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Abstract

Modern cyber-physical system (CPS) has a close relation-
ship between software and physical system. Automotive
embedded system is a typical CPS, as physical chips, sen-
sors and actuators are physical components and software
embedded within are the cyber components. The current
stage of embedded systems is highly complex in architec-
ture design for both software and hardware. It is common
in industrial practice that high level control algorithm de-
velopment and low level code implementation on hardware
platforms are developed separately with limited shared in-
formation. However, software code and hardware architec-
ture become closely related with the increasing complexity.
Correlated requirements and dependencies between hard-
ware and software are emerging problems of industrial
practice. We demonstrate in this paper a method to link
model based system design with real-time simulations and
analysis of the architecture model. This allows hardware
software co-design and thus early selection of hardware ar-
chitecture.
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1. Introduction

Cyber-Physical Systems (CPS) are engineered systems
constructed as networked interactions of physical and com-
putational (cyber) components. In automotive industry, the
embedded chips within the cars interact with other chips
and the physical parts of the car. The algorithm within the
processors are the cyber components, whereas the actua-
tors, sensors, buses and physical processors are the phys-
ical components. The cyber and physical components are
normally modeled differently. One particular view of the
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system that captures both the cyber and physical parts of
the system is the architecture of the embedded system.

Modern embedded systems for control applications,
such as those for engine control and active safety in au-
tomobiles, are highly complex and integrated. Following
system engineering principles, the subsystem of each con-
trol functionality is usually designed and implemented in
isolation by different groups or organizations according to
the specifications derived from system decomposition, and
is integrated at a later stage. Moreover, control algorithm
development at a high, abstract level and software imple-
mentation of the algorithm on a hardware platform are typ-
ically performed separately with limited cross-disciplinary
knowledge. To achieve high integrity of such embedded
systems, architecture design, including both software ar-
chitecture for control implementation and platform archi-
tecture of hardware and supporting software, becomes cru-
cial. A good architecture not only ensures correct integrated
behaviors of the final system but also enables fast and low-
cost integration.

A major challenge in architecture design is to balances
multiple constraints, including schedulablity, performance,
timing, and cost. For embedded systems, these constraints
usually conflict, and the criteria used to assess an archi-
tecture vary in different domains and organizations. As an
example, an architecture running each control on a sepa-
rate processor, known as federated architecture, makes it
easier to schedule the software executing on it compared
with an architecture consolidating multiple controls on the
same processor, known as integrated architecture. On the
other hand, the former architecture usually incurs higher
hardware cost than the latter. Since architecture design of
embedded systems involves comparisons and analysis of
decisions along multiple, often conflicting, dimensions, a
methodology that supports architecture modeling and anal-
ysis is therefore essential.

In current industry practices, the architecture of an em-
bedded system is captured in a very abstract manner using
generic representations such as block diagrams, where the
constructs for architecture elements are modeled as indis-
tinguishable blocks with annotations. Detail and quantita-
tive properties of these elements are either not captured or



captured in a different environment with implicit connec-
tions to the blocks. With such a representation, an archi-
tecture model captures only the structure of a system that
cannot be used directly for analysis. As such, the analysis is
typically very tool-dependent, which not only limits the en-
gineering processes where the tool applies but also incurs
high engineering cost to transfer the information, interpret
the results, and maintain the design artifacts. Furthermore,
some infrastructure services in supporting software (trig-
gers, scheduling policies, tasks and interrupt services, for
example) and the system parafunctional properties (execu-
tion times, memory footprint, and I/O delays, for example),
which are critical for architecture design, are assumed to
be either captured with the software model or implicitly
specified in implementation. As a result, the architecture
for embedded systems is usually over-designed, resulting
in unnecessary high system cost.

To improve the embedded system architecture, we de-
velop a method based on hardware-software codesign prin-
ciples. Hardware-software codesign uses unified represen-
tations for hardware and software to exploit the trade-offs
between hardware and software to achieve system-level ob-
jectives. As such the hardware and software can be de-
signed in parallel while system-level properties are still
analyzable through the development and are preserved af-
ter integration. Our method uses a standard Architecture
Analysis and Design Language (AADL) to capture high-
level hardware models and software partitions. Analysis of
the system-level behaviors with integrated software parti-
tions on the target hardware can then be performed and
adjusted with different levels of abstraction. As the devel-
opment processes of both hardware and software proceed,
system-level properties can be validated with more imple-
mentation details. We have applied the method to an archi-
tecture design for an adaptive cruise control (ACC) system
as a case study. As an example, we have performed design
and analysis, specifically for schedulability and data syn-
chronization, for the ACC running on single core or mul-
ticore controllers. The method allows us to systematically
perform early verification at high level, and real-time sim-
ulation at implementation level under the same architecture
framework.

