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Abstract

We revisit the general linear consensus problem and pro-

vide new conditions for asymptotic consensus on two types

of stochastic versions of the algorithm, in discrete and con-

tinuous time. We show that our method unifies a number of

proposed models in the literature as well as it extends and

generalizes existing results.

1 Introduction

Self-organized networks are an important class of com-
plex systems and a central topic of networked control
theory. Examples of such networks typically illustrate
a global collective behavior as a result of a local inter-
action among autonomous agents.

Perhaps the simplest control algorithm for coordi-
nation is the linear consensus algorithm. In its classic
version, it involves a finite number of agents N ≥ 2,
each agent i = 1, . . . , N of which possesses a value of
interest. This value, denoted by xi ∈ R, evolves un-
der the following averaging schemes, expressed either in
discrete (n ∈ N) or continuous time (t ∈ R):

(0.1) xi(n+ 1) =
∑

j

pnijxj(n), ẋi =
∑

j

ptij(xj − xi)

The non-negative numbers pnij or p
t
ij model the influence

of agent j on i. They essentially characterize the
connectivity regime and eventually the process of the
asymptotic alignment. For the discrete model the basic
assumption is

∑

j p
n
ij ≡ 1 and for the continuous model

∑

j p
t
ij ≡ 0. These types of algorithms have been

extensively studied in the literature a recent review of
which can be found in [15].

The central objective for the asymptotic analysis
of systems like (0.1) is the derivation of sufficient
conditions on the coupling weights pij in order for
the solution x to satisfy asymptotic convergence to a
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constant value, i.e. say for the discrete time xi(n) → k
as n → ∞, ∀ i = 1, . . . , N . In the context of these
algorithms this is equivalent to

|xi(n)− xj(n)| → 0 as n → ∞, ∀ i, j,

(see [15]).
In their seminal work, Jadbabaie et al. [8] proved

that a sufficient condition for asymptotic consensus oc-
curs if the union of the communication graphs over
uniformly bounded intervals of time corresponds to a
routed-out branching graph. This is known as the re-
current connectivity condition and it has been consol-
idated as the mildest sufficient connectivity condition
which ensures asymptotic consensus [13].

1.1 Related literature It didn’t take long until that
type of connectivity was substituted by its stochastic
counterpart.

One reason is that real-world networked systems
suffer from various communication failures or creations
between nodes. Such variations in topology can hap-
pen randomly, and this motivates the investigation of
consensus problems under a stochastic framework.

Another reason is that researchers criticized the re-
current connectivity condition as a too stringent deter-
ministic scheme. It seems that asking a priory an in-
ternal overall connectivity every a uniformly bounded
period of time and unacceptably strong assumption.
Adding statistical regularity on the dynamics of inter-
connections, this assumption is satisfied almost surely.
Thus it can be omitted. Along these lines, numerous
modifications have been introduced [7, 14, 17, 18, 11].

A fundamentally different approach of probabilistic
formulation of consensus algorithms is proposed for the
flocking models where the dynamic alignment occurs in
ẋ rather than in x. This stochastic counterpart of (0.1)
has been studied by noisy perturbation of the nominal
deterministic models [5, 1, 3]. This perturbation is
the additive multiplicative White Noise and sufficient
conditions are derived for almost sure consensus.

1.2 This work. Recent advances in the linear con-
sensus problem have extended the result to more gen-
eral conditions and types of convergence to a common
value [16, 15]. The present paper is an excerpt from [15]
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where a general theory for consensus systems is devel-
oped. In this monograph, we discuss a unified approach
based on the universal use of the contraction coefficient
(the central mathematical tool for estimating the aver-
aging effect of stochastic matrices on vectors, [6]) both
for the discrete and the continuous time systems under
mild connectivity assumptions. In particular, we estab-
lish generalized conditions for consensus that demand
neither symmetry nor uniformly lower bounds on the
connectivity weights. Hence we are led to non-uniform
type of convergence to consensus.

