantity K = |Mc| with expected
value K̄ = E[K]. We ensure that the total average power is
maintained, i.e. ρ2s + K̄ρ2t = 1.

Assume a Rayleigh block fading (slow fading) channel.
The channel for the transmitted block is denoted by h ∼
CN(0, σ2

h). CN denotes a circularly symmetric complex Gaus-
sian variable. The receiver observes the block y = h · x+w,
where w = {w1, . . . wL} and wk ∼ CN(0, σ2

w), ∀k. Using
the pilot-based MMSE estimator highlighted in [14], a re-
ceiver recovers the transmitted signal ŝ and its expected tag
t̂i = f(k, ŝ, i). The receiver determines if it is one of the
‘selected’ receivers by verifying the presence of its tag in the
residue

r =
1

ρt
(x̂− ρsŝ) =

∑

i∈Mc

ti +
1

ρt

h∗

|h|2w. (1)



The receiver obtains the test statistic τj by applying a

matched filter to the residue with the estimated tag, τj = t̂Hj r.
The receiver performs a threshold test with hypotheses

H0 : t̂j is not present in r

H1 : t̂j is present in r. (2)

Assuming perfect channel estimation (ĥ = h) and tag
estimation (̂t = t), we obtain the statistic for the two scenarios
when the tag tj is present vs. not present as follows

τj =
∑

i∈Mc

tHj ti +
1

ρt

h∗

|h|2 t
H
j w (3)

=
∑

i∈Mc

tHj ti + wt. (4)

Since tj = {−1, 1}L, the noise term wt can be viewed as
a sum and difference of L components, wi, of w. As these are
assumed to be iid Gaussian, we see that

wt ∼ CN
(

0, L
1

ρ2t

σ2
w

σ2
h

)

.

For the first term, firstly we consider the scenario where tj ∈
Mc. Clearly,

∑

i∈Mc

tHj ti = tHj tj +
∑

{i∈Mc,i6=j}

tHj ti

= L+
∑

{i∈Mc,i6=j}

tHj ti.

For i 6= j, tHj ti =
∑L

r=1 br, where br is a random variable,

such that P(br = 1) = P(br = −1) = 1/2. Thus

∑

{i∈Mc,i6=j}

tHj ti =

L(K−1)
∑

r=1

br ∼ N (0, L(K − 1)).

Note that the Normal approximation holds accurately for only
large values of L,K, via the Central Limit Theorem, which
will be true for most instances of our system. In the event that
this is not the case, we may further add a small error term
without much change to the analysis.

Proceeding as above, we may obtain the distribution for
the case when j /∈ Mc as

∑

i∈Mc

tHj ti ∼ N (0, LK).

Thus, conditioned on tj , the distribution of τj for the tagged
and non tagged scenarios is

τj |H1 ∼ N (L, L(K − 1) + γtL)

τj |H0 ∼ N (0, LK + γtL), (5)

where γt =
1

2ρ2

t

σ2

w

σ2

h

, since we use just the real component of wt

for decision making. The receiver performs a simple threshold
test as

τj ≷
H1

H0
τth. (6)

Clearly, the scheme leads to a small degradation in the perfor-
mance of transmission of the symbol s. However, most practi-
cal communications are conservatively designed to operate in

a variety of environments. We claim, based on the application
and the operating environment, we can tune ρs such that the
perceivable degradation is negligible.

For the system, K ∈ {1, . . . ,Kmax}. The value of Kmax

is determined by the acceptable probabilities of error in de-
tecting the tags. For the above hypotheses, we may write the
probability of false alarm (Pfa) and missed detection (Pmd)
as

Pfa = Φ

(

− τth√
LK + Lγt

)

(7)

Pmd = Φ

(

τth − L
√

L(K − 1) + Lγt

)

, (8)

where Φ(·) is the Gaussian cdf function. Let ρmin
s denote the

minimum power allocation to the signal without perceivable
QoS degradation. Thus we obtain

ρ2t = (1− ρmin
s

2
)/Kmax. (9)

Thus, we select the value of Kmax such that

max
K

Pfa ≤ p1, and max
K

Pmd ≤ p2. (10)

The max constraint typically leads to a conservative se-
lection of Kmax. For system design, where we may calculate
the distribution of K, (e.g. K ∼ U(K−1

max)), we may relax the
constraints to

Pfa ≤ p1, and Pmd ≤ p2,

where the false alarm and missed detection probabilities are
computed over distribution of K. We demonstrate via simu-
lations in Section IV, that such criteria can be satisfied for
several design parameters.

