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Abstract Energy efficiency is widely recognized as an
important factor for future cellular networks. For mobile
devices, energy efficiency leads to extended battery life.
Existing works consider battery to be equally important for
all users at all time. We recognize that the value of a device’s
battery depends on the user’s target usage. In particular, we
introduce the notions of valueless and valued battery, as
being the available battery when the user does or does not
have access to a power source, respectively. We argue that
user experience only depends on valued battery. We propose a
cooperative system to help raise the overall amount of valued
battery in the network. Our system makes use of device-to-
device communications underlaying LTE to create coopera-
tive relay links between users. Users who expect to have a
large amount of valueless battery help relay traffic for users
with a small amount of valued battery. We develop our system
as a proximity service for future LTE releases. We propose
a framework to study utility functions to evaluate the value
of battery. We show that with appropriate utility functions, a
set of thresholding cooperative rules ensure network perfor-
mance improvement. We illustrate this improvement through
simulation. Our simulator source code is made available to
the public.
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1 Introduction

Smartphones have become an essential part of our every-
day life. They have been outselling PC since 2010 [1].
The number of smartphones as well as the amount of
data they generate keep increasing at a dramatic pace [2].
However, one of the biggest problems limiting the use-
fulness of smartphones is their short battery life. Bat-
tery technology lags far behind the demand for smart-
phone usage. The energy consumption on smartphones has
been broken down into components [3,4]. It is shown
that network communications and the display are the two
biggest contributors, significantly higher than other compo-
nents such as memory and processor. As cloud computing
becomes the de facto platform for intensive computational
tasks, the ability to always stay connected is even more
important.

Energy efficient designs for wireless communications
have been widely recognized as an important topic. The tra-
ditional goal of energy efficient designs is to maximize the
number of bits transmitted per energy unit. Solutions are
proposed across layers of wireless networks. On network
planning level, the impact of cell size as well as mixed cell
deployment on energy consumption of the devices have been
studied [5,6]. On application layer, energy-efficient video
coding schemes have been proposed [7]. On network layer,
energy-aware routing protocols have been developed for dis-
tributed wireless networks [8]. On MAC layer, energy effi-
ciency has been incorporated in resource allocation algo-
rithms [9,10]. On PHY layer, adaptive MIMO modulation
orders according to channel condition have been proposed
[11]. In addition, cross-layer solutions have been developed.
Route selection and MIMO constellation size are jointly con-
sidered to enhance energy efficiency of wireless sensor net-
works in [12].
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By maximizing the number of bits transmitted per unit
energy, existing work make an implicit assumption that
energy, in absolute quantity (Joules), is worth the same for
all users at any time instant. We, on the other hand, realize
that smartphone battery does not always have the same value
for the users. A straightforward argument is that a user will
not value his battery as much when he has a high battery
bar compared to when he has a low battery bar. We take this
argument one step further. The user will not value his battery
much, even if he has a low battery bar, if he is only a few
minutes from home. Therefore the value of the battery to a
user involves both the absolute amount as well as the user’s
target usage. In particular, we introduce the notion of valued
battery, defined as the battery of the smartphone when the
user is active and does not have access to a power source.
Similarly, valueless battery is defined as the battery of the
smartphone when the user has access to a power source. We
argue that the user’s experience depends only on his valued
battery. Smartphone users often are quite concerned when
they are on the road, and their (valued) battery drops low.
However, the abundant number of occasions when they are
at home and their (valueless) battery is high often go unno-
ticed.

In realistic cellular networks, users have varied amount of
remaining battery. When the state of the battery (with respect
to access to a charging source) is taken into account, this vari-
ation becomes even larger. We call this phenomenon diversity
of usage. It is intuitive that the network as a whole will benefit
from converting valueless battery into valued battery. Since
we are still far away from efficient long-distance wireless
energy transfer [13], a more practical approach to “sharing”
battery among users needs to be developed.

Recent advancements in device-to-device (D2D) commu-
nications underlaying cellular networks provide us with a
perfect opportunity to create such a practical approach to
energy sharing. D2D communications, as the name suggests,
are the practices of creating direct links between cellular
devices. The original goals of D2D communications are to
offload data from the congested cellular networks, as well as
to provide opportunities for direct advertisements and alter-
native communication mediums for public safety operations
during catastrophes. We envision a new usage for D2D com-
munications. Most of the power in wireless transmissions is
spent to overcome distance-dependent path loss. Since D2D
connections are local, their path loss is much smaller than that
of cellular links. Therefore, for the same quality of service,
D2D connections consume less power.

In [14], we propose a cooperative system, the “Battery
Deposit Service” (BDS), which makes use of D2D commu-
nications underlaying LTE, to provide energy sharing in the
form of load sharing. Our system allows users with high bat-
tery level to help relay traffic of users with low battery level
through a D2D connection. Since the direct link costs much

less power than the cellular link, the usage time of users with
low battery level is prolonged. The cooperative selection cri-
teria are designed carefully such that the amount of energy
the helpers expend does not reduce their usage time to below
their target usage. Thus they only spend valueless battery.
As a result, our system takes advantage of diversity of usage
to raise the overall amount of valued battery in the network.
In this work, we provide a more thorough description of our
system and introduce several important improvements.

There are four main technical areas that need to be
addressed in developing our system. The first area is sys-
tem architecture. This includes invoking appropriate entities
within the evolved packet system (EPS) and developing sig-
naling protocols for UEs to request and provide help. The
second area is studying the utility of battery for the users
to design cooperative criteria such that the overall network
performance is improved. The third area is management of
user incentive. Intuitively, every user can benefit from the
system at some point in time. However, the benefit for the
helpers is not immediate, therefore there need to be mech-
anisms to incentivize users and prevent selfish behaviors.
The fourth area is accurate estimation of user target usage.
Machine learning algorithms, assisted by a vast amount of
user data, are continuing to produce better prediction [15].
In this work, we will assume that we receive accurate user
target usages and address the first three areas.