In this paper, we discuss the stochastic counterpart
of these models from both the aforementioned perspec-
tives. In the first part, we impose uncertainty in the ex-
istence of connections. We establish probabilistic rules
to control these particular dynamics and we propose a
new framework based on measure preserving dynami-
cal systems. We will show that convergence to consen-
sus can happen only with a positive probability strictly
less than one exactly because of the non-uniform con-
nectivity condition. We develop our theory in discrete
time only and our main contribution is the unified result
this framework provides among a number of important
stochastic versions proposed in the literature.

The second part, stochastic approach deals with
uncertainties in the equations. This leads to “noisy”
differential equations, where the noise is supplied by
Brownian processes. We elaborate on the deterministic
case and provide new results for asymptotic flocking
in the almost sure and mean square sense. Here our
analysis concerns continuous time dynamics.

The paper is organized as follows: Basic notations
and definitions are provided in §2. In §3 we state our
models and the leading hypotheses with preliminary
results of the deterministic version taken from [15]. In
§4 we state and prove the first result of this paper and
we work on examples from the literature to highlight
the unifying perspective of our results. In §5 we
proceed with convergence results on flocking networks
and stochastic differential equations in continuous time.
A thorough discussion of the overall obtained results
with concluding remarks is held in §6.

2 Notations & Definitions

We set Z for the integers, N is for the natural numbers
and R for the real numbers. For N ∈ N we define
V := {1, . . . , N}. Any vector x ∈ R

N is considered as a
column vector, unless otherwise stated. The agreement
or consensus space ∆ is defined as

∆ = {x ∈ R
N : x1 = x2 = · · · = xN}

A rank−1 is a N × N matrix M is such that it has
identical rows and for which Mx ∈ ∆, ∀x ∈ R

N . By

1 we understand the N−dimensional vector with all
entries equal to 1. By I we understand the N × N
identity matrix. By ||·||p we denote the p-norm where in
particular x2 = xTx = ||x||22. Also δ(·) takes the place
of the delta function, L1

S denotes the space of absolutely
integrable functions that are defined in S and [v] denotes
the integer part of v.

2.1 Elements of algebraic graph theory By a
topological directed graph G we understand the pair
(V, E) where E = {(i, j) ∈ V : i, j ∈ V} is the set
of edges where in principal (i, j) 6= (j, i). By S we
denote the family of graphs with fixed N nodes and
self-edges one every node. Also T ⊂ S the subset of
graphs each of which is routed-out branching, i.e. each
member of T has at least one node i ∈ V (the root)
through which the whole graph can be traversed. Each
member Gi of it, has a scrambling index γi, i.e. the
minimum number of steps from a root node to reach all
the other nodes of graph. In fact T can be partitioned
in such mutually disjoint subsets: T =

⊔

v Yv so that
for G1 ∈ Yz1 , G2 ∈ Yz2 , z1 6= z2 if and only if γz1 6= γz2 .
Consequently, we can enumerate

1 = γ0 < γ1 < · · · < γmax ≤

[

N

2

]

.

In particular, there exists a sufficient number of new
edges that will decrease the scrambling index. Fix j < i.
Then for any Gi ∈ Yi there exists a positive number
li,j such that the graph Gj formed out of Gi with li,j
additional edges will be a member of

⋃j

v=0 Yv, in which
case γj ≤ γi − 1.

Remark 2.1. The minimum number of edges needed
to be added on an arbitrary member of Yi so that the
resulting graph is a member of

⋃i−1
v=0 Yv, denoted by

l∗ := maxi{li,i−1}.

A non-negative matrix P = [pij ] is such that
pij ≥ 0. P is stochastic if it is non-negative and
∑

j pij ≡ 1. Any non-negative matrix P can be
represented as a graph GP = (V, E) so that pij 6= 0 ⇒
(i, j) ∈ E . We are interested in backward products
Pt,h = Pt+hPt+h−1 . . . Pt+1 for t ≥ 0, h ≥ 1.

