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Abstract— In this paper, we propose a reachable set based
collision avoidance algorithm for unmanned aerial vehicles
(UAVs). UAVs have been deployed for agriculture research and
management, surveillance and sensor coverage for threat detec-
tion and disaster search and rescue operations. It is essential for
the aircraft to have on-board collision avoidance capability to
guarantee safety. Instead of the traditional approach of collision
avoidance between trajectories, we propose a collision avoidance
scheme based on reachable sets and tubes. We then formulate
the problem as a convex optimization problem seeking suitable
control constraint sets for participating aircraft. We have
applied the approach on a case study of two quadrotors collision
avoidance scenario.

I. INTRODUCTION

Autonomous aircraft have been deployed for agriculture
research and management, surveillance and sensor coverage
for threat detection and disaster search and rescue operations.
In most of these scenarios, it is desirable to have multiple
aircraft to increase the efficiency and coverage of the UAVs.
Since the UAVs in these scenarios, and increasingly in more
commercial applications, will be deployed in the shared
commercial airspace, they are required to have sophisticated
collision avoidance algorithms in order to fly together with
other conventional aircraft. As the number of these UAVs
increases, a centralized ground control based model is not
sufficient alone. Thus an autonomous on-board collision
avoidance system needs to be implemented in a decentralized
manner. Many collision avoidance algorithms have been
proposed in robotics areas. An artificial potential function
was proposed in [1]–[3] to produce control policies for
robots to navigate towards a goal and avoid each other and
obstacles. In [4]–[6], the authors proposed a decentralized
collision avoidance rule based on heading and collision
cones. However, the research works mentioned above focus
on only designing a single path or trajectory for individual
aircraft, so that they are separated by at least the threshold
distance. The important challenge remaining is to provide
guarantees for unknown execution of the other aircraft, so
that aircraft can avoid each other under all possible controls
or disturbances in the collaborative setting. An interesting
question is whether agents that realize being on a collision
path can compute constrained control sets for themselves so
that it is guaranteed that all aircraft will not collide under
these control constraints and bounded disturbances. This
problem implies that the collision avoidance problem needs
to solved between time varying sets instead of trajectories.
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The reachable set of a dynamical system is defined as
the set of states reachable from a given bounded initial
set, control set and disturbance set. The practical problem
mentioned earlier is closely related to reachability analysis.
The collision avoidance problem between reachable sets has
been previously studied under the frame of reachability anal-
ysis of nonlinear dynamical games [7], [8]. The other agent
is considered as adversary or disturbance to the collision
avoidance problem. A controller is synthesized to allow the
aircraft to avoid the reachable sets of others. However, in
most collision avoidance scenarios, the controller selection
is collaborative. In this paper, we investigate cases when
agents can derive collaboratively the constrained control sets
so that the resulting reachable sets are collision free. Besides
the above mentioned level set approach [7], [8] to obtain
reachable sets for nonlinear dynamics, there are several fast
linear algorithms based on convex analysis. These algorithms
employ linearized dynamics with convex initial state set
and control disturbance set. They commonly approximate
reachable set using specific covering sets including ellipsoids
[9], [10] and polytopes [11]–[14]. In all these cases, com-
monly support functions are used to analytically derive the
reachable sets. However, many algorithms [11]–[14] compute
the approximated convex set iteratively, which makes the
solutions impossible to be represented in analytic forms.
We will use the reachable set tool set from [15] based on
the ellipsoid methods in [9], because its solutions can be
expressed efficiently in analytical expressions.

The main contribution of this paper is that we propose and
solve a new reachability based formulation of collision avoid-
ance. It is formulated as the following two-fold optimization
problem. In the first part, autonomous aircraft collaboratively
define control constraint sets, while in the second, individual
aircraft will compute an optimal control policy within the
control limit so that they can reach their objective and avoid
the others. We focus on the first part, since the second part
is a traditional optimal control problem with hard control
constraints. The rest of the paper is organized as follows.
In section II we present the fundamentals of reachability
sets. Then in section III we define the reachable set collision
avoidance problem and formulate it into a convex optimiza-
tion problem incorporating the reachable sets. Afterward, we
demonstrate our approach in scenarios involving collision
avoidance between two quadrotors.