B. Security Properties

We emphasize that due to the low power of the tag, for
an adversary, identifying the set Mc by decoding the tag
components is difficult. Further, without knowledge of the key
k, the adversary is unable to perform matched filtering on
the residue to verify the presence of specific tags. The best
strategy for the adversary is to perform statistical tests on
(1). We prove that this yields insufficient information, even to
accurately estimate the number of selected nodes. We highlight
the security properties of the framework.

1) Determination of elements of Mc: Consider (1) to esti-
mate the tag. As each component of the tag ti = {ti1, . . . , tiL}
is independent, we may consider estimation of each component
separately from (1). For the j’th component,

rj =
∑

{i∈Mc}

tij + w′
j .

The adversary estimates a noisy version of the tags T̂j ≈
∑

{i∈Mc}
tij . Let us assume that the adversary estimates T̂j

perfectly and has knowledge of the number of components K.
Even so, the probability that the adversary correctly recon-
structs even a single tag, tj , j ∈ Mc, can be shown to be
K−L.



However, it is important to observe that the estimate T̂j

is obtained from a very noisy measurement. Thus the error
in such an estimate would be large. Further, the number
of components in the selected set, K, will be unknown to
the adversary. This significantly reduces the probability of
correctly decoding the tags.

2) Determination of K: We argue that given the adversarial
observation, it is difficult to estimate even the number of
tags embedded. We consider the parameter K = |Mc| to be
the underlying parameter in our observation. The adversary
observes

Yj =
∑

{i∈Mc}

tij + w′
j = Tj + w′

j , j = 1, . . . , L (11)

It can easily be seen that the random variable Tj has the
distribution

P(Tj = K − 2t) = 2−K

(

K

t

)

(12)

As w′
j ∼ N (0, γt), we may write the density of Yj , ∀j as

pY (x) = 2−K

K
∑

t=0

(

K

t

)

N (x;K − 2t, γt) (13)

=
2−K

√
2πγt

K
∑

t=0

(

K

t

)

exp

(

− 1

2γt

(

x− (K − 2t)
)2
)

(14)

We can see that (14) essentially represents the Gaussian
mixture model of K components with identical variances
but different means. Such problems have been studied for
several years in the context of biological systems or clustering
problems in computer vision. However, for components that
are close (as in our scenario), this estimate error is known to
be large. A variety of methods [16], [17], [18] may be used
to estimate K. We highlight some results in Section IV.

To see analytically the performance of the estimator, we
may perform a coarse approximation and assume Tj to have
Normal distribution, i.e. Tj ∼ N (0,K). Thus the estimation
problem reduces to estimating K from L observations of yj
with distribution Yj ∼ N (0, γt + K). From [19], the lower
bound for the variance of the best estimator can be computed

to VarK [K̂] ≥ 2(γt+K)2

L
. Though this is was based on the

Normal approximation of Tj , we can see that the order of the
error is (γt+K) when the number of components is K. Thus
the adversary is unable to gain much information about the
estimate of K.

Thus using the proposed tagging scheme, we can selec-
tively identify a subset of nodes without leaking any informa-
tion to the adversary.

Remark: Under the assumption of a shared key, this goal can
be trivially achieved by symmetric key encryption, wherein
the central node encrypts the identity of the nodes in Ns and
transmits the signal. However, the current framework provides
several advantages over the standard encryption methodology.

• Our method ensures that the total bandwidth and
power per packet does not change. For encryption
based methods, as the identities are transmitted with

the same QoS as data, increased power and bandwidth
are required. While for each packet, the gain may not
be significant, for schemes where such packets are sent
periodically, the savings over the lifetime of a node
would be significant.

• Our method prevents leakage of even empirical data
such as the number of paged nodes. To achieve a
similar effect using encryption, each packet would
have to be padded to a consistent length, thus incurring
an increased overhead.

• Using our method, the signal can be overlapped over
any existing protocol message, rather than requir-
ing the design of new messages. For example, even
periodic ’HELLO’ or ’ALIVE’ transmissions in a
sensor network could be used to convey the desired
information.

• Our method prevents the adversary from performing
attacks like relaying or recording and replaying. This
is due to the fact that re-transmission of the packets
destroys the embedded identity information. This was
further presented in [20].

We observe that the error guarantees provided by our
scheme are not comparable to cryptographic methods. How-
ever, based on the specific application, the parameters of
the scheme may be selected to ensure no degradation in the
application metrics.

A similar framework was proposed by [21] to preserve the
privacy in the paging channel in LTE systems. Though similar,
the design criteria and constraints required for that system are
significantly different. Our framework is more general. The
system in [21] can be considered as a specific case of our
framework.

IV. SIMULATIONS

We demonstrate the security properties and the influence
of design parameters of the scheme via MATLAB simulations.
First we consider identification of critical parameters of system
design. We then utilize the optimal range of those parameters
and illustrate the security properties of the scheme.