2.2 Elements of dynamical system theory Let
(X,B, µ) be a finite measure space (that is µ(X) < ∞)
and for the rest of the paper we assume, without loss
of generality, µ(X) = 1. We define a measurable
transformation T : X → X, as a map with the property
that T−1(B) ⊂ B. T : X → X is measure preserving if
µ(T−1B) = µ(B) for any B ∈ B. A measure preserving
transformation is called ergodic if for any B ∈ B with
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the property that T−1B = B either µ(B) = 0 or
µ(B) = 1.

Given a collection of spaces,
{

(Xn,Bn, µn)
}

n∈N
, we

define the product space in the natural way: X =
∏

n∈N
Xn and a point χ ∈ X is considered to be the

sequence χ = χ0χ1χ2 . . . where χt ∈ Xt. The σ-algebra
B(X) generated by subsets of X is the product of σ-
algebras Bi and it is defined as the intersection of all
σ-algebras that contain the collection of subsets of X:

J =

{

∏

j≤n1−1

Xj ×
∏

n1≤j≤n2

Aj ×
∏

j≥n2+1

Xj

}

=
{

χ ∈ X : χj ∈ Aj , j ∈ [n1, n2]
}Aj∈Bj

0≤n1≤n2

each of which is a measurable rectangle (or a cylinder).
On each of the above rectangles we attach the value
∏n2

n=n1
µn(An) and this can be extended to a probabil-

ity measure µ on (X,B) in the standard way [19], con-
cluding the definition of the product probability space
(X,B, µ). A measurable transformation T : X → X

on the product space, known as shift, is defined by
T (χ0χ1χ2 . . . ) = χ1χ2 . . . and it may attain all the de-
sired properties of measure preserving and ergodicity.
By Tnχ we mean the element χnχn+1 . . . and we will
also use the projection map {Tnχ} = χn, χn ∈ Xn.
For more on dynamical systems and ergodic theory the
reader is referred to [19, 9].

2.3 Elements of SDEs and stochastic flocking

Let (Ω,U ,P) be a probability space. Fix t0 ∈ R

and let
{

B(t)
}

t≥t0
∈ R

N be a Brownian motion.

Let X0,U0 ∈ U → R
N be two random variables

independent of B(t0). If the σ-algebra generated by
X0,U0 and the history of the Brownian motion up
to (and including) time t is Ut then (Ω,U ,Ut,P) is
a complete filtered probability space. Consider the
set V of agents and fix T ≥ t0. The two processes

Xt = (X
(1)
t , . . . , X

(N)
t

)

,Ut =
(

U
(1)
t , . . . , U

(N)
t

)

stand
for the positions and the velocities of the members of
the flock and they are the solution of the system of Itô
stochastic differential equations
{

dX
(i)
t = U

(i)
t dt

dU
(i)
t =

∑

j aij(t)(U
(j)
t − U

(i)
t )dt+

∑

j gij(t)dB
(ij)
t

for i ∈ V , t ∈ [t0, T ] and subject to initial data

X
(i)
t0

= X0
i , U

(i)
t0

= U0
i , provided Xt,Ut are Ut adapted

processes, L(t), stands for the time-varying laplacian
matrix, G is square integrable in (t0, T ) and
(2.1)

{

Xt = X0 +
∫ t

t0
Usds

Ut = U0 −
∫ t

t0
P (s)Usds+

∑

i

∫ t

t0
Gi(s)dB

(i)
s

almost surely. Since we study the asymptotic behav-
ior of solutions, we are interested for the collection
{

(Xt,Ut)
}

t≥t0
as solution of the above system of SDE’s.

Definition 2.1. Equation (2.1) exhibits asymptotic

strong stochastic flocking if (X
(i)
t , U

(i)
t ) satisfy

lim
t→∞

|U
(i)
t −U

(j)
t | = 0 & sup

t≥t0

|X
(i)
t −X

(j)
t | < ∞, a.s.

The stochastic system exhibits asymptotic strong
stochastic flocking in the mean square sense if the afore-
mentioned processes converge accordingly.

3 The model setup.

In this section, we present our models and a first
set of assumptions. We will discuss two very closely
related versions of the discrete time problem: the
“deterministic” and the “probabilistic” one. Our aim is
to state without proof the result of the former type and
then to continuous with the probabilistic formulation on
the second one basing the proof of our main result on
the deterministic theorems.