II. PRELIMINARIES

We consider collision avoidance navigation between air-
craft whose dynamics are given by nonlinear models as (1).

ẋ(t) = f(t, x, u, v) (1)
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where x(t) ∈ X , x(0) ∈ X0 ⊆ X , u(t) ∈ U(t) for all t,
v(t) ∈ V for all t.

The reachable set of (1) (or forward reachable set) R[ϑ] =
R(ϑ,X0), is the set of states that are reachable at time ϑ
from a set of initial states X0 and all possible controls and
disturbances. Formally it is defined by the following,

Definition 2.1 (Reachable Set): The reachable set
R[ϑ] = R(ϑ, t0, X0) of the system of (1) at time ϑ from a
set of initial positions X0 and time t0 is the set of all points
x for which there exists a trajectory x(s, t0, x0), x0 ∈ X0

that transfers the system from (t0, x0) to (ϑ, x), x = x(ϑ),
while satisfying the associated constraints.

Similarly the reachable tube is the union of all reachable
sets over a time interval.

Definition 2.2 (Reachable Tube): The reachable tube
R[Θ] = ∪ϑ∈ΘR(ϑ, t0, X0)

Reachable set computation for nonlinear model exists, but
either it is impractical in collision avoidance due to slow
computation time [7], or it relies on numerical methods
to approximate the nonlinear model with linear models
[11]. So instead of looking at the full nonlinear model, we
linearize the dynamics around an operating point, resulting
in dynamics that are of the following form.

ẋ(t) = A(t)x(t) +B(t)u(t) + v(t) (2)

To simplify the computation, the following assumptions are
used by noting Lemma 2.3, where U(t),X0 and V are all
convex and compact sets. [9]

Lemma 2.3: With U(t),X0 and V being convex and
compact, the reachable set R[ϑ] is also convex and compact.

The problem of defining the reachable set of the system
can be reformulated as an optimization problem. Consider
the system (2). Since the reachable set would be convex and
compact due to the assumption on the control set and the
initial set, the reachable set can be captured using its support
function. Let ρ(l|X) be the support function of the set X , i.e.
ρ(l|X) = max{〈l, x〉 |x ∈ X}, and 〈l, x〉 represents the inner
product between vector l and x. Then the support function
of the reachable set R[ϑ] is given by the following,

ρ(l|R[ϑ]) = max{〈l, x〉 |x ∈ R[ϑ]}
= max{〈l, x(ϑ, t0, x0)〉 |u(·) ∈ U(t), x0 ∈ X0}

= max

{∫ ϑ

t0

l′Φ(ϑ, s)B(s)u(s)ds

+ l′Φ(ϑ, t0)x0

∣∣∣∣u(s) ∈ U(s), x0 ∈ X0, v(s) ∈ V
}

=

∫ ϑ

t0

ρ(B′(s)Φ′(ϑ, s)l|U(s))ds

+ ρ(Φ′(ϑ, t0)l|X0) (3)

where Φ(t, s) is the transition matrix of the system (2). i.e.
it satisfies ∂

∂tΦ(t, s) = A(t)Φ(t, s) and Φ(s, s) = I. Assume
further that all the sets are represented by ellipsoids. Let cX
and MX denote the center and shape matrix of the set. The
following holds, if x ∈ X = E(cX ,MX),〈

x− cX ,M−1
X (x− cX)

〉
≤ 1.

In terms of the support function, it can be expressed by

〈l, x〉 ≤ 〈l, cX〉+ 〈l,MX l〉1/2
.

The support function of the reachable set R[ϑ] could be
expressed further in terms of the centers and shape matrices
of the initial set, control and disturbance sets (equation (4)).

ρ(l|R[ϑ]) = 〈l,Φ(ϑ, 0)cX0
〉+

〈
l,

∫ ϑ

0

Φ(ϑ, s)B(s)cU (s)ds

〉
+
〈
l,Φ(ϑ, 0)MX0

ΦT (ϑ, 0)l
〉1/2

+

〈
l,

∫ ϑ

0

Φ(ϑ, s)cV(s)ds

〉
(4)

+

∫ ϑ

0

〈
l,Φ(ϑ, s)B(s)MUB

T (s)ΦT (ϑ, s)l
〉1/2

ds

+

∫ ϑ

0

〈
l,Φ(ϑ, s)MVΦT (ϑ, s)l

〉1/2
ds

Since, as will be discussed later, the disturbance is a
constant term to the optimization problem, we will assume
in what follows that v(t) = 0. The term related to v(t)
affects the size of the reachable set. Since it is independent
of the control set parameter, it can be treated as an additional
separation required in the collision avoidance problem.

