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Abstract— In this paper, we propose an event based control
strategy for control affine nonlinear systems. The proposed
method ensures sufficient reduction in communication by only
invoking a communication when some event has occurred. The
error between the continuous state feedback nonlinear system
and the event based system can be bounded in an invariant
set. The upper bound of this error is derived which can be
controlled by appropriately choosing the parameters for the
event triggering function. This method is then applied to a
networked nonlinear system of inverted pendulum and a non-
linearizable nonlinear system.

I. INTRODUCTION

Computing the control law of a large system generally
requires continuous reading from the sensors and transmit-
ting these measurements to the control input generators.
As a result, the performance depends on the continuous
availability of the sensor measurements, and efficient and
accurate computation of the control law. For a distributive
system, although the computation is done distributively yet it
requires continuous information exchange among the subsys-
tems. Communicating the measurements obtained in a sensor
network and propagating the data to the controller are a
necessary and important part for networked control systems.
Consequently, the performance is generally restricted by the
available network bandwidth and computing resources.

To overcome the limitation of available communication
resources, researchers have come up with novel techniques
such as event-based control [1], self triggered control [2], [3]
and periodic time control [4], [5] that require only discrete-
time communications. These methods ask for discrete com-
munications between the sensor network and the controller,
and as a result the controller can only generate a control
that approximates the continuous state feedback control. The
communication is done periodically, after T amount of time,
in periodic control. Finding a suitable time period T to
guarantee some level of performance is a main challenge for
this approach. In self triggered and event based control, the
communication is done only when some event has occurred.
Event based control monitors some signal and it triggers for
communication based on that signal measurements.

Event based control has attracted a great deal of research
in the recent past due to its effectiveness. A study that
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has been made in [6] on the performance of event based
control and periodic control has revealed the fact that under
some conditions the event based control performs better than
periodic control. Interested readers are directed to confer [7]
and [8] and the references therein to get a broad review
on event-triggered and self-triggered control, estimation and
optimization. Recent publications like [9] considered a state
feedback approach for an event based system where the
feedback control is generated from another system and this
system is updated every time a trigger is generated. In [10]
and [11], event based control is proposed for distributed
interconnected linear systems.

Despite of the wide applicability of event based control,
there is not much work, in literature, for nonlinear event
based control. In [12], the authors proposed an event based
approach for nonlinear input-to-state-stable (ISS) systems.
[13] and [14] studied the event based stabilization of non-
linear plants using a Lyapunov based technique. [15] also
considered an event based approach for real time scheduling
tasks. [16] extended the technique proposed in [15] for
homogeneous and polynomial systems. Whereas the previous
methods are Lyapunov based approachs, [17] took a different
formalism to study event based control for input-output lin-
earizable systems with relative degree equal to the dimension
(n) of the statespace. In [18], they refined the method for
input-output linearizable input affine nonlinear systems with
relative degree r ≤ n. [17] and [18] focus on the deviation
of the event based system from a continuous state feedback
system and showed that this error is bounded. However, the
rest of the past work mostly focus on the stabilizing behavior
of the event based system rather than the actual error incurred
due to the event based approach.

In this paper, we also adopt a Lyapunov function based
approach for an event based control strategy applied to
input affine nonlinear control systems. In many cases, the
control input is of state-feedback form to achieve optimality
or some other desired performance and hence we consider
that the control input is a state-feedback and known to us
a priori. Therefore, it will be interesting to see how the
system behaves if this control is approximated by a piecewise
constant control. In the following sections we are going
to explain on how to construct such a piecewise constant
approximation of a given control input by using an event-
based approach. We show that the error incurred by using
this approximated input can be bounded within an invariant
subset (Theorem 2.4) and moreover, the volume of this set
can be controlled by the choice of some parameters related
to the event triggering function. We also show that under the
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adopted event triggering strategy, there is a minimum time
between two successive events (Theorem 3.1)

II. EVENT-BASED NONLINEAR CONTROL SYSTEM

Let us consider the input-affine nonlinear state space
model as given in (1).