3.1 The deterministic case Fix n0 ∈ N and con-
sider the initial value problem is:

(3.2)

{

x(n+ 1) = P (n)x(n), n ≥ n0

x(n0) = x0

where x = (x1, . . . , xN )T is the state vector and P (n) =
[pnij ] with pnij ≥ 0 and in particular pnii = 1−

∑

j p
n
ij .

Assumption 3.1. pnij = pij(n) : Z+ → R+ are defined
such that ∀ n ≥ n0, i, j ∈ V with j 6= i

1.
∑

j p
n
ij ≤ m < 1.

2. pnij > 0 ⇒ pnij ≥ f(n) where f has the properties:
∃M ∈ [n0,∞) s.t. f(n) ∈ (0, 1 −m] ∀n ≥ M and
f(n) → 0.

Assumption 3.2. There exist M > n0, B ≥ 1 such
that GPn,B

∈ T , n ≥ M .

Theorem 3.1. [15] Under Assumptions 3.1 and 3.2,
the solution x of (3.2) satisfies

x(n) → ∆ as n → ∞,

if
∑

l

fσ(M + lσ − 1) = ∞

where σ = l∗([N/2] + 1)B and l∗ as in Remark 2.1.
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For the continuous time case we fix t0 ∈ R and consider
the initial value problem

(3.3)

{

ẋ(t) = −P (t)x(t), t ≥ t0

x(t0) = x0

where P (t) = [ptij ] is known as the Laplacian matrix
with the property that ptij ≥ 0 for i 6= j and ptii =
−
∑

j 6=i p
t
ij . The corresponding connectivity conditions

are now stated:

Assumption 3.3. 1. ∀ i, j ∈ V, ptij ≥ 0 are upper
bounded, right continuous functions of time.

2. ∀ i 6= j ∈ V and ptij 6= 0 implies ptij ≥ f(t)
where f(·) > 0, non-increasing with the property
that f(t) → 0 as t → ∞.

3. ∀ t ≥ t0, ∃ ǫ > 0 independent of t such that pij(t) 6=
0 ⇒ pij(s) ≥ f(s) for s ∈ Sǫ(t

∗) = [t∗ − ǫ, t∗ + ǫ]
for some t∗ ∈ R such that t ∈ Sǫ(t

∗).

We take m > maxi supt≥t0

∑

j p
t
ij finite. This number

exists in view of the assumption right above. We fix
B > 0 and define the matrix:

W t
B =

∫ t

t−B

e−mBδ(s−(t−B))I+e−m(t−s)
(

mI−P (s)
)

ds

which it can be shown to be stochastic [15].

Assumption 3.4. There exist M > t0, B > 0 such
that GW t

B
∈ T , t ≥ M .

Theorem 3.2. [15] Under Assumptions 3.3 and 3.4 the
solution x of (3.3) satisfies

x(t) → ∆ as t → ∞,

if there exists a sequence {ti}i≥0 ≥ t0 with ti+1−ti ≥ σB
such that

∑

i f
σ(ti) = ∞, where σ = l∗([N/2] + 1) and

l∗ as in Remark 2.1.

It should be noted that whenever the non-zero
weights pnij or ptij are uniformly bounded from below,
the convergence of (3.2) or (3.3) to ∆ is exponential.
In [15] explicit estimates are provided for arbitrary
connectivity signals but they are beyond the scopes of
this paper.

In view of Theorem 3.2 and the linearity of the
problem one can write the solution as x(t) = Φ(t, t0)x

0

with Φ(t, s) the transition matrix satisfying

(3.4)
∣

∣

∣

∣(Φ(t, t0)− 11
T
c
)

x
0
∣

∣

∣

∣

2
≤ Ke

−θ(t−t0)||x0||2

for some K, θ > 0 that depend on system parameters
and the 2-norm and c ≥ 0 with

∑

i ci = 1.

