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Abstract— We revisit the linear distributed consensus prob-
lem in continuous time, to provide a simple and elegant proof
under very mild assumptions. Our approach is based on a novel
extension of the contraction coefficient that can be adapted to
the continuous time version of the model. We apply our results
in non-linear second order consensus networks of Cucker-
Smale type and we obtain new initial conditions for asymptotic
flocking.

I. INTRODUCTION
Self-organized dynamics lie in the core of modern com-

plex dynamics, a most interesting branch of which is this
of networked control systems. Examples of networks that
illustrate a collective behavior, as a result of local interac-
tion among nodes in the network, are ubiquitous both in
nature and in human societies. The self-organized aspect of
these systems is usually understood by a distributed, local
exchange of information between autonomous agents who
seek some form of co-operation. The core phenomenon in
these examples is that through this dynamic interaction all
agents’ states eventually concentrate around a common value.
These problems are known as consensus problems and enjoy
a durable interdisciplinary interest in the applied sciences. As
a result several mathematical models have been introduced
to appraise this emergence of consensus among agents.

In its simplest version, a formal framework includes a
finite number of agents N , each agent i of which possesses a
value of interest denoted by the real number xi and evolves
it under the following averaging scheme:

ẋi =
∑
j

aij(xj − xi), i = 1, . . . , N. (0.1)

The coupling weights aij are non-negative numbers that
quantify the influence of agent j on i. They essentially
characterize the interdependence of agents, the connectivity
regime and the process of the asymptotic alignment with
respect to xi. The majority of the proposed frameworks,
many of which are discussed below, is in fact concerned
with different versions of the connectivity weights aij .

A. Review of the existing literature

Consensus algorithms have been studied under deter-
ministic settings of linear or non-linear versions, static or
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switching communication topologies, time or state dependent
connectivity weights: [18], [12], [6], [11], [8], [13], [7], [2],
[14]. An alternative perspective is this of stochastic settings
either in the communication regime or as a noisy perturbation
to the nominal model. This setting is beyond the scope of
this paper.

In their vast majority, the aforementioned works rely on
a common and fundamental assumption: The exchange of
information among any two communicating nodes occurs via
an established connection with a communication weight that
is uniformly bounded away from zero. This automatically
ensures the applicability of an abundance of results from
linear algebra, algebraic graph theory, probability theory
[15], [1], [10], [4] towards proving asymptotic consensus.
The importance of this underlying assumption is noted before
[11] and we strenuously suggest that whichever work does
not explicitly state it, should be subject to criticism. In [16]
the authors work on the discrete time version of Eq. (0.1)
arguing as well, that this assumption is instrumental for
proving uniform convergence and that it can be relaxed with
considerable care.

Distributed consensus systems that bear non-uniform pos-
itive weights have appeared in the literature [7], [2] and
it is this condition that makes the corresponding stability
problems particularly challenging.

This paper is an excerpt from a technical report which
discusses this new approach to the continuous time consensus
model for a set of important variations in the literature [17].

B. Organization of the paper

In section II, we state the main nomenclature to be used,
and we review elements of graph and non-negative matrix
theories. Additionally, we provide vital preliminary results
by extending parts of the theory of non-negative matrices.

In Section III, we consider the deterministic linear consen-
sus problem and provide a new and simple proof using the
main mathematical tool implemented for consensus systems
in discrete time, after turning the problem from a differential
equation into an integral equation one. One of the advantages
is that just like in [16] we drop the uniform lower bound
on the connectivity weights and impose new conditions for
consensus on the rate that the non-zero connectivity weights
are allowed to vanish. These conditions heavily depend on
the type of the connectivity regime.

In Section IV we apply the obtained results to an important
flocking model with state dependent connectivity weights
and obtain new conditions for flocking under the mildest
connectivity regime within the deterministic framework.
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In the discussion section, V, we comment on our work
and in particular we mention a number of models to which
our framework is applicable.

Due to space limitations the proofs of a few technical
lemmas and propositions are omitted. For complete results
the reader is referred to [17].

II. NOTATIONS AND DEFINITIONS

Typically, N,Z, ,R denote the sets of naturals, integers and
reals respectively. For N ∈ N, V = {1, . . . , N}. For any set
B we understand BC as its complement. We will work in
the N -dimensional Euclidean space RN a vector x ∈ RN
of which is considered as a column vector, unless otherwise
stated. The agreement or consensus space ∆ is defined as
the subset of RN such as

∆ = {x ∈ RN : x1 = x2 = · · · = xN}

Next, we define the spread of a vector x ∈ RN as

S(x) = max
i,j

xi − xj .

This quantity will serve as a pseudo-norm for the stability
analysis to follow. Indeed it is always non-negative, satisfies
the triangular inequality and S(x) = 0 if and only if x ∈
∆. By 1 we understand the N−dimensional vector with all
entries equal to 1 and obviously S(c1) = 0 for any c ∈ R.
By I we understand the N ×N identity matrix. Finally, be
|| · ||p we denote the p-norm.

