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Abstract— In this paper, we study optimal stationary sam-
pling for transmission of measurements of a stochastic process
from a source encoder to a source decoder through a costly com-
munication channel. We measure information transferred over
a time interval by the change in the decoder’s entropy regarding
the state of the process given the transmitted measurements.
In our setting, the encoder employs a sampler to control the
information flow in the channel. The problem is casted as a
discounted infinite horizon optimization problem that takes into
account the transferred information and the paid price. We
derive the optimal stationary sampling policy, and propose two
computational methods with convergence guarantees by using
techniques from approximate dynamic programing. In addition,
we introduce two triggering mechanisms based on the value of
information and on the covariance threshold that can generate
the optimal policy. Finally, we present some numerical and
simulation results.

Index Terms—Approximate Policy Iteration, Approximate
Value Iteration, Covariance Threshold, Self-Triggered Sam-
pling, Optimal Stationary Policy, Value of Information.

I. INTRODUCTION

In this paper, we study optimal stationary sampling for
transmission of measurements of a stochastic process from
a source encoder to a source decoder through a costly
communication channel. We measure information transferred
over a time interval by the change in the decoder’s entropy
regarding the state of the process given the transmitted
measurements. In our setting, the encoder employs a sampler
to control the information flow in the channel. This study
has a broad range of applications including surveillance and
reconnaissance, planetary explorations, wireless wearables,
teleoperation, and many other examples of cyber-physical
systems.

Nonuniform sampling [1] and its important sub-class
event-driven (event-triggered) sampling [2] for estimation
have received early attention in the literature. Kushner [3]
studies the optimal measurement control problem for linear
systems subject to a constraint on the number of measure-
ments. Meier et al. [4] look at the optimal measurement
control problem subject to measurement cost, and propose
dynamic programming (DP) and the gradient method as com-
putational procedures. Åström and Bernhardsson [2] show
that event-driven sampling can outperform periodic sampling
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with respect to the estimation error of a scalar linear system
under a sampling rate constraint. Rabi et al. [5] study optimal
event-driven sampling as a stopping time problem for a scalar
system under a finite transmission budget constraint. Molin
and Hirche [6] investigate the optimal design for event-driven
sampling in a scalar system with communication cost by
considering a two-player problem. Furthermore, Soleymani
et al. [7] study optimal closed-loop sampling in which the
effect of the cost-to-go is taken into account.

Event-driven sampling can reduce communication cost
while providing a good estimation performance. However, it
requires the encoder to monitor the process constantly. Self-
driven (self-triggered) sampling [8] is a technique in which
the encoder is self-contained in decision making and can
compute the sampling schedule without monitoring the pro-
cess constantly. An example of a self-triggering mechanism
for sampling in the estimation problem is the one based on
the covariance of the estimation error. In [9], we propose an
optimized self-triggering mechanism in which the parameter
of the mechanism is found by solving an optimization
problem. In [10], we characterize the optimal self-triggered
sampling policy for the finite horizon estimation problem.
In contrast, in this paper we study the infinite horizon prob-
lem. We derive the optimal stationary policy, and propose
two computational methods with convergence guarantees by
using techniques from approximate dynamic programing. In
addition, we introduce two triggering mechanisms based on
the value of information and on the covariance threshold that
can generate the optimal policy.

The outline of this paper is as follows. Problem formu-
lation is presented in Section II. In Section III, we derive
the optimal stationary sampling policy, propose two compu-
tational methods for calculating this policy, and introduce
two triggering mechanisms. We illustrate numerical and
simulation results in Section IV. Finally, concluding remarks
are made in Section V.

A. Notations

In this paper, we represent an n dimensional vector with
x = [x1, . . . , xn]T where xi is its ith component. We write
xT to denote the transpose of the vector x. The identity
matrix with dimension n is denoted by In. We write δkk′

to denote the Kronecker delta function. We write p(x) to
denote the probability distribution of the stochastic variable
x. The normal distribution with mean µ and covariance Σ is
denoted by N(µ,Σ). For matrices A and B, we write A � 0
and B � 0 to mean that A and B are positive definite and
positive semi-definite, respectively.
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II. PROBLEM FORMULATION

A. Dynamical System and Filtration

Consider a discrete-time dynamical system generated by
the following linear state equation:

xk = Fxk−1 + wk−1, (1)
yk = Hxk + vk, (2)

for k = 1, 2, . . . where xk ∈ Rn is the state of the system
at time k, F is the state matrix, wk ∈ Rn is a white
noise sequence with zero mean and covariance Qδkk′ where
Q � 0, yk ∈ Rp is the output of the system at time k, H
is the output matrix, and vk ∈ Rp is a white noise sequence
with zero mean and covariance Rδkk′ where R � 0. It
is assumed that the initial state x0 is a Gaussian vector
with zero mean and covariance P0, and that x0, wk, and
vk are mutually independent. We also assume that (F,H) is
observable.