III. COLLISION AVOIDANCE BETWEEN TWO AGENTS
USING REACHABILITY ANALYSIS

Let us consider the following two agents reachability
based collision avoidance problem.

Problem 3.1 (Reachability Based Collision Avoidance):
We seek a control algorithm for the aircraft A and B, such
that they can always avoid each other if each of them
uses a more constrained control set than their initial ones.
More specifically, in the first phase, given the initial state
estimation set of the aircraft B XB

0 , and the estimated
control set UB , we seek a tighter control constraint set
ŨB such that aircraft A can find a safe reachable tube
that does not intersect with the one of aircraft B counting
the separation. At the same time, we need to make sure
that under the new control constraint set ŨB , aircraft B
can still perform the maneuvers the system requires to
reach its goal area. At the second phase we seek a safe
reachable tube for aircraft A so that the reachable tube
will be apart from the reachable tube of aircraft B for at
least the required separation. Afterward we seek trajectories
within the reachable tube, so that they can safely reach their
objectives in an optimal manner.

As assumed in the previous section, let the initial set
and control set of aircraft B be the ellipsoids XB

0 =
E(cBX0

,MB
X0

), UB = E(cBU ,M
B
U ), and denote by cAX(t) the

nominal trajectory of aircraft A. We further assume the two
aircraft will be closest at time τ in the future, so we can
reason about the reachable set instead of the tube. For the
first phase we want to keep the reachable set of aircraft B
away from the nominal trajectory of A as far as we can,
and keep the constrained control set of aircraft B relatively
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large. This can be formulated into the following optimization
problem.

Problem 3.2 (Optimization Part I):

max
q(t),Q(t)

max
l

〈
l, cAX(τ)

〉
− ρ(l|RB

x (τ)) + k log(det(Q(t)))

subject to E(q(t), Q(t)TQ(t)) ⊂ UB ∀t ∈ [0, τ ]
‖l‖ = 1〈

l, cAX(τ)
〉
− ρ(l|RB

x (τ)) ≥ 0

where ρ(l|RB
x (τ)) is the support function of the reachable

set of aircraft B at time τ :

ρ(l|RB
x (t)) =

〈
l,Φ(t, 0)cBX0

〉
+

〈
l,

∫ t

0

Φ(t, s)B(s)cBU (s)ds

〉
+
〈
l,Φ(t, 0)MB

X0
ΦT (t, 0)l

〉1/2
(5)

+

∫ t

0

〈
l,Φ(t, s)B(s)QT (s)Q(s)BT (s)ΦT (t, s)l

〉1/2
ds.

The parameters of the optimization are q(t) and Q(t),
both related to the new control set. More specifically ŨB =
E(q(t), QT (t)Q(t)). In the objective function, the first part
is the distance between the nominal trajectory cAX(τ) and the
reachable set, and the second part is the size of the control
set. Scalarization is used to determine the Pareto optimal
points [16]. The inner maximization determines distance by
varying the direction vector l. The first constraint is due to
the fact that ŨB ⊂ UB , the last constraint is to keep nominal
trajectory outside the reachable set of aircraft B.
E(q(t), Q(t)TQ(t)) ⊂ UB is equivalent to the following

constraints on a new parameter λ > 0, 1− λ 0 (q(t)− cBU )T

0 λI Q(t)
q(t)− cBU Q(t) MB

U

 � 0.

Let A, B be time invariant, we seek a time invariant
control constraint set as well, so q and Q are time invariant.
Let us assume the optimal l∗ can be estimated based on the
initial center of the reachable set alone. In other words, we
assume the direction that minimizes distance between the
reachable set and cAX(τ) is not affected by changes in the
control constraint. The intuition behind this assumption is
that even if the direction is altered, the outer maximization
is achieved at a similar constraint set. In real applications,
the autonomous aircraft will be given such direction to
avoid either based on the approaching angle autonomously or
based on instructions from the other pilots. Then the overall
problem becomes the following.