A. Graph theory

By a topological directed graph G we understand the pair
(V, E) where V = is the set of vertices, E = {(i, j) : i, j ∈
V} is the set of edges where (i, j) 6= (j, i). The degree Ni
of a vertex i ∈ V is defined as the cardinality of the set
{j ∈ V, (i, j) ∈ E}. The graph G is routed-out branching if
there exists a vertex i ∈ V (called the route of the graph) such
that for any j 6= i ∈ V there is a path of edges (lk, lk−1)|mk=0

such that l0 = i and lm = j. For two graphs G1 = (V, E1)
and G2 = (V, E2), we say that G1 is a sub-graph of G2 if
E1 ⊂ E2. The adjacency matrix A is a 0− 1, N ×N matrix
with elements Aij = 1 ⇔ (i, j) ∈ E. The degree matrix
D := Diag

[
di
]
. Finally, the Laplacian of G is the matrix

L := D−A with the sum of its rows being identically equal
to zero.

By S we denote the family of graphs with fixed N vertices
and self-edges on every node, and by T ⊂ S the subset of
graphs each of which is routed-out branching.

B. Non-negative Matrix theory

A non-negative matrix P = {pij} is such that pij ≥ 0 for
all i, j.1 The non-negative matrix P is generalized stochastic,
or m-stochastic, if

∑
j pij = m for all i. A crucial property

of an m-stochastic matrix is that m is always an eigenvalue
of it. For m = 1 P reduces to the standard stochastic matrix.
Given an m-stochastic matrix P = [pij ], the quantity

1Unless otherwise specified each matrix is supposed to be square and of
dimension N ×N .

τ(P ) =
1

2
max
i,j

∑
s

|pis−pjs| = m−min
i,j

∑
s

min{pis, pjs} (1)

is the coefficient of ergodicity of P . τ measures the averaging
effect of stochastic matrices. Its history dates back to one of
Markov’s first papers [9] and in the literature there exist an
abundance of similar tools [5]. A crucial set of properties of
τ is presented in the following Theorem:

Theorem 2.1: [4] For any m-stochastic matrix P and z ∈
RN it holds that:

S(Pz) ≤ τ(P )S(z).

The coefficient of ergodicity measures the averaging effect
of stochastic matrices and it is the central concept behind any
convergence result in linear consensus algorithms. Its history
dates back to one of Markov’s first papers [4] and it applies
to “dynamics” of the type:

w = Pz

with P being m-stochastic.

C. Preliminary Results

A not so straightforward extension is illustrated in The-
orem 2.4 below, the proof of which relies on the following
two lemmas:

Lemma 2.2 (The first mean value theorem for integration):
If a real-valued function G is continuous in a compact
subset J and φ is integrable that does not change sign on
J , then there exists x ∈ J such that

G(x)

∫
J

φ(t)dt =

∫
J

G(t)φ(t)dt.

Lemma 2.3 (Lemma 1.1 of [4]): Suppose δ ∈ RN such
that δT1 = 0 and δ 6= 0. Then there is an index I = I(δ)
of ordered pairs (i, j) with i, j ∈ V such that

δT =
∑

(i,j)∈I

Tij
2

(ei − ej)

where Tij > 0 and ei is the row vector (0, . . . , 0, 1, 0, . . . , 0)
with 1 at the ith position.

Theorem 2.4: Let I be a compact subset of R and assume
that for any compact I ′ ⊂ I , WI′ =

∫
s∈I′ P (s)ds is m-

stochastic. If w =
∫
s∈I P (s)z(s)ds then

S(w) = τ(WI)S(z∗)

for some z∗ = (z1(s1), . . . zN (sN )) for some si ∈ I and

τ(WI) =
1

2
max
h,h′

N∑
k=1

∫
s∈I
|phk(s)− ph′k(s)|ds

= m−min
h,h′

N∑
k=1

min

{∫
s∈I

phk(s)ds,

∫
s∈I

ph′k(s)ds

}
Proof:

Pick h, h
′ ∈ V . Then for ph,ph′ the hth and h

′th rows
of P respectively, we have∫

s∈I

(
ph(s)− ph′(s)

)
z(s)ds
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Now, since N < ∞ there is a partition {Il}ml=1 of I which
depends on h, h′ such that for any Il, phk(s)− ph′k(s) does
not change sign for s ∈ Il, k ∈ V and it is not identically
zero. Then for fixed Il we apply Lemma 2.2 to obtain

∑
k

∫
s∈Il

(
phk(s)− ph′k(s)

)
zk(s)ds =

∑
k

∫
s∈Il

(
phk(s)− ph′k(s)

)
dszk(s∗k) = δTl z

∗
l

for some s∗k = s(Il, h, h
′), δTl =

∫
Il

(
ph(s)−p′h(s)

)
ds 6= 0

and z∗l = (z1(s∗1), . . . zN (s∗N ))T . By Assumption
∫
Il
P (s)ds

is m-stochastic and therefore δTl 1 = 0. Hence Lemma 2.3
is applied and together with the triangle inequality

|δTl z∗l | ≤
1

2
||δl||1S(z∗l )