1.1 Related work

We introduced the idea of our system in [14]. In that work,
we used two widely accepted channel models, IST WINNER
II model [16] and UMTS model [17] to show that the power
consumption in a D2D connection can be 3 to 4 orders of
magnitude less than that of a cellular connection. Therefore,
when a user (the helper) relays uplink traffic for another user
(the helpee), the helper carries the cost of that communica-
tion session for the helpee. Effectively, the helper “transfers”
some of his energy to the helpee. Equivalently, the helper
and helpee can be thought of as “depositing” energy into and
“withdrawing” energy out of the network. The diversity of
usage in the network ensures that with high probability, the
helper will run low on battery at some other time and receive
help. The depositing and withdrawing analogies are appro-
priate because they signify that the helping relationship needs
not be immediate or reciprocal. The helper can receive help
from a different user at a different time. These analogies give
rise to the name of our system, the “Battery Deposit Service”
(BDS).

We created a simulator (written in MATLAB) [18] to eval-
uate the performance of BDS under some realistic channel,
traffic, and mobility models. In [14], we formulated the coop-
erative decisions based only on the amount of available bat-
tery of the users. As discussed above, the target usage also
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plays an important role. In this work we will address both val-
ues in the design of cooperative rules. In [14] we assume that
the users are altruistic. In this work we will address mecha-
nisms to manage user incentive.

D2D communications can operate on both unlicensed
(out-of-band) and licensed spectrum (in-band). Because of
the popularity of technologies such as Wifi and bluetooth,
out-of-band D2D communications have traditionally been
the main focus, drawing a large body of literature. For
instance, in [19,20], Wifi D2D connections are utilized to
enhance energy efficiency in the context of content dissem-
ination applications. In LTE, however, in-band D2D com-
munication is the preferred method by 3GPP. The main
advantage of having D2D links on licensed spectrum is that
interference can be managed. This leads to predictable per-
formance of the D2D links. Moreover, in-band D2D con-
nection setup can be transparent to the users. Since each
device context has already been established with the cellu-
lar network, a secure D2D connection can be set up auto-
matically (as opposed to manual pairing in Wifi and blue-
tooth). Since guaranteeing QoS and low-latency connection
setup are a crucial features of our cooperative relay system,
using in-band D2D communications is the nature choice for
BDS.

Prior work on in-band D2D have been mainly concerned
with interference management and resource allocation [21–
23]. If done properly, they enable D2D connections to exist
concurrently with regular cellular connections at “no cost”.
In fact, through measurements on a wide spectrum range
(20 MHz to 6 GHz) from 4 locations in Germany, Nether-
lands, California, [24] observes that on average, 50 % of the
spectrum in is never used, 26 % is only partially used. In
particular, the cellular uplink bands (GSM and UMTS) are
mostly idle because the uplink signals are very weak to be
detected even with high-end spectrum analyzers. For BDS, it
means that the D2D relay links can coexist with other cellu-
lar links with minimal impact on system throughput. In this
work we will assume the eNodeB knows the optimal way
to allocate resource for D2D links and focus on the energy
sharing problem.

In order to utilize D2D communications in a systematic
way, 3GPP created a work item named “Study on Proximity-
based Services” (ProSe) for release 12 [25]. To enable ProSe,
changes need to be made on both network architecture, non-
access stratum (NAS) and access stratum (AS) protocols.
In [26,27], additional logical entities are proposed in the
evolved packet core (EPC) to manage D2D-capable devices
and ProSe applications. A new type of data bearer between
D2D UEs, D2D bearer, is also proposed. Additional control
signaling to manage D2D bearers is considered. We use these
suggestions in developing our system architecture.

Even though not studied in cellular contexts, energy har-
vesting networks share some similarities with our utility

analysis. In an energy harvesting network, nodes rely on
energy from some natural sources to operate. Since the
amount of energy and the harvesting instants are usually ran-
dom, the value of energy for a node changes over time. This
characteristic is similar to our observation that the value of
smartphone battery is dependent upon both the amount and
the time (with respect to the user target usage). Prior research
on energy harvesting networks have proposed scheduling
algorithms for nodes to adapt to their harvesting process [28].
The goal is to control the energy expenditure to reduce the
probability of exhausting available resource, thus disrupt-
ing network operations. In contrast to these work, in cellu-
lar context, the smartphones do not control the user usage.
Therefore the research questions are fundamentally differ-
ent. Usage, instead of being the output, is given as the input
to BDS (in the form of some probabilistic model). The deci-
sion space is to find the best cooperative rules (instants and
duration), given that model and the amount of available bat-
tery. In addition, nodes in energy harvesting networks are all
under the designer’s control. In our case, the users need to be
incentivized to cooperate.

Incentive schemes in wireless networks have been stud-
ied for over a decade. Most existing works aim to create an
incentive system for nodes in a mobile ad-hoc network to
forward packets from their neighbors [29–32]. Three main
incentive mechanisms have been proposed: reputation, Tit-
for-Tat, and currency. In a reputation system, each time a
node cooperates truthfully, its reputation in the network is
increased. Highly reputable nodes receive good service from
others. Nodes with low reputation may be denied from par-
ticipating. In a Tit-for-Tat system, a pair of nodes take turn
to perform services for each other in multiple rounds. Each
node therefore has incentive to act honestly in fear of not
getting service from the other in future rounds. In a currency
system, nodes buy and sell services. The price of the service
is determined by the market. The currency can either be real
dollars or virtual.

Since in our case, we want a node to be able to interact
with many other nodes, Tit-for-Tat is not suitable. Reputation
works well in distributed systems, but the performance is hard
to be predicted exactly. Currency fits our needs the best. It
gives us an exact method to keep track of the transactions
in the networks. The network plays a major role here, as a
bank/moderator. In currency system without a central control
entity, accounting is a major challenge. For virtual currency
systems, the amount of virtual money is normally attached
to each packet, protected by cryptographic measures. Not
only does it incur processing overhead, cryptographic key
distribution and management also poses as a big problem.
Fake virtual money as well as double spending need to be
taken into account as well. Some notable implementations
of distributed virtual currency include Bitcoin [33], Nuglets
[29], and WhoPay [34].
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1.2 Summary of contribution

Our contribution in this work is to identify new cooperative
opportunities in cellular networks, by taking advantage of
diversity of usage, to prolong battery life on mobile devices.
We develop a proximity service as defined by 3GPP for UEs
to participate in cooperation.