Problem 3.3 (Simplified Problem Part I):

max
q,Q

〈
l∗, cAX(τ)

〉
− ρ(l∗|RB

x (τ)) + k(log det(Q))

subject to λ > 0 1− λ 0 (q − cBU )T

0 λI Q
q − cBU Q MB

U

 � 0〈
l∗, cAX(τ)

〉
− ρ(l∗|RB

x (τ)) ≥ 0

ρ(l|RB
x (t)) =

〈
l, eAtcBX0

〉
+

〈
l,

∫ t

0

eA(t−s)dsBq

〉
+
〈
l, eAtMB

X0
eAtl

〉1/2
(6)

+

∫ t

0

〈
l, eA(t−s)BQTQBT (eA(t−s))T l

〉1/2

ds.

To make the overall problem a simple convex optimization
problem, we note the following two cases.

(i) Suppose Q is r ∗ (MB
U )1/2 i.e. the constrained control

set is a scaled version of the initial control set. Then we have
the following.

Problem 3.4 (Scaled Initial Set Method):

max
q,r

〈
l∗, cAX(τ)

〉
− ρ(l∗|RB

x (τ))

+k dim(MB
U ) log r

subject to λ > 0 1− λ 0 (q − cBU )T

0 λI r(MB
U )1/2

q − cBU r(MB
U )1/2 MB

U

 � 0〈
l∗, cAX(τ)

〉
− ρ(l∗|RxB(τ)) ≥ 0

ρ(l|RB
x (t)) =

〈
l, eAtcBX0

〉
+

〈
l,

∫ t

0

eA(t−s)dsBq

〉
+
〈
l, eAtMB

X0
eAtl

〉1/2
(7)

+ r

∫ t

0

〈
l, eA(t−s)BMB

U B
T (eA(t−s))T l

〉1/2

ds.

(ii) Assume now that the requirement for
〈
l∗, cAX(τ)

〉
−

ρ(l∗|RB
x (τ)) ≥ 0 is removed. The last term of ρ(l∗|RB

x (τ))
can be upper bounded using the matrix norm property. Then
the objective function can be lower bounded by 〈l∗, xAc〉 −
ρ̃(l∗|RB

x (τ)), where

ρ̃(l|RB
x (t)) =

〈
l, eAtcBX0

〉
+

〈
l,

∫ t

0

eA(t−s)dsBq

〉
+
〈
l, eAtMB

X0
eAtl

〉1/2
(8)

+ ‖Q‖2
∫ t

0

〈
l, eA(t−s)BBT (eA(t−s))T l

〉1/2

ds.

As the result, we have the following convex optimization
problem.

Problem 3.5 (Matrix Norm Method):

max
q,r

〈
l∗, cAX(τ)

〉
− ρ̃(l∗|RB

x (τ))

+k log(det(Q))
subject to λ > 0 1− λ 0 (q − cBU )T

0 λI Q
q − cBU Q MB

U

 � 0〈
l∗, cAX(τ)

〉
− ρ̃(l∗|RB

x (τ)) ≥ 0
Both methods can be solved easily by a convex optimiza-

tion solver in particular a semidefinite programming solver.
We use CVX [17] in the demonstration discussed in a later
section. After the control set of aircraft B is determined,
aircraft A can define its control set so that the reachable
set does not collide with the safe set of B. The safe set
of B is the reachable set of B enlarged by the required
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separation between aircraft A and B. The difference with the
previous problem is the fact that we cannot use the center of
aircraft A to maximize the distance to the reachable set of B.
Instead we add a constraint to keep the distance between the
sets larger than zero. If such a problem is feasible, standard
optimization algorithms will be used to obtain control laws
for both aircraft under the modified constrained control set. If
it is not feasible, then it means the scalarization factor is too
large. By iteratively decreasing the scalarization factor, one
can find a pair of good control sets that keep the reachable
set of both aircraft balanced. After they avoid each other on
the closest contact point, the original navigation will resume.