A source encoder samples the measurements of the process
at times ks for s = 1, . . . ,M where M is unknown.
Samples are transmitted through a communication channel,
and received by a source decoder. Through this study, the
decoder assumes that measurements are never compromised.

Definition 1 (Information control): The information con-
trol δk at time k is

δk =

{
1, if ∃s : k = ks,
0, otherwise, (3)

where δ0 = 0.
A set of information controls π = {δ1, . . . , δN} is called
a sampling policy. At each time k, the encoder should
decide about the information control δk. We assume that
measurements yk are not explicitly used by the encoder for
the decision making.

Definition 2 (Decoder’s information set): The decoder’s
information set is the σ-algebra generated by measurements
transmitted to the decoder, i.e.,

Ik = σ{yl | l ≤ k, δl = 1}. (4)
The decoder’s information set is a function of the infor-

mation control, i.e., Ik = Ik(δk). In particular, we can write

Ik(δk) =

{
σ{Ik−1, yk}, if δk = 1,
Ik−1, otherwise. (5)

Filtration at the decoder is based on the decoder’s informa-
tion set Ik(δk). The conditional distribution p(xk|Ik(δk)) =
N(x̂k, Pk) is a Gaussian distribution given the sys-
tem’s model introduced before. The conditional distribution
evolves in time due to the system dynamics, and is updated
at times ks due to measurements.

Consider the transformation Ik = P−1k where Ik is
the Fisher information matrix (FIM) [11]. Following the
Kolmogorov forward equation [12], the estimate and the FIM
in the interval (ks−1, k

−
s ] are propagated as

x̂k = Fx̂k−1, k ∈ (ks−1, k
−
s ], (6)

Ik = (FI−1k−1F
T +Q)−1, k ∈ (ks−1, k

−
s ], (7)

where k−s denotes time ks before the estimate and the FIM
are updated. Following Bayes’ rule [12], the estimate and
the FIM at time ks are updated as

x̂k = x̂k− +Kk(yk −Hx̂k−), k = ks, (8)

Ik = Ik− +HTR−1H, k = ks, (9)

where Kk = I−1k HTR−1 is the gain of the filter.
We write the discrete-time switched dynamics of the

estimate and the FIM in terms of the information control:

x̂k = Fx̂k−1 +Kk

(
yk −HFx̂k−1

)
δk, (10)

Ik = (FI−1k−1F
T +Q)−1 +HTR−1Hδk, (11)

which are shortly expressed by x̂k = ψk(x̂k−1, Ik−1, δk) and
Ik = φk(Ik−1, δk).

B. Performance Indices

Entropy is a measure of the uncertainty of a random vari-
able. The differential entropy of the conditional distribution
p(xk|Ik(δk)) is given by

Hk =
1

2
log2

[
(2πe)n det I−1k

]
. (12)

Definition 3 (Information from decoder’s perspective):
Information is the change in the entropy of the state of the
process given the decoder’s information set Ik(δk), i.e.,

Πk , H0 −Hk, (13)

where H0 is the entropy at the reference time k = 0.
In order to optimize the information from decoder’s per-

spective, we define the following estimation cost over the
time horizon N :

Jeπ(I0) = −1

2

N∑
k=0

αk log2 det Ik, (14)

where α ∈ (0, 1) is a discount factor which weighs the
relative contribution of the costs in the near and long-term.

The directed communication of the encoder to the decoder
is costly. In general, the communication price depends on
the state of the channel and on the measurements. Let the
communication price per measurement at time k be denoted
by λk. Then, the communication cost over the time horizon
N is given by

Jcπ =

N∑
k=0

αkλkδk. (15)

In the following, we assume that λk = λ is constant.
We define the aggregate cost function as a convex combi-

nation of the estimation and the communication cost func-
tions defined in (14), (15):

Jπ(I0) =

N∑
k=0

αkgk(Ik, δk), (16)

where the stage cost g(Ik, δk) at time k is

g(Ik, δk) = −1

2
θ log2 det Ik + (1− θ)λδk, (17)
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where θ ∈ [0, 1]. The stage cost is a convex function in Ik
and δk.