1. System architecture: We identify responsible entities in
the EPS and develop signaling for service request and
setup.

2. System cooperative rules: We propose a general frame-
work to study utility of resource and apply that framework
to our system. We show that by using appropriate utility
thresholds as cooperative rules, the system performance
can be guaranteed to improve.

3. User incentive: We consider currency systems that pro-
vide incentive for users to participate faithfully.

1.3 Outline of paper

BDS system architecture is described in Sect. 2. In Sect. 3
we introduce a general framework to study utility of resource
and apply it to BDS. We discuss user incentive in Sect. 4. We
analyze BDS performance through simulation in Sect. 5. We
conclude and discuss future work in Sect. 6.

2 System architecture

We envision battery deposit service (BDS) as a proximity
service (ProSe) in future releases of LTE. It is clear that to
support ProSe, there need to be additional entities in EPC as
well as new NAS and AS protocols [26,27]. We assume that
the mobility management entity (MME) has an additional
function, ProSe management (PSM), which manages D2D-
related device capabilities, identifier allocation, connection
establishment, mobility tracking, etc. We also assume there is
an application server (AppSer) that communicates with the
policy and charging rules function (PCRF) to enforce policy
compliance for ProSe applications. The AppSer can make
request to the PSM in the MME to setup D2D connections
for ProSe applications.

We discussed security implications of BDS in [14]. We
showed that BDS does not incur any more security risk than
what can already be obtained by an eavesdropper. Moreover,
in [14], we introduced the basic flow of BDS . In this work,
we make use of the additional entities PSM and AppSer to
propose a detail signaling procedure to set up a BDS coop-
erative relay session. This signaling procedure is illustrated
in Fig. 1. We consider an example where the helpee UE1 is
associated with eNodeB1. The PSM, which manages UE1’s
D2D connections, knows that UE1’s potential D2D peers

are connected to eNodeB1 and eNodeB2. In this example,
UE2, which is connected to eNodeB2, is selected to be the
helper for UE1. The PSM notifies the serving gateway (S-
GW) to update UE1’s data path, which changes from UE1 ↔
eNodeB1 ↔ S-GW to UE1 ↔ UE2 ↔ eNodeB2 ↔ S-GW.

The overall procedure can be divided into three smaller
subroutines: discovery, D2D bearer establishment, and BDS
cooperative relay.

Discovery

1. The helpee UE1, under some conditions, decides to
request for BDS service. It sends BDSInitSerReq to
the PSM inside the MME.

2. The PSM forwards the request, together with UE1 ID, to
the AppSer in the form of BDSSerReq.

3. The AppSer checks UE1 policy (by contacting the PCRF)
to decide if UE1 is allowed to use BDS service.

4. Once confirmed, it sends a response BDSSerResp to
the PSM.

5. The PSM sends BDSDiscoveryConfig message
with the helpee ID (UE1) to eNodeB1 and eNodeB2.

6. eNodeB1 and eNodeB2 agree on a time/frequency
resource for a BDS discovery signal and send this infor-
mation to UE1 (the discoverer) through a RRCConn
Reconfig message. (6a) This time/frequency resource
is also sent to all BDS-enabled UEs within their cells (the
listeners) through RRCConnReconfig messages. We
envision that there can be a group control message format
to make this process more efficient.

7. UE1 sends the discovery signal BDSDiscovery.
8. The subset of listeners who were able to hear UE1’s

BDSDiscovery send their replies, in the form of
BDSReply messages, to the PSM. The PSM forwards
them to the AppSer.

9. BDSReply messages contain information required by
the AppSer to select the optimal helper for UE1. Some
possible decision rules include

– Max-battery: in BDSReply, the UEs include their
remaining battery levels. The AppSer selects the UE
with highest remaining battery to help.

– Proximity: in BDSReply, the UEs include the
received signal strength of UE1’s BDSDiscovery
signal. The AppSer selects the UE with highest
received signal strength (i.e. it is closest to UE1).

– Currency: to ensure fairness and manage user incen-
tive, a currency system is set up by the AppSer. The
selection rule in this system is discussed in Sect. 4.

Let UE2 be the chosen helper. At the end of the discovery
phase, the helper/helpee association is determined.

D2D Bearer Establishment
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Fig. 1 Signaling flow for
establishment of a BDS
cooperative relay session. UE1
is the helpee, UE2 is the
selected helper

UEn UE2 UE1 eNB1 eNB2 
MME 
(PSM) 

App 
Server 

S-GW … 

1) BDSInitSerReq 

3) Check UE1 policy 

2) BDSSerReq 
[UE1] 

4) BDSSerResp 5) BDSDiscoveryConfig 
[UE1] 6) RRCConnReconfig 

[BDS Discoverer] 

6a) RRCConnReconfig 
[BDS Listener] 

BDS-
enabled 

7) BDSDiscovery 

BDS-
enabled 

8) BDSReply 

9) Select helper 

10) BDSSerConfigReq 
[UE1, UE2] 11) D2DBearerSetupReq 

[BDS - UE1, UE2] 
12) RRCConnReconfig 

[BDS - UE1, UE2] 

13) RRCConnReconfigComplete 

14) D2DBearerSetupResp 

15) BDSSerConfigResp 

16) StatusTransfer 
[UE1, UE2] 

Discovery 

D2D Bearer Establishment 

17) Uplink data 

17a) Downlink data 

BDS Coopera�ve Relay 
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10. The AppSer sends a request, BDSSerConfigReq, to
the PSM to create a D2D connection for BDS with UE1
and UE2 IDs.