The rest of the paper is organized as follows. Section 2
summarizes related projects and research. The remaining
sections demonstrate our proposed method on an Adap-
tive Cruise Control (ACC) development problem. Section
3 describes the AADL modeling language and the design
process using AADL. Section 4 describes the ACC algo-
rithm example with its high level architecture layout. The
coarse AADL model created is refined further in section 5
when the software group creates a detailed behavior model
in Simulink and the hardware group proposes some choices
of architectures. The last section describes real-time simu-
lation and timing analysis results based on the architecture
model, which lead to a conclusion for hardware architec-
ture selection.

2. Related Work

The existing research related to AADL simulation and
analysis can be categorized into two major methods. One
is based on the Behavior Annex extension of AADL. B.
Berthomieu et al. [1] transform the AADL behavior model
to the Fiacre language which is then verified using a Time
Petri Net Analyzer (Tina). H. Liu and David P. Gluch [4]
translate the AADL behavior model to timed automata and
verify in UPPAAL, a formal model checker for timed au-
tomata. I. Malavolta et al. [5] integrate the AADL toolset
OSATE with DULLY, a framework which allows auto-
mated model transformation. This allows them to model
check the AADL model with the behavior annex using
a Labelled Transition System Analyser (LTSA). Since
AADL does not have the representation power of many
existing behavior modeling and simulation engines such
as Simulink, our approach clearly departs from previous
approaches and only captures a limited behavior model in
AADL. In this paper, AADL only acts as high level guid-
ance during the behavior modeling and design phase. The
Simulink model can be exported back to AADL using the
method proposed in [8]. The other methods are based on
XML output of the AADL parser in OSATE. The schedul-
ing and memory analysis tool Cheddar, which is XML
based, has an AADL importer that interprets the AADL
model and performs timing analysis upon it [9]. Using a
metamodel transformation method, F. Mallet et al. [6] pro-
pose a method to transform an AADL model to MARTE, a
UML profile for real-time embedded systems, which can be
further verified using a time model in MARTE and Clock
Constraint Specification Language. However, these analy-
sis tools do not address the controller performance effects
of the schedule, and thus cannot conclude further on the
hardware selection problem of embedded systems. Ched-
dar is used here for early verification and schedulabilty
analysis, but the hardware selection conclusion is based on
real-time simulation results for the overall system perfor-
mance.

Other related research is from the perspective of ADLs
and hardware-software co-design. One is the MARTE
project, a UML profile which has been mentioned ear-
lier. The integration of MARTE with EAST-ADL AU-
TOSAR proposed in [2] gives a way to capture the system
engineering process from the requirement model to real-
time implementation in AUTOSAR. However, such frame-
work lacks the analysis power provided by AADL. An-
other project is SysML based modeling, architecture, ex-
ploration, simulation and synthesis for complex embedded
systems (SATURN), in which a combination of SysML,
MARTE and SystemC hardware simulation is used to co-
simulate software and hardware components.[7] This is
closest to our work. The major difference is that the sim-
ulations they perform are at much lower implementation
levels. The Simulink simulations we perform are high level
real-time simulations of the AADL model which are useful
for early stage validation and verification to reduce de-
sign cost. AADS is another SystemC simulation engine
for AADL model. In [10] the authors proposed a solution



to the software-hardware partition problem by evaluating
Worst Case Execution Time (WCET) using AADS. In our
project, the software partition is developed based on the
AADL model and tested on an existing processor to get
the estimated WCET instead of simulating the WCET in
SystemC.