In this study, given the FIM dynamics defined by (11) and
the information control defined by (3), we would like to find
the optimal stationary sampling policy π∗ = {δ∗, δ∗, . . . }
that minimizes the aggregate cost function Jπ(I0) when time
horizon N goes to infinity.

III. MAIN RESULTS

A. Optimal Stationary Sampling Policy

The maximal solution I+ of the FIM dynamics is deter-
mined by solving the following equation

(FI−1+ FT +Q)−1 +HTR−1H = 0. (18)

The necessary conditions for the existence of a unique
maximal solution are studied in [13]. We assume that I+ � 0.

Definition 4: Consider γ > 0, γIn � I+, and S = {X ∈
Rn×Rn|X � γIn}. We define Uγ(I) as the set of admissible
controls such that if I ∈ S and δ ∈ Uγ(I), then φ(I, δ) ∈ S.

Assumption 1: We assume that the set of admissible con-
trols Uγ(I) is nonempty for I ∈ S.

Assumption 1 guarantees that the FIM remains a non-
singular matrix given I0 ∈ S.

Now, we can formulate the main problem of this paper by
the following infinite horizon optimization problem

minimize Jπ(I0) = lim
N→∞

N∑
k=0

αkg(Ik, δk) (19)

subject to Ik = φ(Ik−1, δk),

with variables Ik ∈ S and δk ∈ Uγ for all k = 1, 2, . . . , and
with initial condition I0 ∈ S. The optimal value of the cost
function in (19) is denoted by J∗(I0) = minπ Jπ(I0).

Definition 5: For any function J : S → R, we define the
DP operator T as

TJ(I) = min
δ∈Uγ

{
g(I, δ) + αJ

(
φ(I, δ)

)}
, (20)

and the operator Tδ as

TδJ(I) = g(I, δ) + αJ
(
φ(I, δ)

)
. (21)

Theorem 1: Given the operators T and Tδ in Definition 5
and Assumption 1, for any bounded function J : S → R we
have:
i) The sequence T kJ(I) generated by the DP operator is
convergent, i.e.,

J∗(I) = lim
k→∞

T kJ(I), ∀I ∈ S. (22)

ii) The DP operator has a unique fixed point J∗(I) that
satisfies

J∗(I) = TJ∗(I), ∀I ∈ S. (23)

iii) The stationary sampling policy π = {δ, δ, . . . } is optimal
if and only if

TδJ
∗(I) = TJ∗(I), ∀I ∈ S. (24)

Proof: The techniques used for the proof are standard.
Part i) For the initial state I0 ∈ S and positive integer K,

we first split the cost function corresponding to the policy π
into two parts

Jπ(I0) =

K−1∑
k=0

αkg(Ik, δk) + lim
N→∞

N∑
k=K

αkg(Ik, δk). (25)

From Assumption 1, we have Ik ∈ S. This leads to
− 1

2θ log2 det I+ + (1 − θ)λ ≤ g(Ik, δk) ≤ − 1
2 log2 γ

n.
Therefore, there exists M < ∞ such that |g(Ik, δk)| ≤ M .
Then, for the second term in (25) we can obtain∣∣∣ lim

N→∞

N∑
k=K

αkg(Ik, δk)
∣∣∣ ≤ MαK

1− α
. (26)

Using (26), we can write the following inequalities

Jπ(I0)− MαK

1− α
− αK max

I∈S
|J(I)| (27)

≤
K−1∑
k=0

αkg(Ik, δk) + αKJ(IK)

≤ Jπ(I0) +
MαK

1− α
+ αK max

I∈S
|J(I)|.

Minimizing each term over π yields

J∗(I0)− MαK

1− α
− αK max

I∈S
|J(I)| (28)

≤ TKJ(I0)

≤ J∗(I0) +
MαK

1− α
+ αK max

I∈S
|J(I)|.

As K →∞, we have J∗(I0) = limK→∞ TKJ(I0).
Part ii) By applying the DP operator to the equation (28),

and from monotonicity of DP, we obtain

TJ∗(I0)− MαK+1

1− α
− αK+1 max

I∈S
|J(I)| (29)

≤ TK+1J(I0)

≤ TJ∗(I0) +
MαK+1

1− α
+ αK+1 max

I∈S
|J(I)|.

As K →∞, we know that J∗(I0) = limK→∞ TK+1J(I0).
Therefore, J∗(I0) = TJ∗(I0). Now, assume that J1 and J2
are two distinct fixed points that satisfy (23). From (22), it
follows that J∗1 = J∗2 .