3.2 The probabilistic case In the first probabilistic
type of consensus systems. The event that there is a
connection from agent j to i is no longer of deterministic
nature. More specifically, for any t the stochastic
matrix P (t) is generated by a steering force that obeys
independent probability rules. These rules take place
in a product space (X,B, µ) =

∏

n≥0(Y, 2
Y,m) for some

measure function m and the induced product measure
as it was discussed in §2.2. The shift T : X → X is a
measure preserving transformation since for any A ∈ J ,
µ(T−1A) = µ(A). We understand χi ∈ X by an N ×N
matrix with elements from {0, 1} so tha all diagonals
are 0 and the off-diagonals are 1 if there is a connection
from the agent of the column to the agent of the row,
otherwise they attain the zero value. Let the family of
functions

{

aij(n)
}

i 6=j
∈ [f(n), ā) where f is a fixed non-

increasing function that vanishes as n → ∞. We define
the stochastic matrix

(3.5) P (n) = φ
(

{Tnχ}
)

where φ : X → S is a measurable function defined as
follows: For i 6= j

[

φ
(

{Tnχ}
)

ij

]

=

{

aij(n)
ε
∑

l:[{Tnχ}il]=1 ā
, [{T tχ}ij ] = 1

0, [{T tχ}ij ] = 0

for some fixed ε > 1 and

[

φ
(

{Tnχ}
)

ii

]

= 1−
∑

j

[

φ
(

{Tnχ}
)

ij

]

Because of the uncertainty on the connection status we
chose this slightly different version on the weights. Now,
it is easy to see that for any χi ∈ X, P (n) is always
stochastic. Next we consider the set

QB :=
{

χ ∈ X : GPn,B
∈ T ∀ n ≥ 0

}

∈ B.

4 Results on probabilistic consensus networks

The setting makes x a stochastic process defined on a
probability space closely related to (X,B, µ). Consensus
may be achieved if µ assigns a positive value to QB for
some B such that

∑

n f
σ(nσ) = ∞ for σ = σ(B) of

course. A measure theoretic analogue of Theorem 3.1 is
the following:

Theorem 4.1. Let the initial value problem (3.2) with
P (n) defined as in (3.5). Let Assumptions of Theorem
3.1 hold with M = 1. The solution x converges to ∆
with probability µ(PB) if

∑

n f
σ(nσ) = ∞.

Theorem 4.1 illustrates the interdependence be-
tween the non-uniform lower bound f and the induced
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statistical regularity and it is only of theoretical inter-
est. Almost sure convergence is ensured if the event
⋃

B≥1 QB is of full measure. The most common pro-
cesses in the literature (e.g. i.i.d, markov or stationary)
obey probability laws that are invariant in time and
they yield almost sure consensus only under the uniform
bound condition. It is exactly this case where there is
no difference between the existence of connection and
its weight for simple convergence to ∆.

For this reason, in the rest of this section we will
strengthen to aij(n) ∈ {0} ∪ (0, 1) uniformly in n so
that we can focus on the processes, produced by the
shift T , which make limn P0,n a rank-1 matrix.

Corollary 4.1. Let T : X → X be an ergodic shift on
the product space (X,B, µ), P (n) with the form of (3.5)
and aij(n) ∈ {0} ∪ (0, 1) for i 6= j. Then the solution x

of (3.2) converges to consensus with probability one if
µ(QB) > 0 for some B ≥ 0.

Proof. At first we show that the set W =
⋃

B QB is
T -invariant. Fix B > 0. Then for χ ∈ QB we have
T−1χ ∈ QB+1.

T−1W = T−1
⋃

B

QB =
⋃

B

T−1QB ⊂
⋃

B

QB+1 ⊂ W

Also, χ ∈ QB ⇒ Tχ ∈ QB so that QB ⊂ T−1QB and
this is true over the union for all B ≥ 0. Consequently

W ⊂ T−1W

and we conclude that W is T -invariant. The ergodicity
condition makes T an indecomposable transformation
on T invariant sets, i.e. µ(W ) = 0 or µ(W ) = 1 but
the first case is excluded because µ(W ) ≥ µ(QB) > 0.
Then the only realization of shifting over X is this
concerning processes with routed-out branching graphs
over B intervals for some B < ∞. Any other event
occurs with zero probability and the result follows in
view of the uniformly bounded weights.