ẋ = f(t, x) +

m∑
i=1

gi(t, x) · ui (1)

where ui is the control input and that input is of the form
γi(x) to achieve some desired behavior from the system.

The closed loop system is given in (2)

ẋc = f(t, xc) +

m∑
i=1

gi(t, xc) · γi(xc) (2)

We assume the following properties for the nonlinear systems
considered in (1) and (2)
(A1) γi(·) and for all t, f(t, ·) and gi(t, ·) are Lipschitz func-
tions with Lipschitz constants Liγ , Lf and Lig respectively,
for all i = 1, 2, · · · ,m.
(A2) fx(t, x) = ∂f(t,x)

∂x and ((gγ)i)x(t, x) = ∂(gγ)i(t,x)
∂x are

Lipschitz continuous with Lipschitz constants L1 and Li2
respectively, where (gγ)i(t, x) = gi(t, x)γi(x).
(A3) The closed loop system with ui = γi(x) is exponen-
tially stable.
Note that, we do not assume that the system (1) is ISS (Input
to state stable), so the stability of (1) with any other input is
not guaranteed.

Let us denote

F (t, x) = f(t, x) +

m∑
i=1

gi(t, x) · γi(x), (3)

and the trajectory of the closed loop system (2) to be xc(t).
Our aim is to generate the controls ui in such a way

that does not require continuous availability of the state
x(t) and the deviation of the trajectory of this event based
system from that of (2) with this control is within some
tolerance level. To design such a control we will consider
ui(t) = γi(x(tk)), ∀t ∈ [tk, tk+1), where x(tk) is the value
of the state at k-th triggering time tk.

Theorem 2.1: Let x = 0 be an equilibrium point for the
nonlinear system ẋ = h(t, x), where h : [0,∞) × D →
Rn is continuously differentiable, D is some domain in Rn
that contains the origin, and the Jacobian matrix ∂h/∂x is
bounded and Lipschitz on D, uniformly in t.
Let

H(t) =
∂h

∂x
(t, x)

∣∣∣∣
x=0

.

Then x = 0 is an exponentially stable equilibrium point for
the nonlinear system if and only if it is an exponentially
stable equilibrium point for the linear system ẋ = H(t)x.

Proof: For the proof of this theorem, the readers are
directed to [19, Theorem 4.15].

Theorem 2.2: The linear system

ṗ = A(t)p

is exponentially stable, where A(t) = ∂F
∂x (t, x)

∣∣
x=xc(t)

.

Proof: Let us consider the system,

˙(xc − p) = F (t, xc − p) (4)

By assumption (A3), (4) is an exponentially stable system
and hence lim

t→∞
(xc(t) − p(t)) = 0. We can write (4) in the

following way as given in (5)

ẋc − ṗ = F (t, xc)−
∂F

∂x
(t, x)

∣∣∣∣
x=xc(t)

p+O(‖p‖2) (5)

where lim‖p‖→0O(‖p‖2)/‖p‖ = 0. Since xc(t) satisfies (2)
and by the definition of A(t), we obtain from (5)

ṗ = A(t)p+O(‖p‖2). (6)

By assumption (A3), both xc(t)→ 0 and xc(t)− p(t)→ 0
exponentially as t→∞ and as a consequence, p(t)→ 0 ex-
ponentially as t→∞. Therefore, p = 0 is an exponentially
stable equilibrium point for (6). Theorem 2.1 ensures that
the linearization of the nonlinear system (6) around p = 0
(i.e. ṗ = A(t)p) is exponentially stable.

1) Event Based Closed Loop System and The Error
Dynamics: The closed loop system with continuous state
feedback is represented in (2). In the event based strategy,
since we do not have continuous state feedback, the control
law takes the form of ui = γi(x(tk)) where x(tk) is the value
of the state at the previous triggering instance tk. Therefore,
basically ui is a piecewise constant function. The event based
closed loop system is obtained in (7).