(see also [4]). Then if we let S(z∗) = maxl S(z∗l ), we obtain
the bound

S(w) = max
h,h′

∣∣∣∣ ∫
s∈I

(
ph(s)− ph′(s)

)
z(s)ds

∣∣∣∣
=
∑
l

|δTl z∗l | ≤ max
h,h′

1

2

∫
I

||ph(s)− ph′(s)||1dsS(z∗)

Finally, from the identity |x − y| = x + y − 2 min{x, y}
for any x, y ∈ R and the fact that ∀h, h′ ∈ V it holds∑
k

∫
s∈I phk(s)ds =

∑
k

∫
s∈I ph′k(s)ds = m we obtain the

desired result.

Similarly, for the expression

w =

∫
s∈I1

P1(s)

∫
q∈I2(s)

P2(q)z(q)dqds

one can show, along the lines of the proof of Theorem 2.4
that if W (2)

I =
∫
s∈I1 P1(s)

∫
q∈I2(s) P2(q)dqds is stochastic,

then

S(w) ≤ τ(W
(2)
I )S(z∗) (2)

for some z∗ =
(
z1(s

(1)

(ij)), z2(s
(2)

(ij)), . . . , zN (s
(N)

(ij))
)

all s(l)(ij) of
which are in I1 ∪ I2.

Finally, the sub-multiplicativity property for pairs of
stochastic matrices of the particular form discussed in this
section, applies to expressions of the type

w =

∫
s∈I1

P1(s)

∫
q∈I2(s)

P2(q)z(q)dqds

so long as
∫
s∈I1 P1(s)

∫
q∈I2(s) P2(q)dqds is stochastic.

Regardless if we are working with products of ma-
trices within integrals or not, a crucial point in this
work is to ask for pij such that ρ < m. It
is this feature that characterizes the contractive (av-
eraging) nature of the stochastic matrices. It can be
easily verified that mini,j

∑
s min{pis, pjs} (or equiva-

lently minh,h′
∑N
k=1 min

{ ∫
s∈I phk(s)ds,

∫
s∈I ph′k(s)ds

}
)

is strictly positive for any P which possesses a strictly
positive column. These matrices are called scrambling and

lie in the core of the analysis of non-homogeneous discrete
Markov Chains [4].

The properties of stochastic matrices and their products
play a crucial role and the standard approach is through graph
theory: Any non-negative matrix P can be represented as a
graph GP with it’s adjacency matrix AP the elements of
which satisfy the property Aij = 1 ⇔ Pij 6= 0. For two
stochastic matrices P1 and P2, we write P1 ∼ P2 if GP1 =
GP2 (consequently P1 = P2). This way we can study P from
the point of view of graph theory. A non-negative matrix P
is called regular if GP is routed-out branching.

A classical result in the theory of products of stochastic
matrices is that for a regular matrix P there is a power
of it that makes it scrambling: i.e. ∃γ ≥ 1 : τ(P γ) < 1
and from the sub-multiplicative property P t → 11T c for
some c ∈ R, as t → ∞. The power of P that makes
it scrambling is known as the scrambling index and the
aforementioned statement on the asymptotic behavior of P t

is the ergodic theorem of stochastic matrices [4]. As the
product of stochastic matrices is stochastic as well, the
preceding notions can be extended to study the behavior
of non-homogeneous products of stochastic matrices. We
exclusively study backward products of stochastic matrices
defined as

P
(l)
B (t) :=

{ ∫ t
t−B C(t, s1)ds1, l = 1∫ t
t−B C(t, s)P

(l−1)
B (s)ds, l > 1

(3)

for some integrable matrix function C(t, s), B > 0, t ∈ R
so that P (l)

B (t) is stochastic for every l ≥ 1.
We recall now the set S and its subset T . Let R = RN

denote the cardinality of T . Each member Gi of it, has a
scrambling index γi. In fact, T can be partitioned in such
mutually disjoint subsets: T =

⊔
v Yv so that for G1 ∈ Yz1 ,

G2 ∈ Yz2 , z1 6= z2 if and only if γz1 6= γz2 . Consequently,
we can enumerate

1 = γ0 < γ1 < · · · < γmax ≤
[
N

2

]
For instance, Y0 is the subclass of routed-out branching
graphs, each member GY0 of which has scrambling index,
γ0 = 1, i.e. there exist i such that [GY0

]ji ∈ EGY0 . Next
we note that for any G1,G2 ∈ T with G2 being a sub-
graph of G1, it holds that γ1 ≤ γ2 and thus we understand
that by adding an edge to any graph, the scrambling index
will certainly not increase. In fact, there exists a sufficient
number of new edges that will decrease the scrambling index.
Fix j < i. Then for any Gi ∈ Yi there exists a positive
number li,j such that the graph Gj formed out of Gi with
li,j additional edges will be a member of

⋃j
v=0 Yv , in which

case γj ≤ γi − 1.
Remark 2.5: The minimum number of edges needed to

be added on an arbitrary member of Yi so that the resulting
graph is a member of

⋃i−1
v=0 Yv , is denoted by l∗ :=

maxi{li,i−1}.
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III. A NEW PROOF OF CONVERGENCE TO CONSENSUS.