3. AADL Language and Design Process

Architecture Description Language (ADL) is designed to
capture the software and hardware architecture of an em-
bedded system so as to bridge the gaps of feature design
in higher levels and software implementation in lower lev-
els. Because of the closer link between embedded code
and hardware platforms in automotive applications, ADL
is critical to the design process. Architecture Analysis and
Design Language (AADL) is emphasized in this paper as
an example of ADL. The language has formal textual and
graphic representation, which enables easy integration with
UML based languages such as SysML, EAST-ADL and
AUTOSAR. The textual description makes it extendable
and adoptable to industry practices. Several standard an-
nexes to the language have been developed to extend the
scope of AADL in analysis areas. Error Annex defines fea-
tures to enable specifications of redundancy management
and risk mitigation methods such as safety, reliability and
integrity. Behavior Annex describes the system behaviors
as automata and enables formal model checking and code
generation based on the AADL model. The open source
tool OSATE developed by Peter Feiler’s group from SEI
CMU, provides parser and model generation as well as
basic analysis tools. AADL is chosen also because the
OSATE toolset has been demonstrated in several projects
in Europe and US, including System Architecture Virtual
Integration (SAVI) from the Aerospace Vehicle Systems
Institute and Correctness and Modeling and Performance
of Aerospace Systems (COMPASS).Comparing to EAST-
ADL and other ADLs available, AADL is much more ma-
ture and suitable for industrial practice. Because of the di-
rect linkage between EAST-ADL and AUTOSAR, EAST-
ADL is preferred for automotive embedded systems, in par-
ticular when the tool chain includes much more powerful
analysis or provides far better interfaces for other analysis
tools than what it has now. For the purpose of demonstrat-
ing usage of ADLs for embedded system design and analy-
sis, we selected AADL, but the method demonstrated here
applies to EAST-ADL based design as well.

AADL, as an architecture description language for em-
bedded systems, gives the designer an opportunity to start
from an abstract model and refine it progressively to a de-
tailed high fidelity model. Such hierarchical design allows
analysis and requirement verification for different stages
of the design. The AADL model starts with definition of
different component types of the system. These types are
classified in standard categories including process, thread,
thread group, data, subprogram, processor, memory, bus,
device and system. The component types include inter-
faces or features to interact with the other parts of the sys-
tem. The same component type can be implemented dif-

ferently and therefore have completely different character-
istics. Different categories have their standard properties
associated and thus can be specified in their implementa-
tions, which can differ in internal structure and property
such as scheduling protocol for processors. In the early
phase, system engineers can use AADL to capture the high
level model and describe just the interface level of the sub-
components. This abstract model can be transformed from
SysML or other system design models commonly used in
industry, because in the high level, the architecture infor-
mation is very similar. In the second phase, controller de-
signers use the AADL model as a guide to define behav-
iors of the models so the software components, such as a
process in AADL model, will be refined to detailed func-
tion calls (subprograms), threads and thread groups. Hard-
ware designers can perform design in parallel from the ba-
sic AADL model, such as proposing hardware platform
choices and memory and power allocation based on re-
quirements. The third phase starts with the integration of
the hardware and software designs, then different prop-
erties and performance evaluations of the architecture are
added to the model. This allows reliability, timing and er-
ror analysis to be performed in the earliest stage of design,
reduces redesign cost and improves efficiency.

The method we propose starts with requirements cap-
turing and architecture modeling in the first phase. AADL
coarse model can be generated from a system model such
as System Modeling Language (SysML) or directly cre-
ated based on the specifications. The second phase is soft-
ware behavior modeling and hardware co-design, in other
words, refining software and hardware architecture in detail
in AADL and designing corresponding behavior in a simu-
lation tool such as Simulink. The AADL model at this stage
enables early verification such as error analysis, timing
analysis and memory allocation. In the third phase, real-
time simulation is performed based on the behavior model
with timing properties associated to finalize hardware and
software design parameters. Code generation and hardware
implementation is performed at the last phase guided using
the AADL model. The AADL model acts as a backbone to
the whole design process. The first three phases of the work
are demonstrated here emphasizing hardware-software co-
design and analysis.

4. ACC System Model

The hardware software codesign, early verfication and
analysis of AADL model is demonstrated on an automo-
tive application, the Adaptive Cruise Control (ACC) algo-
rithm. When the radar and front camera sense the speed
and distance of the front vehicle, the desired speed to be
maintained for the host vehicle is computed by the algo-
rithm. It also works as a cruise control unit when there is
no leading vehicle in the range, i.e. maintains the speed set
by the driver.