ẋ = f(t, x) +

m∑
i=1

gi(t, x)γi(x(tk)) ∀t ∈ [tk, tk+1). (7)

The error e between the actual closed loop system (2) and the
event based closed loop system (7) is defined to be xc − x.
e follows the nonlinear dynamics given in (8):

ė = F (t, xc)−F (t, x)+

m∑
i=1

gi(t, x)(γi(x)−γi(x(tk))). (8)

Our goal will be to keep this error bounded while only
using the limited state measurements available at discrete
time instances.

Proposition 2.3: For all t ≥ tk, The dynamics of e(t) can
be written as,

ė = A(t)e+ µ(t, x, xc)e+

m∑
i=1

gi(t, x)(γi(x)− γi(x(tk)))

(9)
where
µ(t, x, xc) = ∂F

∂x (t, x)

∣∣∣∣
x=xc(t)−α(t)e(t)

− ∂F
∂x (t, x)

∣∣∣∣
x=xc(t)

and 1 ≥ α(t) ≥ 0.
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Proof: By assumption (A2), ∂F
∂x (t, x) is a Lipschitz

continuous function. Therefore, using Mean Value Theorem,

F (t, xc)− F (t, x) =
∂F

∂x
(t, x)

∣∣∣∣
x=x̄(t)

(xc(t)− x(t))

where x̄(t) = α(t)x(t)+(1−α(t))xc(t) = xc(t)−α(t)e(t),
α(t) ∈ [0, 1] depends on xc(t), x(t) and the function F (·, ·).

Using (8) along with the application of Mean Value
Theorem on F (t, ·), we obtain,

ė = A(t)e+
(∂F
∂x

(t, x)

∣∣∣∣
x=x̄(t)

−A(t)
)
e

+

m∑
i=1

gi(t, x)(γi(x)− γi(x(tk))). (10)

Using the definition of A(t) and defining µ(t, x, xc) =

∂F
∂x (t, x)

∣∣∣∣
x=x̄(t)

−A(t), we obtain (9).

From the expression of µ(t, x, xc), clearly
µ(t, x, xc)|e=0 = µ(t, xc, xc) = 0. Using this fact, the
linearization of µ(t, x, xc)e around e = 0 is:
∂(µe)
∂e

∣∣
e=0

=
(
µ+ ∂µ

∂e e
)∣∣∣
e=0

= 0.
Theorem 2.4: There exists ε > 0 and subspace Ωε ⊆ Rn

such that for all t, if
m∑
i=1

‖gi(t, x)γi(x)‖2 ≤ ε and e(0) ∈ Ωε,

then the error e(t) ∈ Ωε for all t.
Proof: Let us first denote

δ(t, x, {tl}∞l=0) =

m∑
i=1

gi(t, x)(γi(x)− γi(x(tk))),

where tk < t ≤ tk+1. We can consider (9) to be a nonlinear
system with perturbation, where the perturbation term is
δ(t, x, {tl}∞l=0) and the unperturbed nonlinear system is:

ė = A(t)e+ µ(t, x, xc)e. (11)

Theorems 2.1 and 2.2 along with the fact that linearization of
µ(t, x, xc)e around e = 0 is zero ensure that the unperturbed
nonlinear system (11) is exponentially stable. Let V (t, e) =
eTP (t)e be a Lyapunov function for the linear system ė =
A(t)e. P (t) satisfies the following properties:
1) P (t) is continuously differentiable, symmetric, bounded,
positive define matrix; that is, 0 < c1I ≤ P (t) ≤ c2I, ∀t.
2) P (t) satisfies the differential equation Ṗ (t) =
−AT (t)P (t)− P (t)A(t)−Q(t), where Q(t) is continuous,
symmetric, positive definite for all t, i.e. Q(t) ≥ c3I > 0.
Considering the same Lyapunov function for the unperturbed
system will show that the unperturbed system (11) is expo-
nentially stable if ‖e‖ < r for some r > 0.