In this section we will presents a (yet another) proof of
consensus convergence. For N < ∞ number of agents we
consider the following initial value problem:

i ∈ V :

{
ẋi(t) =

∑
j∈Ni aij(t)

(
xj(t)− xi(t)

)
, t ≥ t0

xi(t0) = x0i , t = t0
(4)

Modeling failing signals and an overall switching connec-
tivity regime must consider the connectivity weights aij(t)
to “jump” from a positive value to zero in a discontinuous
fashion.

Assuming aij(t) to be right continuous, a solution
x(t, t0,x

0) of (4) is a continuous function with a right t-
derivative which satisfies the differential equation for every
t ≥ t0.2 This solution also satisfies any classical integral
equation the derivative of which satisfies Eq. (4) in the
classical sense.

Assumption 3.1: For the connectivity weights aij(t), it
holds that aij(t) 6= 0 ⇒ aij(t) ≥ f(t), where f(t) is
a positive, monotonically non-increasing function such that
f(t)→ 0.

Assumption 3.2: The connectivity weights aij are upper
bounded, right continuous, non-negative functions of time.
This, although hardly an assumption, together with N <∞
implies that m := supt≥t0 maxi

∑
j aij(t) < ∞. We recall

now the matrix representation of the graph Gt in terms of the
degree matrix D = D(t) and the adjacency matrix A = A(t).
Then the matrix W (t) := mI−D(t)+A(t) is m-stochastic.
We begin as in the case of discrete time with two elementary
but crucial remarks:

Lemma 3.3: [17] Under Assumption 3.2 the solution
x
(
t, t0,x

0
)

of Eq. (4) satisfies x0min ≤ xi(t) ≤ x0max,
∀ t ≥ t0, i ∈ V .

Lemma 3.4: [17] If x(t, t0,x
0) is the solution of Eq. (4)

such that S
(
x(t)

)
→ 0 as t→∞ then the forward limit set

ω(x0) is a singleton with a point in ∆.
1) Static & Switching Networks I: We begin the first

round of results assuming increased connectivity among
agents. This means that the overall connectivity regime may
be static or switching provided that P (t) is scrambling on
the average:

Theorem 3.5: Let Assumption 3.2 hold. If f(t) :=
mini,j

∑
s min{ais(t), ajs(t)} satisfies:∫ ∞

f(t)dt =∞

then we have global convergence of the system (4) to a
constant value.

Proof: We write Eq. (4) in vector form

ẋ = −D(t)x +A(t)x = −mx +
(
mI −D(t) +A(t)

)
x =

= −mx +W (t)x⇔ d

dt
(emtx) = emtP (t)x

2If one is not willing to accept this premise, a discontinuous aij(t) on
an subset of [t0,∞) with Lebesgue measure zero implies a solution that
satisfies (4) in almost every t and the same analysis applies.

so that from Theorem 2.1 we obtain the bound

S

(
d

dt

(
emtx(t)

))
≤ emt(m− f(t))S

(
x(t)

)
then

d

dt
S
(
x(t)

)
= −me−mtS

(
emtx(t)

)
+ e−mt

d

dt
S
(
emtx(t)

)
≤ −mS

(
x(t)

)
+ e−mtS

(
d

dt

(
emtx(t)

))
≤ −mS

(
x(t)

)
+ (m− f(t))S

(
x(t)

)
≤ −f(t)S

(
x(t)

)
which implies

S
(
x(t)

)
≤ e−

∫ t
t0
f(s)ds

S
(
x0)

and the result follows in view of the imposed condition on
f and Lemma 3.4.

Remark 3.6: This is a generalization of the results ob-
tained in [14] concerning continuous time consensus algo-
rithms. In addition, further improved results on non-linear
continuous time models are to be obtained in the following.
On condition that there is always an agent i = i(t) ∈ V that
affects every other agent j in the group it then suffices for∫∞

f(s)ds =∞.
2) Static & Switching Networks II: We will escalate the

analysis with the study of the dynamics of Eq. (4) under
a recurrent connectivity condition. Define for B ≥ 0, s ∈
[t−B, t]

C(t, s) = e−mBδ(s− (t−B))I + e−m(t−s)W (s) (5)

with δ(·) being the delta function and W (s) = mI−D(s)+
A(s), as before.

Proposition 3.7: [17] Let Assumption 3.2 hold and
C(t, s) defined in eq. (5). For any B > 0, l ≥ 1, the matrix
P

(l)
B (t) as defined in (3) is stochastic.
Assumption 3.8: There exist B > 0 and M > t0 so that

for any t ≥ M the graph GPB(t) that corresponds to PB(t)
is routed-out branching.
Due to the upper boundedness of aij(t), the weights are also
assumed to satisfy the dwelling time condition [6].