11. The PSM sends D2DBearerSetupReq to request
eNodeB1 and eNodeB2 to allocate resource for a D2D
connection between UE1 and UE2. The QoS of the D2D
connection can also be included.

12. eNodeB1 and eNodeB2 send RRCConnReconfig
commands to UE1 and UE2 to inform them of the D2D
resource.

13. UE1 and UE2 confirm that they are ready to use the
allocated resource for D2D communications by sending
RRCConnReconfigComplete.

14. eNodeB1 and eNodeB2 inform the PSM that the D2D
bearer setup is complete by sendingD2DBearerSetup
Resp.

15. The PSM informs the AppSer that the BDS service con-
figuration is complete by sendingBDSSerConfigResp.

16. The PSM informs the S-GW to update UE1’s status by
sending StatusTransfer. Future IP data packets to
UE1 should be routed through eNodeB2.

At the end of the D2D bearer establishment, UE2 is ready
to relay UE1’s data traffic.
BDS Cooperative Relay

17. During the cooperative session, UE1’s data path is
updated to UE1 ↔ UE2 ↔ eNodeB2 ↔ S-GW.

3 Cooperative rules

BDS system architecture allows the UEs to request for service
whenever they want. The potential helpers can also choose
when they want to respond to BDSDiscovery. Intuitively,
we want the UEs to only request for service when they cannot
satisfy their own usage demand. At the same time, the UEs
should only respond to help requests if doing so does not
hurt their ability to meet their target usage. In this section, by
studying battery utility for the UEs, we design cooperative
rules to enforce those behaviors.

BDS belongs to a general class of systems in which
the resource for each user is generated and/or consumed
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according to some random processes. Because of the ran-
domness, there are possibilities that the available resource of
some users cannot meet their consumption requests. At the
same time, other users may have unused resource. Therefore
the users can benefit from resource transferring among them-
selves. We start with a general framework to study resource
utility and apply that utility analysis to design cooperative
rules. We then study BDS as a specific case.

3.1 General utility analysis framework

Our framework considers a system in which the users con-
sume a limited amount of resource over time. The system has
two main characteristics

– The resource consumption or the resource generation, or
both, are random

– Resource can be transferred between users according to
a transfer graph

The goal of the users is to satisfy the resource consumption,
given the resource generation process. We use the notion of
a target usage duration to study user utility. The target usage
duration is the period until the next arrival of resource. Given
the current amount of available resource, the utility for a user
is related to his ability to meet this usage.

We first define our terminology. Next, we discuss user per-
formance in term of utility. Using utility, we consider con-
ditions in which cooperation is beneficial for participants.
Finally, we consider two broad categories of systems and
two specific utility functions that are appropriate to those
categories.

3.1.1 Terminology

Let us consider a system with multiple users, indexed by
i = 1, 2, . . . At each instance, the state of user i consists of
the following quantities

– Bi : the amount of remaining resource, Bi ≥ 0.
– Ti : the target usage duration, Ti ≥ 0.
– Li : the parameter for the resource consumption process.

From those instantaneous state variables, the following future
quantities can be derived

– ζLi (τ ): the amount of resource consumed for usage dura-
tion τ , given the parameter Li . ζLi (τ ) is a random
process, ∀L ,∀τ ≥ 0 : ζL(τ ) ≥ 0.

– TOi : the duration until the resource runs out (time
until outage). TOi is a random variable which satisfies
ζLi (TOi ) = Bi . TOi ≥ 0.

– TV i : the amount of valued usage time. Valued usage time
is smaller of the time until outage and the target usage.

TV i is a random variable defined as TV i = min(Ti , TOi ).
TV i ≥ 0.

Subsequently, we will drop the subscript i when it is clear
from the context that we are talking about a general user.

3.1.2 User utility

Since the users have limited resource, there is a possibility
that they do not meet their target usage. The likelihood of
this possibility depends on future resource consumption. In
this framework, we will consider users to receive maximum
utility if their target usage is met. In the case where the users’
target usage is not met, their utility depends on the specific
type of resource and application. We investigate two broad
categories of applications in subsequent sections. First, we
discuss some properties of a general utility function.

We consider users with higher utility to be in better states.
For the same target usage, more resource gives better utility.
Similarly, with the same level of remaining resource, the user
with shorter target usage has higher utility. Therefore, the
utility function has to be monotonically non-decreasing in B
and monotonically non-increasing in T . In other words,

u(B1, T, L) ≥ u(B2, T, L) for B1 ≥ B2 (1)

u(B, T1, L) ≥ u(B, T2, L) for T1 ≤ T2 (2)

Through cooperation, resource can be transferred between
users, which alters the time until outage for both parties. The
novelty in our approach is the consideration of the target
usage time T . In Fig. 2 we show an example of a utility
function for visualization. The resource B and target usage
duration T are normalized to some B∗ and T ∗. The values of
B∗ and T ∗ are not important for the current discussion. Here
we are only interested in the shape of the utility surface. A
user i with low resource (Bi small), but requires usage for
only a short duration (Ti small) can have higher utility than
a user j with more resource (B j large), but also requires
usage for a long period (Tj large). As a result, user i can
potentially provide more help than user j . This way we utilize
cooperative opportunities that otherwise were not available
in previous frameworks that only consider the amount of
available resource B.

Any utility function needs to have the following properties

P1. Ease of computing: The users need to monitor their utility
frequently, therefore the utility calculation should be very
fast.

P2. Ease of deriving cooperation rules: The purpose of the
utility function is to determine cooperation rules for the
users. Therefore, a good utility function simplifies these
rules.

123
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Fig. 2 A sample utility surface. The resource B and target usage dura-
tion T are normalized. Following a curve with constant target usage
time, the utility function increases with B—property (1). Following
a curve with constant resource, the utility function decreases with
T —property (2)

3.1.3 Beneficial cooperation

Let us consider a cooperative session in which user i is
the helpee and user j is the helper. The cooperative session
has duration Tc. During this session, the helper transfers an
amount of resource, ΔB ji ≥ 0, to the helpee. The resource
transferring loss is denoted δ j i . Without loss of generality,
the transferring loss is associated with the helpee. Table 1
illustrates the condition of the helper and helpee before and
after cooperation.