It should be noted here that P (n) is not a stationary
process. By construction the measure µ does not
concern the weights aij(n). The stationarity property
can be observed in GP (n) which, as we mentioned above,
is the only key feature for the stability analysis.

4.1 Examples

Example. [Stationary Ergodic processes [18]] The prob-
lem of consensus over stationary ergodic processes as-
sumes that the matrix P (n) is essentially such a pro-
cess. It is very well known that a measure preserving
shift can be used to generate stationary processes and,

conversely, that any stationary process is equal (in dis-
tribution) to a process generated by a measure preserv-
ing shift [10]. Given a stationary ergodic process that
produces stochastic matrices P (n) process one can eas-
ily verify whether this particular shift is ergodic after
applying Birkhoffs ergodic theorem: If for some B > 0

lim
n̄

1

n̄

n̄−1
∑

n=0

1T (Pn,B) > 0

where 1A(s) is a dual function that takes value 1 if s ∈ A
and 0 otherwise, T is the set of routed-out branching
graphs, then the corresponding shift that is ergodic and
consensus is proved in the almost sure sense. Corollary
4.1 reproduces the results of [18] but in a broader setting
as not only does it allow for connectivity overB intervals
of time, but it is also not concerned with the stationarity
of the weighted graph. It exclusively describes the
existence of a connection and not the strength of it.

Example. [IID processes [7, 17]] One of the first works
on the topic of probabilistic consensus in [7], formu-
lated (3.2), as a stochastic linear equation with symmet-
ric connectivity weights (aij = aji) to randomly take
values at each time n ∈ N. The partition of interest
would be aij(n) 6= 0 with probability p and aij(n) = 0
with probability 1− p, independently of the rest of the
connections and times.

Let us digress for a moment and see P (n) = Pn(y)
as a random process defined on a probability space
(Y, 2Y,P). Then P (n) takes values in the space of
stochastic matrices with positive diagonals and uni-
formly bounded weights. Then the backward product
Pn,B(y) is a homogeneous sequence of independent ran-
dom trails and it forms a stationary process. By the
independence assumption it is easy to directly calculate
the probability of the event the corresponding graph
GPn,B

to be routed-out branching: If p is the probabil-
ity that aij(t) 6= 0 then the probability of j affecting
i through a B time interval is by the binomial theo-
rem 1 − (1 − p)B . For G a graph on N nodes, let
q ∈ [1, N(N−1)) denote the minimal number of edges so
that each additional edge will keepG routed-out branch-
ing. Then for QB as defined before

P
(

QB

)

>

>

N(N−1)
∑

l=q

(

N(N − 1)

l

)

(

1− (1− p)B
)l
(1− p)B((N−1)2−l)

= 1−

q−1
∑

l=0

(

N(N − 1)

l

)

(

1− (1− p)B
)l
(1− p)B(N(N−1)−l)

= 1−O
(

(1− p)B) → 1, as B >> 1

To see why the event E =
{

supB GPn,B
is not connected, ∀n ≥ 0

}

is a zero
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probability event, note that PB are nested for B
decreasing and for this reason P(Ec) = limB→∞ P(QB).

To adapt this example to our framework we work
as follows. Let the set {0, 1} and (p, 1 − p) the
probability vector for some fixed p ∈ (0, 1), so that {0}
is assigned to 1 − p and {1} is assigned to p. This is
an elementary measure space. On this space, we define
the triplet (Y, 2Y,m) over N(N − 1) pairs of nodes (i.e.
without self-connections) each fixed pair of which will
be considered connected and take values in an open
subset of [0, 1] with probability p or it will be zero with
probability 1− p, independently of the rest of the pairs.
Eventually, (X,B, µ) =

∏∞
j=0(Y, 2

Y,m) is the product
space of interest on which the shift T : X → X is defined,
as T (χ0χ1χ2 . . . ) = χ1χ2 . . . . If J is the semi-algebra
of all measurable rectangles then µ(T−1A) = µ(A) for
any A ∈ J and by Theorem 1.1 of [19], T is measure
preserving. It is a standard exercise to show that T is
ergodic [19]. It is only left to show that for some B > 0,
µ(QB) > 0, a calculation very similar to the one carried
before and Corollary 4.1 applies.