Assumption 3.9: For any t ≥ t0 there exists ε > 0
independent of t such that aij(t) 6= 0 ⇒ aij(s) ≥ f(s) for
s ∈ Iε(t∗) = [t∗− ε, t∗+ ε] for some t∗ ∈ R and t ∈ Iε(t∗).

Theorem 3.10: Let Assumptions 3.1, 3.2, 3.8 and 3.9
hold. Unconditional asymptotic consensus for the solution of
system (4) is achieved under one of the following conditions:

1. GP (t) is independent of time (static connectivity) and
there exists a sequence ti ≥ M with ti+1 − ti ≥ γB,
such that ∑

i

fγ(ti) =∞.

2. GP (t) depends on time (switching connectivity) and
there exists a sequence ti ≥ t0 with ti+1 − ti ≥ σB,
such that
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∑
i

fσ(ti) =∞.

where σ = l∗([N/2] + 1) and l∗ with the meaning of
Remark 2.5.
Proof: We begin with the static case. The solution x

of (4) satisfies

ẋ = −mx +
(
mI −D(t) +A(t)

)
x⇒

d

dt

(
emtx

)
= emt

(
mI −D(t) +A(t)

)
x⇒

emtx(t)− em(t−B)x(t−B) =

∫ t

t−B
emsW (s)x(s)ds

⇒

x(t) =

∫ t

t−B
C(t, s1)x(s1)ds1

=

∫ t

t−B

∫ s1

s1−B
· · ·
∫ sγ−1

sγ−1−B

γ∏
k=1

C(sk−1, sk)x(sγ)dsγ · · · ds1

with s0 = t. Consequently from Theorem 2.4, Lemma 3.3
and Proposition 3.7 we have

S
(
x(t)

)
≤ τ

(
P

(γ)
B (t)

)
S(x

(
t− γB)

)
a condition that illustrates the contractive dynamics exactly
because τ

(
P

(γ)
B (t)

)
< 1 on the assumption of static con-

nectivity. Equivalently, there exists γ ≥ 1 so that P γB(t) is
scrambling, i.e. for some j∗ ∈ V , [P γB(t)]j∗i > 0 for all
i ∈ V . Then

[P
(γ)
B (t)]j∗j∗ ≥∫ s0

s0−B

∫ s1

s1−B
· · ·
∫ sγ−1

sγ−1−B

γ∏
k=1

(
e−mBδ

(
sk − (sk−1 −B)

)
+

+ e−m(sk−1−sk)
(
m− di(sk)

))
dsγ · · · ds1

> e−γmB

with s0 = t and for i 6= j∗ set (k−1 = i, k0 = l0, . . . , kγ =
lγ−1, kγ = j∗ to get

[P
(γ)
B (t)]j∗i >

∫ s0

s0−B
· · ·
∫ sγ−1

sγ−1−B
e−m(s0−sγ)dsγ · · · ds1fγ(t)

=
(1− e−mB)γ

mγ
fγ(t)

For t′ ≤M large enough so that f(t) ≤ me−mB

1−e−mB whenever
t ≥ t′ we obtain the estimate:

τ
(
P γB(t)

)
≤ 1− c1fγ(t) (6)

where c1 = (1−e−mB)γ

mγ > 0. Finally, for the aforementioned
sequence {ti}, for any t ≥ t′, there exists i such that t ∈
[ti, ti+1]. Then

S
(
x(t)

)
≤ S

(
x(ti)

)
≤
(
1− c1fγ(ti)

)
S
(
x(ti − γB)

)
≤
(
1− c1fγ(ti)

)
S
(
x(ti−1)

)

For ε > 0, pick i1 and i2 large enough so that ti1 ≥ t′

and
∑i2
j=i1

f(tj) ≥ c−11 log( ε
S(x0) ) and then for t ≥ ti

S
(
x(t)

)
≤

i2∏
k=i1

(1− c1fγ(tk))S
(
x0) ≤ e−c1 ∑i2

k=i1
fγ(tk)S

(
x0)

hence S(x(t)) ≤ ε and the proof of the first part is
concluded.

In the case of switching connectivity we have P
(σ)
B (t)

and we need to show that it will be scrambling for sigma
sufficiently large. By Assumption, for any t and s ∈ [t−B, t],
γPB(t), γPB(s) ≥ 1 are the scrambling indexes of PB(t) and
PB(s) and γPB(s) ≥ 1 for s ∈ [t−B, t] so that γPB(s∗(t)) =

maxs∈[t−B,t] γPB(s) then P (2)
B (t) =

∫ t
t−B C(t, s)PB(s)ds ∈

T as well and for it’s scrambling index γ
P

(2)
B (t)

it holds that

γ
P

(2)
B

(t) ≤


max{γPB(t), γPB(s∗(t))} − 1, GPB(t) ⊂ GPB(s∗)

or GPB(s∗) ⊂ GPB(t)

max{γPB(t), γPB(s∗(t))}, o.w.