Part iii) If TδJ∗(I) = TJ∗(I), from Part ii) we have
J∗(I) = TδJ

∗(I) which yields Jπ = J∗. The other direction
can be proved analogously.

B. Approximate Value and Approximate Policy Iterations

The state space S of the FIM dynamics is bounded but
infinite. In order to use a computational method to solve the
DP algorithm, we need to approximate the problem by state
discretization. We use a finite grid S′ = {I1, . . . , In(S′)} to
discretize the state space where n(S′) denotes the cardinality
of S′. Then, we express the non-grid states by a linear
interpolation of grid states, i.e.,

I =

n(S′)∑
i=1

wi(I)Ii, (30)
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where weights wi are nonnegative. Given that J(Ii) is the
value function of a grid state Ii, the value function of a
non-grid state I is approximated by

J̃(I) =

n(S′)∑
i=1

wi(I)J(Ii). (31)

Algorithm 1 Approximate Value Iteration Algorithm
0. Initialize the function Jk(I) for k = 0, I ∈ S′
1. Calculate the function Jk+1(I) for each I ∈ S′

Jk+1(I) = min
δ∈Uγ

{
g(I, δ) + αJ̃k

(
φ(I, δ)

)}
(32)

J̃k(I) =

n(S′)∑
i=1

wi(I)Jk(Ii) (33)

3. Stop if maxI∈S′ |Jk+1(I)− Jk(I)| < ε0; otherwise go
to Step 1.

The first method that we use to compute the optimal
stationary policy is approximate value iteration (described in
Algorithm 1). In approximate value iteration, we generate
a sequence of functions Jk(I) which are approximations
of the functions T kJ(I). In each iteration, the improved
function Jk+1(I) is obtained based on the function Jk(I).
The algorithm stops when the maximum difference between
two successive functions is less than a specific tolerance.

The following proposition guarantees the convergence of
the approximate value iteration algorithm.

Proposition 1: Assume that

max
I∈S′

∣∣∣Jk+1(I)− TJk(I)
∣∣∣ ≤ ζ, k = 0, 1, . . . . (34)

Then,

max
I∈S′
|J∞(I)− J∗(I)| ≤ ζ

1− α
, (35)

where J∞(I) = limk→∞ Jk(I).
Proof: Please refer to [14].

The second method is approximate policy iteration (de-
scribed in Algorithm 2) that generates a sequence of policies
πk = {δk, δk, . . . } and approximated cost functions Jk(I)
corresponding to these policies. In each iteration, the cost
Jk(I) is used by a greedy algorithm to determine the next
policy πk+1. The algorithm stops when the maximum dif-
ference between two successive cost functions is less than a
tolerance. In comparison with value iteration, policy iteration
requires fewer iterations as the policy space is smaller than
the state space. However, each iteration in policy iteration is
computationally more expensive.

The following proposition guarantees the convergence of
the approximate policy iteration algorithm.

Proposition 2: Assume that

max
I∈S′
|Jk(I)− Jπk(I)| ≤ η, k = 0, 1, . . . , (39)

max
I∈S′
|Tδk+1Jk(I)− TJk(I)| ≤ ζ, k = 0, 1, . . . . (40)

Algorithm 2 Approximate Policy Iteration Algorithm
0. Initialize the stationary policy δk(I) for k = 0, I ∈ S′
1. Calculate Jk(I) for all I ∈ S′ using the stationary
policy δk(I)

Jk(I) = g(I, δk) + αJ̃k
(
φ(I, δk)

)
(36)

J̃k(I) =

n(S′)∑
i=1

wi(I)Jk(Ii) (37)

2. Obtain the stationary policy δk+1(I) for each I ∈ S′

δk+1(I) = argmin
δ∈Uγ

{
g(I, δ) + αJ̃k

(
φ(I, δ)

)}
(38)

3. Stop if maxI∈S′ |Jk(I)−Jk−1(I)| < ε0; otherwise, go
to Step 1.

Then,

max
I∈S′
|Jπ∞(I)− J∗(I)| ≤ ζ + 2αη

(1− α)2
, (41)

where Jπ∞(I) = limk→∞ Jπk(I).
Proof: Please refer to [14].

Remark 1 (Hybrid Value-Policy Iteration): The cost fun-
ction Jk(I) in Algorithm 2 is obtained iteratively. If the
number of iterations for this calculation is moderate, then
Algorithm 2 becomes a hybrid of value and policy iterations.