Example. [Markov processes [11]] The authors consid-
ered (??) with a switching communication topology
driven by a Markovian jump process and in particu-
lar a process on a homogeneous Markov chain over l
states defined by a stochastic matrix Z, each state of
which, corresponds to a connectivity regime among N
nodes. The result is summarized as follows: Uncondi-
tional asymptotic consensus is achieved if and only if
Z is irreducible and the union of states of the chain
correspond to a routed-out branching graph. We note
that the irreducibility of Z implies the existence of an
invariant measure π ∈ R

l > 0 with
∑

i πi = 1 with the
property that π

TZ = π. In the shift oriented frame-
work, we have a transformation T on (π, Z) known as
Markov shift which is ergodic if and only if Z is ir-
reducible [19]. Then the event of connectivity over a
B-interval of times is dictated by the invariant measure
to be of positive measure and Corollary 4.1 applies.

5 Results on noisy flocking networks

Let us now turn to the study of Eq. (2.1) subject to
initial data X0,U0. In the absence of noise the model
reduces to Eq. (3.3). We begin with a useful form of its
solution.

Proposition 5.1. The solution
(

Xt,Ut

)

of (2.1) sat-
isfies

Xt = X0 +

∫ t

t0

Us ds

Ut = Φ(t, t0)U
0 +

∫ t

t0

Φ(t, s)G(s) dBs

where Φ(t, s) is defined in 3.4 and t ∈ [t0, T ].

Proof. The form of Xt is the definition of the process
so we will only prove the expression of Ut . Define the
process

Vt := U0 +

∫ t

t0

Φ(t0, s)G(s)dBs

the differential of which is dVt = Φ(t0, t)G(t)dBt. We
will use Itô’s product rule to calculate the differential of
Φ(t, t0)Vt which is identical to Ut:

d
(

Φ(t, t0)Vt

)

= G(t)dBt − LΦ(t, t0)Vtdt

= −LUtdt+G(t)dBt.

We see that in this simple case, the solution Ut is ex-
pressed in closed form. Asymptotic stochastic flocking
is determined by the behavior of the local martingales
∫ t

t0
gij(s) dB

j
s as t → ∞.

Theorem 5.1. Let Assumptions 3.3 and 3.4 hold. If
E[(U0)2],E[(X0)2] < ∞ and for any i, j ∈ V, the
functions gij satisfy

lim
t→∞

∫ t

t0

g2ij(s) ds < ∞ and

∫ ∞

t

g2ij(s) ds ∈ L1
[t0,∞]

then the agents align their speed around the U∞-
measurable random variable

k := cTU0 +
∑

i,j

∫ ∞

t0

cigij(s) dB
(j)
s .

and they exhibit asymptotic stochastic flocking in the
sense of Def. 2.1.

Proof. At first we clarify that k is well-defined since
∫∞

t0
gij(s) dB

(j)
s is almost surely finite exactly because

the first imposed condition on gij yields almost sure
finiteness by the Martingale Convergene Theorem [10].
Next from the definition of k and Proposition 5.1

Ut − 1k = Φ̃(t, t0)U
0 +

∫ t

t0

Φ̃(t, s)G(s)dBs

+ 1cT
∫ ∞

t

G(s)dBs

Also by the properties of Itô’s integral and the Cauchy-
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Schwarz inequality we obtain:

E
[

||Ut − 1k||22
]

≤ K2e−2θ(t−t0)E[||U0||22]

≤ E

[(
∫ t

t0

Φ̃(t, s)G(s)dBs

)2]

+

+ E

[(
∫ ∞

t

1cTG(s)dBs

)2]

≤ K2e−2θ(t−t0)E[||U0||22] +
∑

i,j

∫ t

t0

K2e−2θ(t−s)g2ij(s) ds

+
∑

i,j

∫ ∞

t

c2i g
2
ij(s) ds.