Definition 1 A cooperative session is beneficial if the total
utility with cooperation is no less than the total utility without
cooperation.

ui (Bi − ζLi (Tc) + ΔB ji − δ j i , Ti − Tc, Li )

+ u j (B j − ζL j (Tc) − ΔB ji , Tj − Tc, L j )

≥ ui (Bi − ζLi (Tc), Ti − Tc, Li )

+ u j (B j − ζL j (Tc), Tj − Tc, L j ). (3)

Equivalently, the cooperative utility gain of the helpee is, in
magnitude, at least equal to the cooperative utility loss of the

helper.

ui (Bi − ζLi (Tc) + ΔB ji − δ j i , Ti − Tc, Li )

− ui (Bi − ζLi (Tc), Ti − Tc, Li )

≥ u j (B j − ζL j (Tc), Tj − Tc, L j )

− u j (B j − ζL j (Tc) − ΔB ji , Tj − Tc, L j ). (4)

If the system is designed such that only beneficial cooper-
ative sessions are allowed, the overall utility of the network
will increase in cooperation.

Lemma 1 A necessary condition for a cooperative session
to be beneficial is that the resource transferring loss is no
greater than the amount of resource transferred by the helper.

δ j i ≤ ΔB ji . (5)

Proof See Appendix 1.

In a beneficial cooperative session, if the transferring loss
is positive, the total amount of resource consumed is greater
than that of the non-cooperative case. However, by definition,
the total utility is improved. This is achieved because the
helper and the helpee are on different operating points with
respect to their utilities. For the case where the cooperative
session length is much smaller than the target usage time of
both users, Tc � Ti , Tj , from (4) we see that the helpee must
be operating on a “steeper” resource-slope than the helper.
In other words,

∂

∂ B
ui (Bi , Ti , Li ) >

∂

∂ B
u j (B j , Tj , L j ). (6)

As a result, a larger change in resource for the helper results
in a smaller change in utility. This knowledge can be used to
design cooperative rules.

3.1.4 Two categories of systems

In this section we discuss two broad categories of systems
and the appropriate utility function for each category.

C1. The users only concern with whether or not their task is
done (all or nothing). If a user’s target usage is satisfied,
he receives utility 1, otherwise he receives utility 0.

Table 1 Target usage duration
and remaining resource of the
helper and helpee before and
after cooperation

Helpee (i) Helper ( j)

Target usage Remaining resource Target usage Remaining resource

Before Ti Bi Tj B j

After Non-coop Ti − Tc Bi − ζLi (Tc) Tj − Tc B j − ζL j (Tc)

Coop Bi − ζLi (Tc) B j − ζL j (Tc)

+ΔB ji − δ j i −ΔB ji
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C2. The users concern with the amount of usage they
receive, up to the target usage. Users whose target usage
is met receive maximum utility. Whereas users whose
target usage is not met receive utility proportional to
their usage time. Another way to think about this cate-
gory is that if the users do not meet their target usage,
they incur a cost proportional to the amount of time they
come short. Users who meet their target usage have zero
cost.

We consider two utility functions, one for each category of
systems, and their computational complexity. As discussed
in Sect. 3.1.2, it is desirable that a utility function is easy to
compute.

3.1.4.1 Category C1: probability of survival For users who
receive utility 1 when their usage is satisfied, and utility 0
otherwise, the probability of survival, P[TO > T ], is their
expected utility. First we define probability of outage, the
probability that a user (with state B, T, L) will run out of
resource before his target usage

PO = P[TO ≤ T ] = P[ζL(T ) ≥ B]. (7)

The utility function is thus

u1(B, T, L) = 1 − PO . (8)

3.1.4.2 Category C2: Expected valued usage time For this
category, the expected amount of valued usage time as a frac-
tion of the target usage time, E[TV ]/T , is a good performance
metric. The reason for normalization can be better understood
by an example. Let us consider user A who wants to use his
phone for 4 h without charging. If his expected valued usage
time is 3 h, his utility will be 0.75. User B with a 2-h target
usage but only 1 h of expected valued time has utility 0.5.
Notice that in both cases, the user needs 1 extra hour to meet
his target usage. The fact that user A has higher utility illus-
trates that 1 h is not worth as much for him as it is for user B.
This is justified considering that user A has a larger amount
of target usage compared to user B.

The expected usage time is

E[TV ] = E[min(TO , T )]

=
∫ T

0
τ fTO (τ )dτ +

∫ ∞

T
T fTO (τ )dτ

= E[TO ] −
∫ ∞

T
(τ − T ) fTO (τ )dτ (9)

= T −
∫ T

0
(T − τ) fTO (τ )dτ. (10)

The utility function for this category of users is defined as

u2(B, T, L) = E[TV ]
T

. (11)

Here fTO (·) denotes the PDF of the time until outage, the
CDF of which is given by the consumption process

P[TO ≤ τ ] = P[ζL(τ ) ≥ B]. (12)

3.1.4.3 Computation of u1(·) and u2(·) It can be easily veri-
fied that both u1(·) and u2(·) satisfy (1) and (2). Moreover, we
can see that both utility functions depend crucially on the time
until outage TO , which in turn depends on the consumption
process ζL(·). Therefore, the computational speed of these
utility functions also depends on the underlying consump-
tion process. While there are no closed-form expressions for
u1(·) and u2(·) for a general consumption process, we dis-
cuss a few cases where efficient approximations can be used
to speed up the computation.

First we consider the two extremes. If the user’s resource
is very high compared to his target usage, i.e. the distribution
of TO increases much slower than linear before the target
usage, then he is very unlikely to go into outage: PO ≈ 0.
In this case the target usage dominates in calculation of the
valued usage time (10) can be used to approximate E[TV ].