Let us consider the same Lyapunov function for the
perturbed system and we obtain,

V̇ (t, e) =
d

dt
e(t)TP (t)e(t)

= eT (AT (t)P (t) + P (t)A(t) + Ṗ (t))e

+ 2eTP (t)(µ(t, x, xc)e+ δ(t, x, x(tk))) (12)

= −eTQ(t)e+ 2eTP (t)(µ(t, x, xc)e+ δ(t, x, {tl}∞l=0)).

Using the definition of µ(t, x, xc) given in Proposition 2.3
and the Lipschitz continuity assumption, (A2), on F (t, x) we

can write ‖µ(t, x, xc)‖2 ≤ (L1 +
m∑
i=1

Li2)‖e‖2 = L‖e‖2 .

Therefore, from (12), we obtain,

V̇ (t, e) ≤ −c3‖e‖22 + 2Lc2‖e‖32 + 2c2‖δ‖2‖e‖2
= ‖e‖2(‖e‖2 − θ1)(‖e‖2 − θ2)

where θ1 =
c3−
√
c23−16Lc22‖δ‖2

4Lc2
, θ2 =

c3+
√
c23−16Lc22‖δ‖2

4Lc2
.

If θ1 and θ2 are real and ‖e‖2 ∈ [θ1, θ2], then V̇ (t, e) ≤ 0
and hence Ωε = {e ∈ Rn| ‖e‖2 ∈ [0, θ2]} is an invariant
set. To ensure θ1, and θ2 are real, we need ‖δ‖2 ≤ c23

16Lc22
.

By defining ε to be c23
16Lc22

, we have e(t) ∈ Ωε if e(0) ∈ Ωε

and ‖δ‖2 ≤
m∑
i=1

‖gi(t, x)γi(x)‖2 ≤ ε.

‖e‖2 will be bounded from below by θ1, however, θ1 can be
made arbitrarily small by controlling ‖δ‖2.

Corollary 2.5: Under the same hypothesis as in Theorem
2.4, the behavior of the event based closed loop system (7)
remains in a bounded domain around the trajectory of the
closed loop system (2).
Corollary 2.5 follows from the fact that xc(t) − x(t) =
e(t) ∈ Ωe and hence ‖xc(t) − x(t)‖2 = ‖e‖2 ∈ [0, θ2].
This implies x(t) remains is a domain Ω(xc) = {x ∈
Rn| ‖xc − x‖2 ∈ [0, θ2]}.

In Theorem 2.4, we have established an if-then relation-
ship between the perturbation δ(t, x, {tl}∞l=0)) and the error
e. In the next theorem, we will state the exact relationship
between the error e(t) and the perturbation δ(t, x, {tl}∞l=0).

Theorem 2.6: Consider the dynamics given in (9) and
suppose that we have a Lyapunov function V (t, e) that
satisfies

c1‖e‖22 ≤ V (t, e) ≤ c2‖e‖22 (13)

∂V

∂t
+
∂V

∂e
(A(t)e+ µ(t, x, xc)e) ≤ −c3‖e‖22 (14)∥∥∥∥∂V∂e

∥∥∥∥
2

≤ c4‖e‖2 (15)

for all (t, e) ∈ [0,∞) × Rn for some positive constants
c1, c2, c3 and c4. Then,

‖e(t)‖2 ≤
c4
2c1

t∫
0

e−(t−s)c3/2c2‖δ(s, x, {tl}∞l=0)‖2ds (16)

Proof: Let us consider the Lyapunov function described
in the statement of this theorem and apply it for the system
(9). We obtain,

V̇ (t, e) =
∂V

∂t
+
∂V

∂e
(A(t)e+ µ(t, x, xc)e+ δ(t, x, {tl}ml=1))

≤ −c3‖e‖22 + c4‖e‖2‖δ‖2 (17)