The design starts with a very abstract model of the ACC
system, which includes devices such as radar, speed sense
and human inputs, and system blocks such as an existing
cruise control unit and a new ACC controller block to be
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Figure 1. Structure Diagram in MagicDraw shown above gives dependency and overall relationship of the different blocks.

system ACCUnit

features
CC_state: in data port;
ACC_Spd_Required: in data port;
Map_info: feature group ACC_Map_plug;
Vehicle_info: feature group Vehicle_plug;
LKI_state: in data port;
HMI_info: feature group HMI_plug;
CC_Engage_Flag: out data port;
ACC_state: out data port;
ACC_SetSpeed: out data port;
ACC_SetHeadway: out data port;

end ACCUnit;

device RadarLaneCamera
features

Radar_front_vehicle: feature group
Radar_socket;

Lane_info: feature group Lane_socket;
end RadarLaneCamera;

(a)

system ACC

features
Map_info: feature group ACC_Map_socket;
ACC_state: out data port;

end ACC;

system implementation ACC.impl
subcomponents
FFA: system ACCUnit;
PFA: system CCUnit;
FLC: system LKI;
RA: device RadarLaneCamera;
MI: device MapGPS;
PES: device PowerTrainSensor;
HMI: device HMI;
connections
Cl: port FFA.ACC_state -> ACC_state;
C2: port FFA.CC_Engage_Flag -> PFA.CC_Engage_Flag;
C3: port PFA.CC_state -> FFA.CC_state;
C4: feature group MI.Map_info -> Map_info;
C20: feature group PES.VehicleInfo -> FLC.Vehicle_info;
end ACC.impl;

(b)

Figure 2. (a) shows the AADL model type definition the new ACC controller unit and radar sensor. (b) is the corresponding
AADL model of the overall system ACC that captures the internal connectivity between different blocks. Some connections
and ports are omitted for concision. All the internal subsystems including ACCUnit have no implementation created at this

phase.

defined, shown in the SysML structure diagram Fig. 1. The
equivalent AADL is transformed from the SysML model
using model transformation as shown in Fig. 2. Hardware
components such as the processor and memory are not
defined. Such components are part of different subsystems
which at this stage are not refined to include hardware or
software subcomponents. Overall system decomposition is
shown on the right, defined by the subcomponents and the
connections between different system interfaces.

From a controller performance point of view, the ACC
algorithm is required to keep the relative distance between
leading and host vehicle to be at least 90% of the driver-
selected headway, which specifies the distance in time for
the host vehicle to reach the leader. From the hardware
implementation point of view, the overall ACC algorithm

needs to be executed on either an existing single core pro-
cessor or a dual-core processor with the same computa-
tional power. Because of the close relationship between
hardware and software requirements, co-design is neces-
sary to fulfill requirements from both areas. Thus the goal
is to select the hardware architecture that has tolerable con-
troller performance degradation and lower cost.

5. Refined AADL for Analysis and
Hardware-Software Co-design

The coarse model in the previous step is refined further
here. This section consists of two aspects, one is to capture
the AADL hardware requirements, the second is to decom-
pose the AADL software model further to the threads level.



processor implementation singleCore.impl
properties
Clock_period => 5 ms;
SEI::MIPSCapacity => 30.0 MIPS;
Scheduling_Protocol => RATE_MONOTONIC_PROTOCOL;
Cheddar_Properties: :Preemptive_Scheduler =>
true;
end singleCore.impl;

system implementation ACC_RD.impl2
subcomponents
ECU: processor singleCore.impl;
FFRP: process ACC_RD_process.impl;
properties
Actual_Processor_Binding => reference ECU
applies to FFRP;
end ACC_RD.impl2;

(a)

processor implementation dualCore.corel
properties
Clock_period => 5 ms;
SEI::MIPSCapacity => 30.0 MIPS;
Scheduling_Protocol => RATE_MONOTONIC_PROTOCOL;
Cheddar_Properties: :Preemptive_Scheduler => true;
end dualCore.corel;

system implementation ACC_RD.impl
subcomponents

ECUl: processor dualCore.corel;

ECU2: processor dualCore.core2;

FFRP: process ACC_RD_process.impl;
properties

Actual_Processor_Binding => reference ecul
applies to FFRP.Input;

Actual_Processor_Binding => reference ecu2
applies to FFRP.Output;
end ACC_RD.impl;

(b)