If (T − τ) fTO (τ ) ≈ 0 for τ ≤ T :

u1 = 1 − PO ≈ 1 (13)

u2 = E[TV ]
T

≈ 1. (14)

Similarly, if the user’s resource is very low compared to
his target usage, i.e. the distribution of TO decreases much
faster than linear after the target usage, then he is very likely
to go into outage: PO ≈ 1. Whereas the time until outage
dominates in the calculation of the valued usage time. (9) can
be used to approximate E[TV ].

If (τ − T ) fTO (τ ) ≈ 0 for τ ≥ T :

u1 = 1 − PO ≈ 0 (15)

u2 = E[TV ]
T

≈ E[TO ]
T

. (16)

Outside of the two extremes, a special case where the
utility functions can be efficiently approximated is when the
consumption process is Gaussian. In other words, ζL(τ ) ∼
N (μL(τ ), σ 2

L(τ )). From (12), the CDF of time until outage
is

P[TO ≤ τ ] = P[ζL(τ ) ≥ B] = Φ

(
μL(τ ) − B

σL(τ )

)
. (17)
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Fig. 3 Utility as functions of target usage time for user categories C1 and C2. The amount of available resource is fixed. Both utility functions
show two clear extremes. a C1: probability of survival (18). b C2: expected valued usage time (21)

Where Φ(·) denotes the standard Normal CDF. The proba-
bility of survival is simply

u1 = 1 − Φ

(
μL(T ) − B

σL(T )

)
= Φ

(
B − μL(T )

σL(T )

)
. (18)

If the mean of the consumption process scales linearly
with the duration, i.e. μL(τ ) = λLτ , then

P[TO ≤ τ ] = Φ

(
τ − B/λL

σL(τ )/λL

)
. (19)

By approximating τ in σL(τ ) by B/λL , we get σL(τ )/λL ≈
σL(B). Denote μL(B) = B/λL , (19) becomes

P[TO ≤ τ ] ≈ Φ

(
τ − μL(B)

σL(B)

)
. (20)

As a result, the time until outage can be approximated as
having a Gaussian distribution N (μL(B), σ 2

L(B)). The cal-
culation of expected valued usage time according to (10)
becomes (see Appendix 1)

E[TV ] ≈ T − (T − μL(B))Φ

(
T − μL(B)

σL(B)

)

+ σL(B)√
2π

⎛
⎜⎝e

− μL(B)2

2σL(B)2 − e
− (T − μL(B))2

2σL(B)2

⎞
⎟⎠ .

(21)

With the closed forms (18) and (21), the utility functions can
be computed efficiently.

Figure 3 illustrates the two utility functions when the
consumption process is Gaussian. The utility functions are
plotted against the target usage duration T while fixing the
amount of available resource B. The mean usage duration,
E[TO ], is used as the reference. For both utility functions,
we can see clearly the two discussed extremes. At their lower
(higher) extreme, u1 is very close to 1 (0), whereas u2 is very
close to 1 (E[TO ]/T ).

3.2 Battery deposit service

In this section, we apply the previous framework for mobile
UEs in a BDS system. The resource here is the communi-
cation energy budget of the UEs. When we talk about the
battery of a user, we refer to the communication energy bud-
get. As discussed in [14], uplink transmission power dom-
inates other communication-related components in term of
energy consumption. Therefore we will only consider the
uplink transmission power in the theoretical analysis. Other
factors such as idle circuit power and downlink reception
power are considered in simulation. As seen in Sect. 3.1, the
main component of the system is the battery consumption
process ζL(t).

3.2.1 Battery consumption process ζL(t)

First, we describe the uplink power consumption of UEs
in LTE networks. We then introduce the user’s data traffic
model. These two components make up the battery consump-
tion process.
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3.2.1.1 LTE uplink power control The battery consumption
for the UEs follows LTE uplink power control [35,36]. The
uplink transmission power in dB is

PUL = P0 + αPL︸ ︷︷ ︸
open-loop

+ΔTF + f (ΔTPC)︸ ︷︷ ︸
dynamic offset

+10 log10(M). (22)

PUL consists of two components. The first component
depends on the state of the UE with respect to the eNodeB.
This component is further comprised of two subcomponents:
a basic open-loop operating point and a dynamic offset. The
second component depends on the amount of uplink data,
which is realized in term of M , the number of allocated
resource blocks. A resource block (RB) is the basic unit of
time-frequency resource allocation in LTE. It consists of 12
OFDM subcarriers (for the total bandwidth of 180 kHz with
15 kHz subcarrier spacing) over one slot (0.5 ms).

P0 is a semi-static nominal power level set by the eNodeB.
αPL is the path loss compensation component, where α con-
trols the degree of compensation. PL is derived from the
downlink Reference Signal Received Power. It includes shad-
owing but not fast fading. The dynamic control of UE uplink
transmit power is designed to be an offset from the base oper-
ating point. This offset depends on two factors: the allowed
modulation and coding scheme (TF stands for Transport For-
mat) and a UE-specific transmitter power control (TPC) com-
mand.

While P0, PL as well as the dynamic control of PUL change
over time, a complete model of these quantities depends on
many factors such as user movement, traffic load within the
cell, eNodeB strategy etc. In this work, we use instantaneous
values of these quantities in the formulation of the consump-
tion process. Each time a UE computes its utility, it updates
these quantities.

The battery consumption process is

ζL(t) = 10
P0+αPL+DO

10 M(t) = ρ0 M(t), (23)

where DO is the dynamic offset. M(t) is the data arrival
process, in unit of resource blocks.

3.2.1.2 Traffic model We model M(t) as a Poisson burst
process with rate λ. Each burst size is modeled as a geo-
metric random variable with parameter ν. Poisson processes
are commonly used in traffic modeling because they capture
well the aggregate traffic caused by a large number of sources
(e.g. applications in a smartphone). Similar models were used
by Nokia and Renesas Mobile Europe in their recent 3GPP
contributions [37,38].