C. Value of Information and Triggering Mechanisms

We showed that by using Algorithm 1 or Algorithm 2,
we can find the value function and the optimal sampling
policy. Here, we will link the optimal policy to the value
of information in our system, and we will propose two
triggering mechanisms that can generate the optimal policy.

Definition 6 (Value of information): The value of infor-
mation (VoI) is the maximum value that the observer would
be willing to pay for the sampling and the transmission of a
measurement yk at time k, i.e.,

VoI(Ik) = J∗
(
φ(Ik, 0)

)
− J∗

(
φ(Ik, 1)

)
, (42)

where J∗ is the value function.
In the following, we introduce two triggering mechanisms

based on the value of information and on the FIM (or
covariance) threshold that can generate the optimal policy.

Proposition 3: Let VoI : S → R be the value of infor-
mation function. Then, the sampling policy specified by the
triggering mechanism

δ(I) =

{
1, if αVoI(I) ≥ (1− θ)λ,
0, otherwise, (43)

is optimal for all I that φ(I, δ) ∈ S.
Proof: From the Bellman equation, the optimal station-

ary sampling policy is given by

δ∗(I) = argmin
δ∈Uγ

{
g(I, δ) + αJ∗(φ(I, δ))

}
. (44)

This implies that δ∗(I) = 1 if and only if g(I, 0) +
αJ∗(φ(I, 0)) ≥ g(I, 1) + αJ∗(φ(I, 1)). Substituting g(I, 0)

3087



and g(I, 1) from the equation (17) in the inequality, we
obtain αJ∗(φ(I, 0)) − αJ∗(φ(I, 1)) ≥ (1 − θ)λ. From
Definition 6, it follows that αVoI(I) ≥ (1− θ)λ.

Definition 7: A function F (x, y) : X × Y → R has
non-decreasing differences in (x, y) if for any x1, x2 ∈ X ,
y1, y2 ∈ Y , x2 ≥ x1, and y2 ≥ y1 we have

F (x2, y2) + F (x1, y1) ≥ F (x2, y1) + F (x1, y2) (45)
Theorem 2: Assume that the system (1), (2) is scalar.

There exists a threshold τ > 0 such that the sampling policy
specified by the triggering mechanism

δ(I) =

{
1, if I ≤ τ,
0, otherwise, (46)

is optimal for all I that φ(I, δ) ∈ S.
Proof: Define Γ(I, δ) = g(I, δ)+αJ∗(φ(I, δ)). We will

show that Γ(I, δ) has non-decreasing differences in (I, δ) for
all I ∈ S and δ ∈ Uγ . Since g(I, δ) is a separable function,
it is enough to show that J∗(φ(I, δ)) has non-decreasing
differences in (I, δ). To this purpose, we will first prove by
induction that J∗(I) with the domain S is convex.

We can choose T 0J(I) = 0. Assume that T kJ(I) is
convex in the domain S. We will show that T k+1J(I) is
convex. From Definition 5, we have

T k+1J(I) = min
δ∈Uγ

{
g(I, δ) + αT kJ

(
φ(I, δ)

)}
, (47)

which for the minimizer δ+ yields

T k+1J(I) = g(I, δ+) + αT kJ
(
φ(I, δ+)

)
. (48)

However, g(I, δ+) is convex by definition (17), and by the
inductive hypothesis T kJ(I) is convex. Hence, T k+1J(I) is
convex. According to Theorem 1–i for any initial function
T 0J(I), we have

J∗(I) = lim
k→∞

T k+1J(I), ∀I ∈ S. (49)

This implies that J∗(I) is convex.
Now, assume that I ′′ ≥ I ′ and t ≥ 0. We can find θ′, θ′′ ∈

[0, 1] such that θ′+ θ′′ = 1, I ′+ t = (1− θ′)I ′+ θ′(I ′′+ t),
and I ′′ = (1−θ′′)I ′+θ′′(I ′′+t). By the convexity of J∗(I),
we can write

J∗(I ′ + t) ≤ (1− θ′)J∗(I ′) + θ′J∗(I ′′ + t), (50)
J∗(I ′′) ≤ (1− θ′′)J∗(I ′) + θ′′J∗(I ′′ + t). (51)

Combining the equations (50) and (51), we conclude

J∗(I ′′ + t)− J∗(I ′′) ≥ J∗(I ′ + t)− J∗(I ′). (52)

From Definition 7, the function J∗(φ(I, δ)) has non-
decreasing differences in (I, δ) if for all I2 ≥ I1, we have

J∗
(
φ(I2, 1)

)
−J∗

(
φ(I2, 0)

)
≥ J∗

(
φ(I1, 1)

)
−J∗

(
φ(I1, 0)

)
.