Figure 3. (a) shows the single core configuration of ACC system, whereas (b) shows the dual-core configuration. The
software component FFRP process is defined as an instance of type ACC_RD_process.impl, which refers to what the software
group is developing at the same time. The AADL model ACC_RD.impl is an implementation of an extension of system type

ACCUnit in Fig. 2.

process implementation ACC_RD_process.impl
subcomponents

Input: thread ACC_RD_Input.impl;

SetResume: thread ACC_RD_HMISetResume.impl;

Output: thread ACC_RD_Output.impl;
ACCInput2PCS_I: data ACCInput2PCS.impl;
ACCInput2ACCMode_I: data ACCInput2ACCMode.impl;

SpdCtrl20utput_I: data SpdCtrl20utput.impl;
connections

data access ACCInput2PCS_I -> ACCInput.ToPCS;
data access ACCInput2PCS_I -> PCS.FromACCInput;

data access SpdCtrl20utput_I ->
Output.FromSpdCtrl;

end ACC_RD_process.impl;

(@)

thread ACC_RD_Input
features
ToPCS: requires data access ACCInput2PCS.impl;
ToACCState: requires data access
ACCInput2ACCMode.impl;

ToCrzState: requires data access
ACCInput2CrzState.impl;
end FLAAD_FSRACC_RD_Input;

thread implementation ACC_RD_Input.impl

properties

Dispatch_Protocol => Periodic;

Compute_Execution_Time => 4 Ms .. 5 Ms;

Deadline => 20 Ms;

Period => 20 Ms;

Cheddar_Properties::Fixed_Priority => 6;

end ACC_RD_Input.impl;

(b)

Figure 4. (a) shows ACC process implementation model with internal structures such as threads and data. (b) shows one of
ACC threads and its implementations with associated Cheddar timing property.

Two aspects are developed in parallel, independent of one
another and integrated at the end.

Since the hardware requirements are not finalized to a
single core or multicore configuration, two hardware con-
figurations are proposed in AADL (Fig. 3). At the same
time, the software group developed Simulink blocks based
on the architecture defined in the AADL models. Then
based on the Simulink blocks, AADL subsystems are de-
composed to threads, which enables analysis tools to link
with the AADL model. Timing analysis is emphasized
here to help the selection of the hardware configuration.
Since both hardware configurations use similar computa-
tion power, every thread is tested and assigned an esti-
mated computation time. Given the sensor and signal pro-
cessor system, the maximum sampling rate for input in-
quiry thread is also assigned. All of this information can
be captured in AADL using the predefined properties of
threads and processes. In order to fully facilitate the tim-
ing and scheduling analysis enabled by AADL, Cheddar is
chosen to be the external tool to analyze the XML model

generated by the AADL model. The AADL model can
be imported to Cheddar externally. By specifying the ap-
propriate scheduling protocols and data sharing protocols,
Cheddar can perform the scheduling feasibility analysis
and simulation. More importantly, compared to other tools
like AADL Inspector, this tool allows analysis for mul-
ticore. Given the execution time and maximum sampling
rate of sensor input threads, the dual-core and single core
configurations are evaluated with different thread sampling
periods and scheduling protocols. A concise AADL model
is shown in Fig. 4. The generated scheduler of different
threads for a dual-core configuration is shown in Fig. 5,
based on Rate Monotonic scheduling and Best Fit parti-
tion allocation. The feasibility test returns the utilization of
ECU1 to be 45% and ECU2 to be 70%. As can be seen, the
ECU?2 is almost fully utilized, and the period is 40ms for
this case. A single core configuration requires the period to
be at least 70ms for utilization less than 71% for 10 threads
based on Liu & Layland [3]. We chose 80ms for single core
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Figure 5. Cheddar simulation results of shared data access for dual-core setup.

and 40ms for dual-core as the reference period to perform
the controller evaluation in the next section.

6. AADL Real-Time System Simulation and
Hardware Selection

The Cheddar tool is used for sampling period selection
and feasibility testing, whereas Simulink Truetime, a real-
time simulation toolbox for Simulink, is used to evaluate
the controller performance degradation. The data sharing
protocol implemented in Truetime is different compared to
the Cheddar tool, so there is no way to directly compare the
scheduler results. For the single core case, the task is given
fixed priority and tasks/threads are running consequentially
based on priority. For the dual-core case, simulation is set
up so that each core is synchronized with the other with the
same priority setting, e.g. when one of the cores is writing
to some memory locations, the other core has to wait until
the first finishes before reading those particular memory
locations. Physical plants, i.e. the host car and leading car,
are co-simulated in the CarSim environment with Simulink
controller blocks.