By assumption g2ij(t) vanishes. Now, E
[

||Ut − 1k||22
]

is bounded from above by three terms, each of which
converges to zero as t → ∞: the first because, by
Assumption 3.4, θ > 0, the third by the imposed
condition on gij(s)’s and the second as a convolution
of an L1 function with a function that goes to zero.
Then the random variable Ut converges asymptotically
to ∆ in the mean square sense. To prove almost sure
speed coordination we first see that from the Chebyshev
inequality for any, ε > 0

P
(

|U
(i)
t −U

(j)
t | ≥ ε

)

≤
1

ε2
E
[

|U
(i)
t −U

(j)
t |2

]

≤
1

ε2
E
[

||Ut−1k||22
]

it is an easy exercise to show that all of the terms
that bound E

[

||Ut − 1k||22
]

from above in Eq. (5)
are integrable over [t0,∞] (the second term can be
proved by a simple change in the order of integration).

Then because P
(

|U
(i)
t −U

(j)
t |

)

is summable, almost sure
convergence to 1k ∈ ∆ follows (see Theorem 4(c) of §7.2
in [4]). Finally,

|X
(i)
t −X

(j)
t | ≤ |X

(i)
t0

−X
(j)
t0

|+

∫ t

t0

|U (i)
s − U

(j)
s | ds < ∞ a.s.

and hence X
(i)
t −X

(j)
t is bounded in probability, there-

fore it is bounded in the 2nd-mean (see Theorem 4(b)
of §7.2 in [4]).

6 Discussion

Recent results in consensus systems allowed us to re-
consider fundamental topics of the stochastic consensus
problem in a broader framework.

On the one hand, we discussed the discrete time
consensus problem, and by invoking a general measure
theoretic framework we outlined the crucial connection
between lower bounds of the connectivity weights and
the switching connectivity. Whenever the switching
signal is probabilistic and the connectivity weights are

not bounded from below, consensus can be achieved
only with some positive probability. If we strengthen
our results to uniformly bounded weights then our
setting reproduced the results from several, seemingly
distant, types of stochastic formulation of the problem,
in an elegant and unified way.

It should be noted here that P (n) as defined in
(3.5) is not a stationary process as by construction
the measure µ does not concern the weights pnij . The
stationarity property can be observed in the quantity
GP (n) which as we mentioned above is the only key
feature for the stability analysis when the weights are
uniformly lower bounded away from zero.

The approach above can include stationary pro-
cesses that occur from deterministic systems which ex-
hibit a non-trivial stochastic behavior, such as chaotic
maps or non-linear differential equations, so long as
their solutions produce a (natural) invariant measure on
the state space, [9]. Then one can read these dynamics
as stochastic and consider the consensus problem with
communication topology driven by chaotic signals.

Finally, we note that all the aforementioned results
can be delivered in a continuous time setting, which due
to space limitation was omitted and the reader is kindly
referred to [15].

Next we switched to the study a standard type of
stochastic perturbations of a nominal general linear con-
sensus system in continuous time. The new convergence
results allow for a more generalized study of flocking
models in the literature [5, 1, 3] as we did not need
any symmetry assumption on the connectivity weights
as well as the stability in variation argument we imple-
mented allowed for time varying diffusion coefficients as
well as a closed expression of the consensus point.

Since gij are deterministic functions, k is a normally
distributed random variable with mean

∑

i ciE[U
0
i ] and

variance
∑

i,j c
2
i

∫∞

t0
g2ij(s)ds.

In [15] we also provide a more elaborate extension of
(2.1) with state dependent diffusion coefficients. It is in
our immediate research interest to extend our analysis
to purely state-dependent connectivity weights and an-
alyze our (non-linear) model by deriving sufficient con-
ditions among the initial data for asymptotic stochastic
flocking in the same spirit as the deterministic alterna-
tive already proved in [15].
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