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1. Introduction and Description of the Problem and Goals 

Health expenditures for diabetes and its complications totals 376 billion dollar (USD) and is expected 

to exceed 490 USD billion by 2030. Developed world countries count for 80% and US for 52% of these 

total health expenditures. Type 2 diabetes is a chronic disease with long term complications as blindness, 

renal failure and increased risk for stroke and myocardial infraction.  There are several studies related to 

prediction of diabetes type 2. Most famous models and widely used are the IRIC, QDScore, DESIR. All 

models seek to be aligned with age, BMI and waist circumference as variables, however, the performance 

of each model varies between countries, age, sex, and adiposity. One of the methods that have been used 

in the past to define the risks and performance of several treatments for diabetes type 2,  is Markov chain 

models constructed for a heterogeneous subscriber population, and used to examine the long-run effects 

of particular utilization patterns on disease functioning. 

Systems Engineering (SE) is an approach combining the advantage of model-based systems 

descriptions, based on modular components, integrated with sophisticated tradeoff analysis and design 

space exploration, to design and analyze the performance of complex systems in many domains, ranging 

from engineering, to economics, to enterprises, and most recently to healthcare systems and processes 

[17].  In fact, the recent PCAST report [17] recommends SE as a critical methodology for accelerating 

improvements in healthcare systems towards higher quality and lower costs. However, there are very few 

studies using this modern and interdisciplinary approach to healthcare. The present paper describes our 

research towards developing such a framework for the case of diabetes type 2, that will allow all 

stakeholders of healthcare to assess the benefits of specific policies, technologies, treatments etc., with 
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respect to several metrics, including economic metrics. Further we propose that modern SE 

methodologies are uniquely capable to evaluate the interrelationships between healthcare, information 

technology and economics. We offer the present study as a prototypical example.   

The purpose of the present study is  to classify population groups based on diabetic risk, formulate 

models of structure and behavior, set requirements for treatment performance and construct states (for 

various relevant processes, including the disease, patients, treatments, technologies). Every state will have 

different probabilities of disease progression, cost function and health performance. Finally, the results of 

every state will be used to construct and validate the Markov chain model.  From the Markov chain model,  

for every step, outputs of the model will be total cost, risk, health performance. Also every state will 

generate a different sum total of cost, health performance and risk. Every state shows different progression 

of the disease that will need different cost function (combination of treatment and medicine), health 

function (Qaly). Each step represents the evolution (progression) of the model through time.  

2. Methodology  

The model is influenced from the Archimedes, Michigan, UKPDS and Desir models. We are 

incorporating the advantages from every model and we integrate them into a new system that is more 

complete and detailed. There are several classes that interact among them (see Fig. 3). The classes of the 

system are people, facilities, records, interventions, equipment, supplies and budget. Each class has 

attributes; e.g. in the case of people they have organs, which have also inside them parts and subparts, like 

the heart that has parts of coronary, arteries, etc. 

Figures 1 and 2 show the basic algorithm and a typical flowchart (for a specific path of the disease) 

employed in our model. Figure 1 shows the various input parameters and the output from the model. 

There are many variations of the model and algorithms that can be used; we just show a typical example 

here. For diabetes type 2, disease is indicated by a test result of  >125 mg/dl glucose level in blood in the 

FPG test, or >199 mg/dl glucose level in blood in OGTT test. A tool that capture the information that 

someone has a disease is a diagnostic test, or screening test, or monitoring test. 
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Start T=0

Demographic: Age, Duration, gender, race, Diabetes in family
Risk factors: Smoker, SBP, Hb1A1c, Fpg, 2hOgtt,ldl, hdl, BMI, albmnuria, 

creatinine, haemogrlobin, white blood cell, a-hydroxybutyrate (a-HB), 

triglycerides

Event history: MI, stroke, chf, blindness amputation, renal renal failure, 
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Fig. 1: Basic algorithm in the model 
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Fig. 2: Flowchart of kidney system related to neuropathy and renal failure. 

3. Computation of the risk for every gender  

An important part of our model is the computation of risk from various input parameters of the model as 

shown below in an example.   

{
0 = 𝑚𝑎𝑙𝑒, 𝑓(𝑥𝑚) = −10.45 + 0.94𝑆𝑚 + 0.06 𝑊𝑐 + 10.17 𝐹𝑝𝑔 + 22.42 𝑂𝑔𝑡𝑡 + 0.42𝐺𝑔𝑡 + 0.14𝑂𝑚𝑖𝑐

1 = 𝑓𝑒𝑚𝑎𝑙𝑒, 𝑓(𝑥𝑓) = −20.43 + 0.75𝐷𝑓 + 4.69 𝐵𝑚𝑖 + 9.35 𝐹𝑝𝑔 + 22.39 𝑂𝑔𝑡𝑡 + 0.86 𝑇𝑟𝑔 + 0.36𝑂𝑚𝑖𝑐  }
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Where SM= smoker, Wc= Waist circumference, FPG= fast plasma glucose test, 2Ogtt= 2 hours fast plasma test, GGT= Gama 

Glutamyl Transpeptidase, Omic= creatine blood test, Df= family diabetic history, BMI= body mass index, Trg= Triglycerides  

Figure 3 illustrates a simple example of classes involved in the model and transitions between classes. 

A key issue with this type of models is the very large number of states they may require. We have 

developed methods to handle this complexity in our earlier work. For example, we have 3
N
 states, 

corresponding to the normal/prediabetic/diabetic status of each patient. When screen is in the normal 

state, if there is a prediabetic risk the patient status is switched to prediabetic. Otherwise the status goes 

to normal or diabetic patient. When a patient occupying a bed is in the normal state, the status of the 

patient is switched to normal. Beds have their own three state variables, reflecting the patient state for 

each bed, but these do not directly alter the state of the risk machines. Due to space limitations we do not 

provide more details of the model, other than these examples.  

Class1 

class2

classn

Non Risk Non Risk1-s

sp1

sp2

spn

1
 

Fig. 2: Illustrating classes and transitions between classes linked to risk . 

4. Resource Model and Cost 

Our model includes a resource and cost model. In [Unerti, 2009] the cost is described for the staff  that 

will be needed for a diabetic clinic as a dependent variable, on the disease screening and consultation in 

the following manner. The cost of every part depends on the cost per hour for every specialty, the cost of 

every software or web application used, the cost of telemedicine equipment, the cost of the tests that will 

be needed in every point of screening. The stationary screening distribution can be computed from patient 

states. Each occupancy level is associated with a cost based on the above so expected cost can be 
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computed from the state distribution. The resource model can depend on several other parameters. The 

entire model is linked with tradeoff analysis tools based on multi-metric optimization. 
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