The optimization part II is addressing the problem to
obtain the largest control set for aircraft A. After the con-
strained control set of aircraft B is determined, the external
ellipsoid approximation of the reachable set of aircraft B
will be computed based on the ellipsoid toolbox [15]. The
external approximation is given as an intersection of ellip-
soids with the same center. The safe set of B is defined
as the Minkowski sum of the reachable set of aircraft B
and a ball, whose radius is the required separation. It can
be computed by the ellipsoid toolbox as the intersection of
overapproximated ellipsoids as well. For simplicity, we take
an external ellipsoid approximation of the intersection set
as the safe set of B. Let such overapproximation ellipsoid
be E(cBX ,M

B
X ). Assume that the direction for which the

minimum distance is achieved is l∗ as assumed earlier. Then
the largest control set for aircraft A that satisfies the safety
requirement can be determined by the following optimization
problem.

Problem 3.6 (Optimization Part II):

max
q,Q

log(det(Q))

subject to E(q,QTQ) ⊂ UA

−ρ(−l∗|RA
x (τ))− ρ(l∗|E(cBX ,M

B
X )) > 0

This can be again transformed into a convex optimization
problem by using the shrinking initial set or the norm
method. We will focus on the norm method for this part.
The last constraint can be reformulated into the following:

〈
l∗, eAtcAX0

〉
+

〈
l∗,

∫ t

0

eA(t−s)dsBq

〉
−
〈
l∗, cBX

〉
−
〈
l∗, eAtMA

X0
eAtl∗

〉1/2 −
〈
l∗,MB

X l
∗〉1/2

− ‖Q‖2
∫ t

0

〈
l∗, eA(t−s)BBT (eA(t−s))T l∗

〉1/2

ds > 0.

IV. SIMULATIONS AND RESULTS

The reachable set based method described above is demon-
strated on the linearized quadrotor models described below.

A. Quadrotor Model

To capture the dynamics of the quadrotor properly, we
need two coordinate frames. One of them is a fixed frame
and will be named as the earth frame, and the second one
is the body frame which moves with the quadrotor. The
transformation matrix from the body frame to the earth frame
is R(t). The quadrotor dynamics has twelve state variables

Fig. 1. The initial reachable sets of both aircraft projected to x y z axis at
time τ . The two reachable sets are represented by the internal and external
approximations. The reachable sets largely overlap each other. The light
colored sets are the external approximations of the reachable sets of aircraft
A and B. The internal approximations are the darker color ones inside.

(x, y, z, vx, vy, vz, φ, θ, ψ, p, q, r), where ξ = [x, y, z]T and
v = [vx, vy, vz]T represent the position and velocity of the
quadrotor w.r.t the body frame. (φ, θ, ψ) are the roll, pitch
and yaw angles, and Ω = [p, q, r]T are the rates of change
of roll, pitch and yaw respectively.

The Newton-Euler formalism for the quadrotor rigid body
dynamics in earth fixed frame is given by:

ξ̇ = v

v̇ = −ge3 +
F

m
Re3 (9)

Ṙ = RΩ̂

Ω̇ = J−1(−Ω× JΩ + u)

where g is the acceleration due to gravity, e3 = [0, 0, 1]T , F
is the total lift force and u = [u1, u2, u3]T are the torques
applied. F and u are the control inputs. More details on
the quadrotor dynamics can be found in [18], [19]. For this
work, we linearize the dynamics (9) about the hover with
yaw constraint to be zero, as it has been done in [20]. Since
ψ is constrained to be zero, we remove ψ and r from our
system and make the system ten dimensional. Consequently,
we only need three control inputs, F, u1, and u2 for the
system. The linearized model is the same as what is done in
[20], [21]. The system matrices for the linearized model are:

A =


0 I 0 0

0 0

 0 g
−g 0
0 0

 0

0 0 0 I
0 0 0 0

 ; B =


0 0 0
0

1/m

 0

0 0
0 I2×3J

−1


I2,3 =

[
1 0 0
0 1 0

]
All zero and identity matrices in A and B are of proper
dimensions.

B. Reachable Sets and Constrained Control Sets

We computed the reachable sets and performed convex
optimization using a computer with a 3.4GHz processor and
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Fig. 2. The initial reachable tubes of of both aircraft projected to x y. Again
the reachable tubes are represented by the internal and external approxima-
tions. The light yellow tube is the external approximation of the reachable
tube of aircraft A, while the light red one is the external approximation of
the reachable tube of aircraft B. The internal approximations are the darker
color ones inside. Clearly, the reachable tubes collide.