Let U(t) =
√
V (t, e(t)) and whenever V (t, e(t)) > 0, we

have U̇(t) = V̇ (t,e(t))

2
√
V (t,e(t))

and using (13) and (17) we obtain,

U̇(t) ≤ − c3
2c2

U(t) +
c4

2
√
c1
‖δ‖2 (18)
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We have, V (t, x) =
x∫
0

∂V (t,y)
∂y dy =

1∫
0

∂V (t,sx)
∂x dsx and hence

using (15), V (t, x) ≤ c4
1∫
0

sds‖x‖22 = c4
2 ‖x‖

2
2. This implies

c4 ≥ 2c1.
Therefore, when V (t, e(t)) = 0 (i.e. e(t) = 0), we have
V (t + h, e(t + h)) ≤ c4

2 ‖e(t + h)‖22 = c4
2 ‖δ‖

2
2h

2 + o(h2);
where limh→0 o(h

2)/h2 = 0

D+U(t) = lim
h→0+

√
V (t+ h, e(t+ h))

h
≤ c4

2
√
c1
‖δ‖2 (19)

Therefore, using (18) and (19), we can write,

D+U ≤ − c3
2c2

U(t) +
c4

2
√
c1
‖δ‖2 (20)

Using Comparison Lemma [19, Section 3.4], we obtain,

U(t) ≤ U(0)e−tc3/2c2+
c4

2
√
c1

t∫
0

e(s−t)c3/2c2‖δ‖2ds (21)

Since e(0) = 0, (21) and (13) ensure,

‖e(t)‖2 ≤ c4
2c1

t∫
0

e−(t−s)c3/2c2‖δ(s, x, {tl}∞l=0)‖2ds

III. EVENT TRIGGERING STRATEGY

Since piecewise constant control is used instead of con-
tinuous feedback to drive the system (1), the system will
fluctuate from its expected behavior. We will implement an
event triggering strategy so that the system determines when
the exact state x(t) has to be transmitted to the control
generator and the behavior of the system does not go beyond
the tolerance level. Our goal is to keep e(t) within the given
tolerance level. Theorems 2.4 and 2.6 give explicit relation
between the error e(t) and the perturbation δ(t, x, {tl}∞l=0)
caused by control mismatch.

We consider a simple event triggering function, based on
the instantaneous value of δ(t, x, {tl}∞l=0), given in (22):

fevent(‖δ(t, x, {tl}∞l=0)‖2) = ε− ‖δ‖2 (22)

where ε > 0. Other variants of event triggering functions
are possible and we refer to some of them but due to space
limitation, we proceed with our further analysis based on
the stated event triggering function given in (22). Analysis
for other event triggering function such as (23) and (24) are
similar and straight forward.

f1
event(‖δ‖2) = ε1 + ε2e

−at − ‖δ‖2 (23)

f2
event(‖δ‖2) = ε3 −

t∫
tk

e−(t−s)c3/2c2‖δ‖2ds (24)

where tk is the time instance when the last event was
triggered, ε1, ε2, ε3 and a are some design parameters which
take nonnegative values.
The k + 1-th event is generated when fevent (similarly
f1
event or f2

event) attains a value of zero. The event triggering
mechanism (22) was used for event based control in several
works like [9] and [20], whereas (23) was used in [20].

If the ε defined in (22) is same as that given in Theorem
2.4, we can guarantee that error will be bounded in a
positive invariant set Ωe or equivalently the event based state
trajectory will be bounded in a domain around the closed
loop state trajectory. For any other arbitrary ε, Theorem (2.6)
ensures that ‖e(t)‖2 ≤ c2c4

c1c3
ε for all t ∈ [0,∞). Therefore,

in any case, for all chosen ε there exist r2(ε) > r1(ε) ≥ 0,
such that Ω(xc) = {x ∈ Rn| r1 ≤ ‖x − xc‖2 ≤ r2} is an
invariant set. Similarly for the event trigger mechanisms (23)
and (24), there exist such invariant sets which depend on the
choice of the design parameters ε1, ε2, ε3 and a.