(53)
Using the definition of φ(I, δ) in (11), we can define

I ′ = φ(I1, 0) = (FI−11 FT +Q)−1, (54)

I ′′ = φ(I2, 0) = (FI−12 FT +Q)−1, (55)

t = HTR−1H > 0. (56)

Hence, I ′′ ≥ I ′ provided that I2 ≥ I1. By rewriting the
equation (53) in terms of I ′, I ′′, and t, we have

J∗(I ′′ + t)− J∗(I ′′) ≥ J∗(I ′ + t)− J∗(I ′) (57)

which we already showed that holds for I ′′ ≥ I ′ and
t ≥ 0. Therefore, J∗(φ(I, δ)) has non-decreasing differences
in (I, δ). This means that Γ(I, δ) has also non-decreasing
differences in (I, δ).

From the Bellman equation, the optimal stationary sam-
pling policy is given by

δ∗(I) = argmin
δ∈Uγ

{
g(I, δ) + αJ∗(φ(I, δ))

}
. (58)

From Assumption 1, the minimizer δ∗(I) always exists for
all I ∈ S. Furthermore, following Topkis’s monotonicity
theorem [15] since Γ(I, δ) = g(I, δ) + αJ∗(φ(I, δ)) has
non-decreasing differences in (I, δ), the minimizer δ∗(I) is
monotonically non-increasing in I . In addition, since δ can be
0 or 1 there exists a threshold τ > 0 such that δ∗(I) = 1 for
all I ≤ τ , and δ∗(I) = 0 otherwise. Therefore, the threshold
policy is the optimal sampling policy.

Corollary 1: The value of information function VoI :
S → R is a monotonically non-increasing function.

Proof: Following Theorem 2, from the equation (53)
and Definition 6 for any I1, I2 ∈ S, I2 ≥ I1 we have

VoI(I1) ≥ VoI(I2). (59)

This implies that VoI(I) is a monotonically non-increasing
function.

Remark 2: The relation between the the value of infor-
mation function VoI(I) and the FIM threshold τ is given by
αVoI(τ)− (1− θ)λ = 0.

IV. ILLUSTRATIVE EXAMPLE

In this section, we present numerical and simulation results
for a simple unstable system.

Example 1: Consider a system with the following linear
scalar dynamics

xk = 1.01xk−1 + wk−1, (60)
yk = 0.3xk + vk,

where the covariances are Q = 0.05 and R = 1.1. It is
assumed that α = 0.95, θ = 0.5, and the FIM space is
discretized by a grid with the cardinality n(S′) = 1000.
The initial condition for the FIM is I0 = 1. The results are
provided for two different prices λ = {0.5, 0.9}.

Figure 1 shows the value functions J∗(I) for the two
prices. These functions in accordance with what we derived
in Theorem 2 have non-decreasing differences. Figure 2
shows the values of information for the two prices. As it
is seen, they are monotonically non-increasing. The critical
values are VoI(τ) = 0.2632 and VoI(τ) = 0.4738, and
the corresponding FIM thresholds are τ = 0.8163 and
τ = 0.5194, respectively for λ = 0.5 and λ = 0.9. Figure 3
illustrates the information diagrams for the two prices when
the optimal stationary sampling policies are applied. The
total number of samplings over the horizon N = 100 are

3088



0 0.2 0.4 0.6 0.8 1

FIM

2

4

6

8

10

12

14

V
a
lu

e
 f
u
n
c
ti
o
n

λ = 0.5

λ = 0.9

Fig. 1. Value functions, J∗(I).
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Fig. 2. Value of information functions, VoI(I).

M = 55 and M = 26, respectively for λ = 0.5 and λ = 0.9.
As it is expected, the total number of samplings decreases
when the communication price increases.

V. CONCLUSION

In this paper, we developed a framework for obtaining
the optimal stationary sampling policy based on the FIM
dynamics for transmission of measurements of a stochastic
process from an encoder to a decoder through a costly
communication channel. We proposed two computational
methods, i.e., value iteration and policy iteration, to compute
the optimal policy. We showed that there exists a triggering
mechanism based on the value of information that generates
the optimal policy. In addition, we showed that due to the
monotonic property of the value of information, there exists
a triggering mechanism based on the FIM threshold that
specifies the optimal policy for scalar systems.
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