Let us denote the Poisson arrival process N (t), and the
size of each arrival M (in resource blocks). M is assumed
i.i.d. between different arrivals.

We have, for n ≥ 0

P[N (t) = n] = (λt)n

n! e−λt , (24)

and for m ≥ 1

P[M = m] = (1 − ν)m−1ν. (25)

From (23),

ζL(t) = ρ0 M(t) = ρ0

N (t)∑
i=1

Mi (26)

ζL(t) is a Poisson burst process with rate λ and takes values
as integer multiplies of ρ0. As a result, we can discretize the
battery using ρ0 as a basic unit.

As seen in Sect. 3.1, computing the distribution of the time
until outage, P[TO ≤ t], is the most important task for the
utility methods of BDS. In the following section, we discuss
in detail this computation.

3.2.2 Distribution of time until outage TO

In this section we describe two methods to compute exactly
the CDF of TO and an approximation for quick calculation.

3.2.2.1 Stochastic analysis Recall that for a UE with state
(B, T, L), P[TO ≤ t] = P[ζL(t) ≥ B]. From (26), with the
available battery B written as multiples of ρ0, we can write
the compliment of the CDF of TO as

P[TO ≥ t] = P[ζL(t) ≤ B]

=
∞∑

n=0

P[N (t) = n]P
[

n∑
i=1

Mi ≤ B

]

=
B∑

n=0

P[N (t) = n]P
[

n∑
i=1

Mi ≤ B

]
. (27)

Since Mi are i.i.d. geometric(ν) random variables, we can
think of

∑n
i=1 Mi as the total number of Bernoulli trials

before the first n successes. Each Bernoulli trial has success
probability ν. Since each Mi ≥ 1, P

[∑n
i=1 Mi ≤ B

] = 0
for n > B. For n ≤ B, we have

P

[
n∑

i=1

Mi = B

]

=
(

B − 1
n − 1

)
(1 − ν)B−nνn−1

︸ ︷︷ ︸
first n−1 successes in B−1 trials

ν︸︷︷︸
last success

. (28)
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This is the probability mass function of a negative binomial
random variable NB(n, ν). The CMF of which is

P

[
n∑

i=1

Mi ≤ B

]
=

B∑
k=n

(
k − 1
n − 1

)
(1 − ν)k−nνn (29)

=
B∑

j=n

(
B
j

)
(1 − ν)B− jν j (30)

= Iν(n, B − n + 1), (31)

(29) can be interpreted as while fixing the number of success
n we sum over the cases when the total number of trials is
at most B. (30) can be interpreted as while fixing the total
number of trials B, we sum over the cases when the number of
successes are at least n. Iν(·, ·) is the regularized incomplete
beta function, whose expression is given in (30) [39].

Plugging (31) into (27) we have

P[TO ≤ t] = 1 − P[TO ≥ t]

= 1 −
B∑

n=0

(λt)n

n! e−λt Iν(n, B − n + 1). (32)

3.2.2.2 Markovian analysis We can see that ζL(t) is a jump
process, therefore it can be analyzed under Markovian theory.
The state space is discrete, with each state being the number
of remaining battery units. As a result, we have a homoge-
neous continuous time Markov Chain as shown in Fig. 4.

Let the state variable be X ∈ N, the transition probability
is defined as

pi j (t) = P[X (t) = j |X (0) = i], i, j ∈ N. (33)

From (28) and (31), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p00(t)=1,

pii (t)=e−λt , i >0

pi j (t)=
i− j∑
n=1

(λt)n

n! e−λt

(
i − j −1

n−1

)
(1−ν)i− j−nνn, i > j >0

pi0(t)=
∞∑

n=1

(λt)n

n! e−λt (1 − Iν(n, i − n)) , i >0

pi j (t)=0, i < j

(34)

Define the local characteristics for any state i

qi = lim
h→0

1 − pii (h)

h
, (35)

and for any pair of states i �= j

qi j = lim
h→0

pi j (h)

h
. (36)

For the Poisson arrival process, as time duration h → 0,
the probability of having 2 or more arrivals during h vanishes.
Therefore we only need to account for n = 1 in the third and
fourth terms of (34). Taking the limits, we get

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q0, j = 0, ∀ j

qi = λ, i > 0

qi j = λ(1 − ν)i− j−1ν, i > j > 0

qi0 = λ(1 − ν)i−1, i > 0

(37)

The last equation of (37) is derived by plugging in n = 1 in
the fourth equation of (34) and using the following properties
of the regularized incomplete beta function [39].

1 − Iν(1, i − 1) = I1−ν(i − 1, 1)

= ν

∞∑
j=i−1

(1 − ν) j

= (1 − ν)i−1 (38)

Let qii = −qi , the matrix A = {qi j } is called the infin-
itesimal generator of the Markov Chain. It takes the form
A = −λ�, where

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
−1 1 0 0 0

−(1 − ν) −ν 1 0 0 · · ·
−(1 − ν)2 −(1 − ν)ν −ν 1 0
−(1 − ν)3 −(1 − ν)2ν −(1 − ν)ν −ν 1

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(39)

Denote the transition matrix P(t) = {pi j (t)}. From the
definition of the local characteristics qi j in (35) and (36), we
have

A = lim
h→0

P(h) − P(0)

h
, (40)

where P(0) = I. Since this Markov Chain is homogeneous

P(t + h) − P(t)

h
= P(t)

P(h) − I
h

= P(h) − I
h

P(t). (41)

Therefore

d

dt
P(t) = P(t)A = AP(t) (42)
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Fig. 4 Continuous time
Markov chain for remaining
battery states

(42) is referred to as the Kolmogorov’s differential system
[40], the solution to which is

P(t) = etA =
∞∑

n=0

(tA)n

n! (43)

Since X = 0 is an absorbing state, the CDF of the time
until outage, P[TO ≤ t], is the probability that the UE enters
state X = 0 at or before t , starting with B battery units at
time 0. It can obtained from P(t) as follows