Theorem 3.1: Inter event time for the event triggering
mechanism(s) defined in (22) (or in (23) and (24)) is bounded
from below.

Proof: Clearly, due to the fact that γi(x) is a Lipschitz
continuous function, we have

‖δ‖2 ≤ Lγ
m∑
i=0

‖gi(t, x)‖2‖x(t)− x(tk)‖2

where Lγ = max{Liγ | i = 1, 2, · · · ,m}. Since gi(t, ·) is a
Lipschitz continuous function and x(t) remains in a compact
domain (Ω(xc)), gi(t, ·) is bounded for all t. Hence, we can

write,
m∑
i=0

‖gi(t, x)‖2 ≤ G∞ <∞.

As a result, ‖x(t)− x(tk)‖2 ≤ ε
G∞Lγ

ensures ‖δ‖2 ≤ ε.

‖x(t)− x(tk)‖2 ≤∥∥∥∥
t∫

tk

(
f(s, x) +

m∑
i=1

gi(s, x)γi(x(tk))

)
ds

∥∥∥∥
2

≤
t∫

tk

(
L̄‖x(s)− x(tk)‖2 +K(s)

)
ds (25)

where L̄ = Lf +
m∑
i=0

Lig‖γi(x(tk))‖2 and K(s) =∥∥∥∥f(s, x(tk)) +
m∑
i=0

γi(x(tk))gi(s, x(tk))

∥∥∥∥
2

.

Using Gröanwall-Bellman inequality for (25), we get,

‖x(t)− x(tk)‖2 ≤ eL̄(t−tk)

t∫
tk

K(s)ds (26)

If tk + T is the time when the k+ 1-th event was triggered,
then from (26)

eL̄T
T∫

0

K(s+ tk)ds ≥ ε

G∞Lγ
(27)

Defining φ(T ) = eL̄T
T∫
0

K(s + tk)ds, we have φ(0) = 0

and φ(T ) is continuous, increasing with finite φ̇(T ) for all
T ∈ [0,∞). Therefore, there exists Tmin > 0 such that for
all T < Tmin, φ(T ) < ε

G∞Lγ
and hence, the inter event

time is bound from below by Tmin, where Tmin is such that

eL̄Tmin

Tmin∫
0

K(s+ tk)ds = ε
G∞Lγ

.
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Theorem (3.1) suggests that the event triggering mecha-
nism does not exhibit Zeno behavior [21].

IV. SIMULATION RESULTS

A. Example 1: Interconnected Inverted Pendulums

The first example demonstrates the application of the event
based nonlinear control scheme, presented in this paper, on
a network of inverted pendulums (Figure 1). The nonlinear
dynamics for each pendulum is given in (28):

Fig. 1. Three pendulums interconnected by springs. The angular positions
are measured anticlockwise from the vertical axes. [12]

ẋi =

[
xi2

g
l sin(xi1)− aik

ml2x
i
1

]
+

[
0
1
ml2

]
ui+

 0∑
j

hijkx
j
1

ml2

 (28)

where xi1 is the angular position of the i-th pendulum and xi2
is the angular velocity. g is the acceleration due to gravity,
l is the length and m is the mass of a pendulum, k is the
spring constant and ai is the number of springs attached
to the i-th pendulum. We consider the following parameter
values to conduct the experiment: g = 10,m = 1, l = 2
and k = 5. The parameter values are taken from [12] and
[20], where the authors considered the linearlized dynamics
of the pendulums to study event based control of networked
linear systems. hij = 1 if the i-th and j-th pendulums are
connected by a spring, otherwise, hij = 0. Similar to the
approach adopted in [12] and [20], we consider the control
inputs to be as given below so that the poles of the closed
loop system for each pendulum are at −1 and −2.

ui = −(2ml2 − k)xi1 −mgl sin(xi1)− 3ml2xi2 − kx2
1

if i = 1, 3 and for i = 2

ui = −2(ml2 − k)xi1 −mgl sin(xi1)− 3ml2xi2 − k(x1
1 + x3

1).