Now, in the second case, there is not strict decrease of the
scrambling index over [t − 2B, t]. In this case, however, it
holds that ECPB(t)∩EPB(s∗) 6= ∅, i.e. there exists (i, j) ∈ V×V
such that [GPB(t)]ij > 0 and [GPB(s∗)]ij = 0 or vice versa.
This element, however, will be a member of E

P
(2)
B (t)

exactly
because PB(·) has strictly positive diagonal elements. From
the discussion on the partitioning of T with respect to the
scrambling indexes,

γP l∗
B

(t) ≤ max{γPB(t), γPB(u∗(t))} − 1

u∗ := maxs∈[t−(l∗−1)B,t] γPB(s). Consequently for σ =

l∗([N/2] + 1) the matrix P
(σ)
B (t) is scrambling and hence

from Theorem 2.4, Lemma 3.3 and Proposition 3.7 we have

τ
(
P

(σ)
B (t)

)
< 1− c2fσ(t)

where c2 = (1−e−mε)γ
mγ > 0 for ε to have the meaning of

Assumption 3.9 and the proof proceeds as in the first case.

If we strengthen Assumption 3.1 to f(t) ≥ δ > 0 then we
have proved exponential rate of convergence with respect to
∆ with an explicit rate of convergence. The next example
illustrates this point.

Example 3.11: Consider the network consisted of N = 4
agents, with coupling defined by the following adjacency
matrix

A(t) =

 0 a12(t) 0 0
a21(t) 0 a23(t) 0

0 a32(t) 0 a34(t)
0 0 a43(t) 0


where for all t ≥ 0 it holds that aij(t) 6= 0 ⇒ 0 < a ≤
aij(t) <

1
2 and also

1550





a23(t) = a32(t) = a34(t) = a43(t) = 0 & a12(t), a21(t) 6= 0,

t ∈ [3lε, (3l + 1)ε)

a12(t) = a21(t) = a34(t) = a43(t) = 0 & a23(t), a32(t) 6= 0,

t ∈ [(3l + 1)ε, (3l + 2)ε)

a23(t) = a32(t) = a12(t) = a21(t) = 0 & a34(t), a43(t) 6= 0,

t ∈ [(3l + 2)ε, (3l + 3)ε)

for some fixed ε > 0 and l ∈ Z+. Then

C(t, s) =
d̄1(t, s) e−(t−s)a12 0 0

e−(t−s)a21 d̄2(t, s) e−(t−s)a23 0

0 e−(t−s)a32 d̄3(t, s) e−(t−s)a34
0 0 e−(t−s)a43 d̄4(t, s)


where d̄i(t, s) = e−3εδ(s − (t − 3ε)) + e−(t−s)(1 − di(s)) and
aij = aij(s). Now for any t ≥ 0, P3ε(t) =

∫ t
t−3ε

[C(t, s)]ijds

P3ε(t) =


1− e−t

∫ t
t−3ε

esdi(s)ds, i = j

e−t
∫ t
t−3ε

esaij(s)ds, (i, j) ∈ E
0, o.w.

and by construction of the switching signal, it can be easily
shown that P (t) ≥ J elementwise where

J :=


1
2
(1 + e−ε) a(1− e−ε) 0 0
a(1− e−ε) e−ε a(1− e−ε) 0

0 a(1− e−ε) e−ε a(1− e−ε)
0 0 a(1− e−ε) 1

2
(1 + e−ε)

 ;

a remark made merely to prove that P3ε(t) ∈ T and that
γP3ε(t) = 2. Consequently, P (2)

3ε (t) =
∫ t
t−3ε C(t, s)P3ε(s)ds

is lower bounded by J2 with J2 corresponding to a matrix
with at least one positive column (in fact the second and
the third are all positive). Then P

(2)
3ε (t) is scrambling for

any t ≥ 0 and the lower bounded we are interested in is
determined from J2, being min+[J2]ij . It can be easily seen
that for fixed ε and a small enough this number is in fact
a2(1 − eε)2. Let a attain such a small value. Since for any
t ≥ 0, there exists l ∈ Z+ such that 3lε ≤ t ≤ (3l+ 1)ε, we
conclude that

S(x(t)) ≤ S(x(3(l − 1)ε)) ≤ (1− 2a2(1− e−ε)2)l−1S(x(0))

=
S(x(0))

1− 2a2(1− e−ε)2 e
−θtS(x(0))

where θ := ln(1−2α2(1−e−ε)2)
2ε , as it is dictated by Theorem

3.10 for {ti} any sub-sequence with 3ε interval and f(t) to
be lower bounded by a.