A. Parameter selection

The performance of the scheme is highly dependent on
the selection of the system parameters. We consider a system
operating with a 10% power margin, i.e. selection of ρ2s ≥ 0.9
is sufficient to maintain the desired QoS. Thus from (9), we
have ρ2t · Kmax = 0.1. The selection of Kmax is based on
the system configuration and topology. An increase in Kmax,
while decreasing query latency, adversely impacts system
performance.

In Fig. 1, we illustrate the variation in the probabilities
of false alarm and missed detection with increasing Kmax.
We select the optimal decision threshold in (6) based on
minmax rule (minimizing the max{Pfa, Pmd}), rather than
fixed bounds. Assuming a 7% tolerable false alarm and missed
detection, we observe that for tag length L = 256 symbols,
we may select a maximum of 14 nodes. Assuming, that the
application induces a uniform distribution over the number



of selected nodes, i.e. K ∼ U(K−1
max), we may relax the

constraints to accommodate a maximum of 20 nodes.

Further, we observe that an increase in the tag length L
allows for a higher number of selected nodes. However, this
can adversely influence the security properties of the scheme
as the adversary obtains a greater number of samples for
prediction.
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Fig. 1. Maximum and total probability of false alarm and missed detection
with variation in maximum number of selected nodes (SNR, L, Kmax ·ρ2

t
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(a) (10, 128, 10%), (b) (5, 256, 10%), (c) (10, 256, 10%), (d) (5, 512, 10%),

B. Security properties

Clearly, determination of the individual nodes selected,
without knowledge of the group key k is not feasible. Here,
we demonstrate that the proposed method is robust to leakage
of empirical information such as the number of nodes selected.

As discussed in Section III-B2, determination of K is
equivalent to determination of the number of components
(clusters) in a Gaussian Mixture Model, which is known to be
difficult. However, we remark that in our scenario, the location
of the cluster heads may be determined apriori based on
the number of assumed clusters, thus reducing the parameter
space.

Assuming the adversary has knowledge of the channel
conditions and system parameters, we perform the maximum
likelihood estimation of the number of selected nodes as

K∗ = argmax
K

L
∑

i=1

log

(

2−K

K
∑

t=0

(

K

t

)

N (xi;K − 2t, γt)

)

(15)

Using optimal parameter values determined in the previous
section, we perform Monte Carlo simulations for varying num-
ber of selected nodes. In Fig. 2, we illustrate the probability
distribution of estimated number of selected nodes in the
different scenarios. The color gradient represents variation in
the distribution. It can be seen that even in the high SNR
scenario, for L = 128 and L = 256, the distribution of the
estimate is close to uniform for any number of selected nodes.

Number of sensors selected

6 8 10 12 14

N
u
m

b
e
r 

o
f 
s
e
n
s
o
rs

 e
s
ti
m

a
te

d

5

6

7

8

9

10

11

12

13

14
Probability distribution of component estimation

(a)

Number of sensors selected

5 6 7 8 9 10 11 12 13 14

N
u
m

b
e
r 

o
f 
s
e
n
s
o
rs

 e
s
ti
m

a
te

d

5

6

7

8

9

10

11

12

13

14
Probability distribution of component estimation

(b)

Fig. 2. Probability distribution for estimation of number of components for
(a) L = 128, (b) L = 256

K Mean Var MMSE Perr

5 6.1635 3.1448 4.4987 0.4224

6 6.7254 4.4870 5.0131 0.8632

7 7.4605 5.9470 6.1592 0.8705

8 8.2211 7.0725 7.1214 0.8743

9 9.0445 7.7131 7.7151 0.8812

10 9.8384 7.9363 7.9624 0.8822

11 10.6622 7.4658 7.5800 0.8871

12 11.3598 6.6790 7.0889 0.8836

13 12.0006 5.5833 6.5823 0.8897

14 12.5451 4.2675 6.3842 0.4563

Further, we observe from Table IV-B, for L = 256, the
estimation error is high for all possible choices of nodes. In
Fig. 3, we illustrate the gain in adversarial advantage due to
increase in the tag length. However, even in the scenario of
L = 512, the advantage is insignificant to be of practical use.

V. CONCLUSION

We proposed an efficient method to covertly query a
small subset of nodes from a large group of wireless nodes
communicating over a wireless medium. This enables a central
entity to partition the network into multiple levels without
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Fig. 3. Probability distribution for estimation of number of components for
different symbol lengths with variation in number of selected sensors (a) K =
7, (b) K = 11

the knowledge of an external adversary. We illustrated the
application of this scheme to provide security guarantees
in information fusion networks. In scenarios of information
fusion, where information from a specific partition is sufficient,
we utilize the remaining partitions to distort the view of the
adversary. We utilize physical layer watermarking to design a
privacy preserving method to query the nodes.
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