These control laws linearize the system and decouple each
subsystem. A candidate Lyapunov function of the form
(xi)TP ixi for each subsystem can be chosen independently.

We choose P i = P =

[
2 1
1 1

]
which gives Q =

[
−4 −3
−3 −4

]
.

Therefore, c1 = 0.38, c2 = 2.62, c3 = 1 and c4 = 5.24. We
choose the value of ε to be 0.05. The initial condition for
the system is chosen to be [π/3, 0,−π/5, 0,−2π/3, 0]. The
behavior of the closed loop system and event based system
are plotted in Figure 2.

The errors associated with each dimension are plotted in
Figure 3 where the event triggering instances are also shown.
Total number of events triggered is 49 and the average
interval between two events is 0.4083.

0 2 4 6 8 10 12 14 16
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Time

A
ng

ul
ar

 P
os

iti
on

 

P2

P3

P1

Fig. 2. The red curves show the behavior under continuous feedback
and the blue ones for event based feedback. P1, P2 and P3 correspond to
pendulum 1, pendulum 2 and pendulum 3 respectively.
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Fig. 3. (upper) The red curve is for the error in angular position of
pendulum 1, the blue and black ones are for the same for pendulum 2
and pendulum 3 respectively. (lower) The event triggering profile.

B. Example 2

In the second experiment we consider the following non-
linear dynamics:

˙[x1

x2

]
=

[
− sin(x1)
−x2

]
+

[
−x2

x1

]
u (29)

This system cannot be linearized for any choice of the control
input u but with u = −x2, we can stabilize the system
around the origin. A Lyapunov function V (t, x) = x2

1 + x2
2

proves that the closed loop system is exponentially stable.
We choose different initial conditions for this system to
observe how the event based system differs from the closed
loop system. We choose twelve different initial conditions as
shown in Figure 4. The initial conditions are chosen in such
a way that two of them lie on the x2 = 0 line and five of
them are the reflections of other five about the x2 = 0 axis.

The event triggering profile for the different initial posi-
tions are shown in Figure 5. The dynamics is symmetric
about the x2 = 0 axis with the chosen control. This
symmetry is also reflected in the event triggering pattern.
So we only plot the event triggering patterns for the first
seven initial conditions shown in Figure 4. The triggering
patterns for the 5-th and 7-th initial conditions are same since
the initial conditions mirror each other. No further event is
triggered after the first one at t = 0 for the 6-th and 12-th
initial conditions.

3771



−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

2

1

34

5

6

7

8

9 10

11

12

Fig. 4. The red curves are for the continuous feedback system and the blue
curves are for the event based system. All the trajectories converge to the
equilibrium point at the origin. There are twelve different initial positions
as numbered in the figure.
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Fig. 5. We only show event triggering profile for the first seven intial
conditions, rest of them are similar to their mirroring initial conditions.
Intial conditions on the line x2 = 0 do not require any triggering (expect
the one at t = 0 to set the initial values) because u ≡ 0. Event triggering
profile is same for intial conditions 5 and 7 since they mirror each other.

V. CONCLUSIONS

In this work, we have proposed an event based control
strategy for an input affine nonlinear system. We use an
event triggering strategy to ensure that the error remains in
a bounded domain, and as a consequence, the event based
system approximates the behavior of the continuous state
feedback system. Simulation results show the application of
event based strategy on two input affine nonlinear systems.
Theorem 2.6 gives the explicit expression on the bounded-
ness of the error e(t). Theorem 3.1 also shows a relation
between the inter event time and the error bound. The optimal
error bound can be selected based on the precision needed

and the communication resources available for triggering.
Possible future works would be to extend this framework to a
general nonlinear control systems of the form ẋ = f(t, x, u),
and include time delays and dropouts into the network.
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