IV. NON-LINEAR FLOCKING NETWORKS

Also known as second order consensus systems these
models are preferred to model the coordinating behavior of
birds, as the latter are seen as autonomous individuals. A
population of N <∞ birds exchanges information and acts
according to the algorithm

i ∈ V :

{
ẋi(t) = ui(t)

u̇i(t) =
∑
j∈Ni aij(t,x)

(
uj(t)− ui(t)

) (7)

with given initial position x0 = x(0) and speed u0 =
u(0). In flocking dynamics the connectivity weights aij
are state dependent. The first models assumed a symmetric
dependence as a function of the relative distance between i
and j, explicitly expressed [2]. In this work, for a solution
(x,u) of Eq. (7) we assume

aij(t,x(t)) 6= 0⇒ aij(t,x(t)) ≥ f(S(x(t))) (8)

for some positive non-increasing function f with the property
that f(s) → 0 as s → ∞ and supt,y aij(t, y) < ∞.
Examples of symmetric coupling weights are proposed in [2]
ãij := B

1+|xi−xj |2β of non-symmetric aij =
ψ(|xi−xj |)∑
j ψ(|xi−xj |)

for some symmetric function ψ(|xi − xj |) such as ãij .
It is easy to observe that these functions are not lower
bounded away from zero as the distance of the birds xi−xj
can become arbitrarily large, a hypothesis that fits in our
framework. The problem is to derive initial conditions so
that the flock remains connected and it aligns its speed to a
common one, i.e. the solution

(
x(t),u(t)

)
satisfies

max
i,j
|ui(t)− uj(t)| → 0, sup

t
max
i,j
|xj(t)− xi(t)| <∞ (9)

i.e. the asymptotic flocking condition. For the next result
the Assumptions of Theorem 3.10 hold. Since aij(·, ·) is
uniformly upper bounded, we set

m := max
i∈[N ]

sup
t,y

∑
j

aij(t, y) <∞. (10)

The central result of this section reads:
Theorem 4.1: Consider the system (7) with condition (8)

and its solution
(
x(t),u(t)

)
. The following conditions hold:

1) Static scrambling connectivity. The solution exhibits
asymptotic flocking if

S(u0) <

∫ ∞
S(x0)

f(w)dw (11)

2) Static routed-out branching connectivity. The solution
exhibits asymptotic flocking if

S(u0) <
(1− e−mB)γ

mγγB

∫ ∞
P
γ,B

x0,u0

fγ(s)ds (12)

where P γ,Bx0,u0 = max
{
S(x0), |S(x0) − S(u0)γB|

}
,

m = maxi |Ni|f(0).
3) Switching connectivity. The solution exhibits asymp-

totic flocking if

S(u0) <
(1− e−mε)σ

mσσB

∫ ∞
P
σ,B

x0,u0

fσ(s)ds (13)

where σ = l∗([N/2] + 1), l∗ with the meaning of
Remark 2.5 and ε > 0 with the meaning of Assumption
3.9.

Proof: We begin with the first connectivity condition,
where there is at least one agent affecting the rest of the
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group. We follow the same path as in Theorem 3.5 for u
and show that

d

dt
S
(
u(t)

)
≤ −f

(
S
(
x(t)

))
S
(
u(t)

)
⇒

S
(
u(t)

)
≤ e−

∫ t
0 f(S(x(w)))dwS

(
u0)

so that asymptotic flocking will occur with exponential rate
of convergence if S

(
x(t)

)
≤ r for some r > 0. For this, we

follow [14] and introduce the functional

V1(x,u) = S(u) +

∫ S(x)

0

f(w)dw (14)

so that along a solution of (7)
(
x(t),u(t)

)
where u(t) = ẋ(t)

we have

d

dt
V1(t) =

d

dt
V1

(
x(t),u(t)

)
≤ −f

(
S
(
x(t)

))
S
(
u(t)

)
+ f

(
S
(
x(t)

))
S
(
u(t)

)
= 0

so that V1(t) ≤ V1(0) which is equivalent to

S(u(t)) +

∫ S(x(t))

0

f(w)dw ≤ S(u0) +

∫ S(x0)

0

f(w)dw

From the imposed condition Eq. (11) on the initial data we
deduce that there exists r′ such that

S(u0) =

∫ r′

S(x0)

f(w)dw

so that S
(
x(t)

)
≥ S

(
x0
)

0 ≤ S
(
u(t)

)
≤
∫ r′

S(x0)

f(w)dw −
∫ S(x(t))

S(x0)

f(w)dw

which makes sense if S
(
x(t)

)
≤ r′. Pick r =

max{r′, S(x0)} to conclude that condition (11) ensures that
the flock of birds will remain connected, hence they will
coordinate their speeds exponentially fast.

For the second part, the flock is static and routed-out
branching, hence it is routed-out branching over the interval
[t−B, t], for any t > 0 and B > 0. Let m <∞ be defined
as usual and

W (x(s)) = mI −D(x(s)) +A(x(s)),

C(t, s) = e−mBδ(s− (t−B))I + e−m(t−s)W (x(s))

Finally for the scrambling index γ of the topological graph
GP (x(t)) (which is independent of time) P

(γ)
B

(
x(t)

)
is

stochastic from Proposition 3.7 and has the same scrambling
index as P

(
x(t)

)
. Since the corresponding graph GW is

independent of time, so will be the scrambling index γ. We
follow the first part of Theorem 3.5

S
(
u(t)

)
≤ τ

(
P

(γ)
B (x(t))

)
S(u

(
t− γB)