The objective here is to simulate ACC under the same
road scenario for single and dual-core configurations. The
controller performance has to satisfy the requirement of
headway and the speed profile should be smooth and sta-
ble for the host vehicle. Different sampling periods are also
examined to evaluate timing effects on controller perfor-
mance. All results are compared to a reference model with-
out timing effects. The final goal is to select the best hard-
ware setup and sampling period for the algorithm.

6.1 Single Core Case

Based on Cheddar analysis, a sampling rate greater than
70ms is needed. For simplicity, 80ms sampling is used as
reference model. The other sampling rate to be compared
is 40ms when threads are not schedulable and 160ms for
downsampling. One reason is to evaluate the behavior of
the algorithm under a fault event when it is oversampling or

downsampling. The other reason is to estimate the largest
possible sampling rate for this algorithm to work and eval-
uate the possibility of executing it in parallel with other
related algorithms.

For all cases, the leading vehicle speed profile is the
same with a fixed speed around 60km/h. The “set speed
increase” button is pressed on the host vehicle for 45s until
the set speed reaches 120km/h. The host vehicle decreases
the speed after around 60s due to the decrease in relative
distance from the front vehicle. The results for 40ms and
80ms sampling are shown in Fig. 6. The 160ms sampling is
similar to the 80ms sampling result. In the relative distance
plots, the green dashed line is a reference profile where
Truetime is not used. The red line is the lower boundary
based on the headway specification. The relative distance
as shown for both cases is higher than the requirement
boundary determined by the headway distance.

As can be seen in the scheduler output with a 40ms pe-
riod, several threads cannot be executed within the dead-
line. This is expected based on scheduling analysis. How-
ever, there is no large controller performance degradation,
which means for a single core algorithm, it does provide
robustness to timing effects. The degradation seen in the
80ms result is caused by the fact that the algorithm is ini-
tially designed for a 40ms controller. The conclusion is that
for the single core configuration, 80ms sampling is the best
among all the tested sampling rates. The degradation of
controller performance is tolerable.

6.2 Dual-core Case

Similar to the single core case, sampling periods of 20ms,
40ms, 80ms with the same execution time for each thread
are chosen to observe the performance degradation caused
by oversampling and downsampling. The simulation setup
is the same as the regular one in single core case. Con-
troller performance of 20ms and 80ms is very similar, so
the 80ms one is not shown. As can be observed from Fig.
7, the relative distance is always higher than the lower
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Figure 6. Control performance of single core case is shown in the left column. The top subplot of each figure shows the
speed profile of the following/host vehicle. The bottom subplot of the figure shows the relative distance between the cars.
The scheduler outputs of the corresponding cases are shown in the right column.

boundary determined by headway distance. As expected,
controller performance for 40ms is almost the same as the
case without timing effects since the algorithm is designed
for 40ms sampling. On the scheduler side, the dotted lines
indicate the scheduler for ECU2, while the solid lines in-
dicate the scheduler for ECU1. Clearly the system behaves
abnormally for 20ms sampling which is expected based on
scheduling analysis. For 40ms, the scheduler output is de-
sirable. Thread 6,7 in ECU2 are executed in parallel and
synchronized with the behavior of thread 1 in ECU1. The
conclusion is that for a dual-core setup, 40ms sampling is
the best among all the tested sampling rates.

For common implementation when the ECU is dedi-
cated to the ACC algorithm only, the single core configura-
tion has similar performance compared to dual-core config-
uration in terms of the headway requirement. Thus single
core with 80ms sampling is preferred as it is easier to im-
plement and lower in price.

7. Conclusion

Based on the ACC experiment we conclude that hardware-
software co-design using AADL is well suited for early

verification and requirement refinement in industry prac-
tices. Architecture information is important especially in
the early design phase to capture requirements and perform
associated analysis. The real-time simulation is necessary
for detailed controller performance evaluation. Our method
is well suited for model based development that is required
in industrial embedded system design. Future work is to
apply such methods to larger systems and perform other
analysis attractive to industry, such as error analysis and
power allocation analysis as enabled by the AADL model.
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