8GB memory. The software we used include the Ellipsoid
toolbox [15] and CVX [17], [22] for solving convex opti-
mization problems.

The scenario is the following: two quadrotors are ap-
proaching each other from coordinates around (1.6, 0.5, 0)m
and (0, 0, 0)m with initial speed (−0.2, 0, 0)m/s, and
(0.2, 0, 0)m/s respectively. The separation requirement is 1m.
It is fairly easy to estimate the collision time which is τ = 4s,
and the closest direction l∗. The initial reachable tube of
both aircraft projected to the x, y and time axis is shown
in Fig. 2. The reachable sets at time τ are shown in Fig.
1. As can be seen, the reachable sets clearly overlap with
each other. There are no guarantees that one can obtain
from this initial setup. By varying k in the optimization
problem 3.2, we get the following pairs of control sets for
aircraft A and B. (Fig. 3, 5). The control sets are obtained
using the matrix norm method. The corresponding resulting
reachable tubes for agent A and B are plotted in Fig. 4, 6.
Clearly, the resulting reachable tubes avoid each other, and
a closer examination shows that the separation requirement
is satisfied.

The computation time for the overall problem is dominated
by the reachable set computation. Since we would like to
have good precision of the reachable set, 30 ellipsoids are
used to obtain the external approximation for both aircraft.
The computation for each aircraft takes around 430s. In this
case study, the collision time is almost imminent (4s). It is
only possible to implement this in real time by using a poor
estimate of the reachable set with lower precision in this
setup. The constrained control sets obtained that way are
much smaller. It is also possible to compute the reachable
sets in parallel so the resulting computation time would be
almost 4s. This is part of our future work.

There are other ways to present the approximation such
as via zonotope [11] or support function [12]. Preliminary
testing using a zonotope based method shows faster compu-

Fig. 3. This shows the initial control set (yellow ellipsoid), the constrained
control set for aircraft A (red ellipsoid), and the constrained control set for
aircraft B (blue ellipsoid). This pair of constrained control sets is obtained
when the scalarization factor is 1. The control set for u1, which contributes
to yaw rotation, of aircraft B is larger, i.e. this fits the case when aircraft B
has higher priority, so it has more freedom in terms of maneuvers.

Fig. 4. The reachable tubes for aircraft A and B with k = 1. Clearly, there
is no collision between the overapproximation of the reachable tubes. As
can be seen from the reachable tube as well, the aircraft A has less freedom
comparing to aircraft B. A closer examination also reveals that there is no
violation of separation requirement over time.

Fig. 5. This shows the initial control set (yellow ellipsoid), the constrained
control set for aircraft A (red ellipsoid), and the constrained control set for
aircraft B (blue ellipsoid). This pair of constrained control sets is obtained
when the scalarization factor is 0.9. The control set sizes are rather balanced.
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Fig. 6. The reachable tubes for aircraft A and B with k = 0.9. Clearly,
there is no collision between the overapproximation of the reachable tubes.
A closer examination also reveals that there is no violation of separation
requirement over time.

tation time, but we have not obtained a good representation
of the constrained optimization problem 3.2 and 3.6 using
zonotopes. One of our future directions is to use other
representations to make the process faster.

V. CONCLUSION

In this paper, we have proposed a reachability based
approach to collision avoidance of UAVs so that the resulting
reachable tubes are collision free. Our approach provides
new insight to the collision avoidance problem in particular
regarding collision avoidance of set of trajectories instead of
one. Furthermore, as this approach gives limited constraints
on the controller, standard optimization based or rule based
controller design can be used after our method to obtain
optimal and safe trajectories. Our approach reformulates the
collision avoidance problem to a two-fold convex optimiza-
tion problem, which can be solved very efficiently. The
computation time can be dramatically improved by parallel
computation and other reachable set analysis tools.

Although currently, the method is limited to linear sys-
tems, development of reachability analysis for hybrid sys-
tems can extend our method to nonlinear and more general
dynamics. We focused the analysis for two aircraft collision
avoidance, but our method can be extended to the multiple
aircraft case fairly easily by iteratively fixing the control set
and the resulting reachable set one by one.
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