)
≤
(

1− cfγ
(
S
(
x(t)

)))
S(u

(
t− γB)

) (15)

with c := (1−e−mB)γ

mγ and S
(
x(t)

)
≥ r for r such that

f(r) = me−mB

1−e−mB . We define the functional

V2(x,u) =

∫ t

t−γB
S
(
u(s)

)
ds+ c

∫ S(x)

0

fγ(s)ds

the derivative of V̇2 along the solution of Eq. (7),
(
x(t),u(t)

)
is

V̇2(t) = S
(
u(t)

)
− S

(
u(t− γB)

)
+ cfγ

(
S(x(t))

)
S
(
u(t)

)
≤ 0

in view of Lemma 3.3 (from which it is deduced that
S
(
u(t)

)
≤ S

(
u(t−γB)

)
,∀t and Eq. (15). Then for t ≥ γB

we have V2(t) ≤ V2(γB) which is equivalent to

∫ t

t−γB
S
(
u(s)

)
ds+ c

∫ S(x(t))

0

fγ(s)ds ≤∫ γB

0

S
(
u(s)

)
ds+ c

∫ S(x(γB))

0

fγ(s)ds

Let the following condition hold∫ γB

0

S
(
u(s)

)
ds < c

∫ ∞
S(x(γB))

fγ(s)ds (16)

and we pick r′ such that∫ γB

0

S
(
u(s)

)
ds = c

∫ r′

S(x(γB))

fγ(s)ds

then from the last inequality, S
(
x(t)

)
≤ S

(
x(γB)

)
implies

0 ≤
∫ r′

S(x(t))

fγ(s)ds⇒ S
(
x(t)

)
≤ r′

so that the flock remains bounded and exponential speed
alignment is ensured. Finally, we show that Eq. (12) implies
Eq. (16). Indeed,∫ γB

0

S
(
u(s)

)
ds ≤ γBS(u0)

from Lemma 3.3. Now we look for a lower bound of
S
(
x(t)

)
. If S

(
x(t)

)
≥ S(x0) from the form of Eq. (7)

the rate at which S(x(t)
)

may shrink can be deduced from
the extreme scenario of x0 = (x0, 0, . . . , 0), x0 < 0 so
that S(x0) = x0 and u0 = (u0, 0, . . . , 0) , u0 6= 0 with
S(u0) = |u0|. Neglecting the averaging effect which will
inevitably diminish S

(
u(t)

)
, x0 < 0 implies that the first

bird at t will have approached (or bypassed) the rest of the
group by −|x0|+ |u0|t. All in all, at t = γB

S
(
x(γB)

)
≥ max

{
S(x0), |S(x0)− S(u0)γB|

}
= P γ,B

x0,u0

so that ∫ ∞
S(x(γB))

fγ(s)ds ≥
∫ ∞
P
γ,B

x0,u0

fγ(s)ds

then

S(u0) <
(1− e−mB)γ

mγγB

∫ ∞
P
γ,B

x0,u0

fγ(s)ds.

The case of switching connectivity is treated as in Theorem
3.5 and the use of V2 after substituting γ with σ. Then Eq.
(13) substitutes Eq. (12) to ensure asymptotic flocking.

Remark 4.2: In the case of static connectivity, γ = 1
implies that Eq. (11) and Eq. (12) coincide as B ↓ 0.
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V. DISCUSSION

To the best of our knowledge, the use of the coefficient
of ergodicity for continuous time consensus systems was
limited to cases of increased connectivity [14]. An improved
proof of that approach is provided in Section III-.1 whereas
in the next section the full problem was attacked. The key
idea is to invert the differential operator to an integral one
so that concepts from the adapted result of Theorem 2.4
would apply. Indeed, the necessarily positive value B >
0 considered in §III-.2 (Assumption 3.8) has very similar
meaning to the necessary positive time one needs to classify
the communication classes in a continuous time Markov
chain [3] .

Now, the combination of using the coefficient of ergodicity
in integral equations provides two significant advantages: At
first, one needs no symmetry conditions on the communica-
tion weights as unlike the Fielder number in algebraic graph
theory [1], the contraction coefficient ρ has no applicability
issues. Secondly, one is free to allow discontinuous jumps
on the connectivity regime without the mobilization of
elaborated generalized concepts of solution of differential
equations. The proof we provided is elegant and concise to
include vanishing communication weights and hence non-
uniform types of convergence. Within our framework, the
work of [11] is a special case where the coupling weights are
assumed to be uniformly lower bounded. Moreover, the rate
estimates are explicit and hence they are used for the study
of the non-linear model (7), providing new initial conditions
for asymptotic flocking.

The main drawback is that the contraction coefficient gen-
erally provides very conservative rate estimates. In particular
much more conservative than its symmetric counterpart, the
Fiedler number [1]. The latter tool gains its power from the
spectral properties of topological graphs and incorporates
much more information than τ .

In [17] a number of different non-linear as well as stochas-
tic models is also studied with respect to the framework
of Section III, but this discussion is omitted due to space
limitation.
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