P[TO ≤ t] = P[X (t) = 0|X (0) = B] = pB0(t). (44)

3.2.2.3 Gaussian approximation In this section we follow
the analysis in Sect. 3.1.4.3 for the case in which the con-
sumption process is Gaussian. First we establish that ζL(t)
can indeed be approximated as a Gaussian random process.
Recall from (26) that ζL(t) = ρ0

∑N (t)
i=1 Mi . Since Mi are

i.i.d., if N (t) is sufficiently large, we can use the Central
Limit Theorem to approximate ζL(t) as a Gaussian random
process N (

μL(t), σ 2
L(t)

)
. We proceed to find the mean and

variance of this process.
Recall that each Mi is distributed as a geometric random

variable M with parameter ν. We have

E[M] = 1

ν

Var[M] = 1 − ν

ν2 . (45)

From the law of total expectation,

μL(t) = E

⎡
⎣E

⎡
⎣ρ0

N (t)∑
i=1

Mi

∣∣∣∣N (t)

⎤
⎦
⎤
⎦

= ρ0E[N (t)]E[M]
= ρ0

λt

ν
(46)

From the law of total variance,

σ 2
L(t) = E

⎡
⎣Var

⎡
⎣ρ0

N (t)∑
i=1

Mi

∣∣∣∣N (t)

⎤
⎦
⎤
⎦

+ Var

⎡
⎣E

⎡
⎣ρ0

N (t)∑
i=1

Mi

∣∣∣∣N (t)

⎤
⎦
⎤
⎦

= ρ2
0E[N (t)]Var[M] + ρ2

0 Var[N (t)]E[M]2

= ρ2
0λt

1 − ν

ν2 + ρ2
0λt

1

ν2

= ρ2
0λt

2 − ν

ν2 (47)

From (17), by using the remaining battery B as multiple
of the battery unit ρ0, we have

P[TO ≤ t] = Φ

⎛
⎝ λt

ν
− B√

λt 2−ν
ν2

⎞
⎠ . (48)

Using the approximation in (20), we replace the value of t
on the denominator of (48) with Bν

λ
. (48) becomes

P[TO ≤ t] ≈ Φ

⎛
⎝ t − Bν

λ

ν
λ

√
λ Bν

λ
2−ν
ν2

⎞
⎠

= Φ

⎛
⎝ t − Bν

λ√
Bν(2−ν)

λ2

⎞
⎠ . (49)

Therefore, for a given amount of battery B, the time until
outage TO can be approximated as a Gaussian random vari-
able N (μTO , σ 2

TO
), with

μTO = Bν

λ
, σ 2

TO
= Bν(2 − ν)

λ2 . (50)

We compare the CDF of the time until outage TO cal-
culated by stochastic analysis (32), Markovian analysis (44),
Gaussian approximation (50), and Monte Carlo simulation in
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Fig. 5 CDF of time until outage TO calculated by stochastic analysis
(32), Markovian analysis (44), Gaussian approximation (50), and Monte
Carlo simulation. The time duration t is plotted with reference to the
mean usage duration E[TO ]

Fig. 5. It can be clearly seen that the stochastic and Markov-
ian analyses agree with the Monte Carlo simulation. The
Gaussian approximation is very close to this precise distrib-
ution.

3.2.3 Beneficial cooperation

In this section we study the conditions which a helpee i and
a helper j engaging in a beneficial cooperative session (Def-
inition 1) must satisfy. Let the duration of this cooperative
session be Tc. The helpee’s consumption process parameter
Li comprises of the battery unit ρ0,i and the helpee’s data
arrival characteristics λi , νi . ρ0,i depends on the helpee’s
uplink power control parameters, of which the main com-
ponent is the path loss PLi . Similarly, the helper’s consump-
tion process parameter L j comprises of ρ0, j , λ j , and ν j .
Because the helper relays the helpee’s data during the coop-
erative session, the consumption process parameter Li j of
the cooperative session consists of the D2D path loss PLi j

(thus battery unit ρ0,i j ) and the helpee’s data arrival charac-
teristics λi , νi . Here we make an implicit assumption that the
transmission power in D2D mode is proportional to the path
loss between the devices. If 3GPP chooses to use constant
D2D transmission power then Li j only depends on λi , νi .

During the cooperative session, the helpee transmits its
data through the D2D link. Its battery consumption is

ΔBi = ρ0,i j

Ni (Tc)∑
k=1

Mi,k (51)

During the cooperative session, the helper transmits both of
its data and the helpee’s data to the eNodeB. The amount
of battery consumed by receiving D2D data is very small
compared to the uplink transmission, thus can be ignored.
The helper’s battery consumption is

ΔB j = ρ0, j

⎛
⎝Ni (Tc)∑

k=1

Mi,k +
N j (Tc)∑

l=1

M j,l

⎞
⎠ (52)

Refer to Table 1, the amount of battery “transferred” by
the helper is

ΔB ji = ρ0, j

Ni (Tc)∑
k=1

Mi,k . (53)

The transferring loss at the helpee is

δ j i = (ρ0, j − ρ0,i )

Ni (Tc)∑
k=1

Mi,k + ρ0,i j

Ni (Tc)∑
k=1

Mi,k . (54)

According to Lemma 1, to have beneficial cooperation,
we need δ j i ≤ ΔB ji . From (53) and (54), this condition is
equivalent to

ρ0,i j

Ni (Tc)∑
k=1

Mi,k ≤ ρ0,i

Ni (Tc)∑
k=1

Mi,k . (55)

In other words, the helpee needs to spend less energy in a
D2D link than he would in the cellular link. This is typically
the case, unless the helpee is very close to the eNodeB. In
BDS, we enforce a maximum D2D path loss PLD2D such
that only helpers who receive the BDSDiscovery signal
with received path loss smaller than this value will respond
with BDSReply (Fig. 1). This threshold essentially limits
the range of the D2D connections, keeping them “local”. The
condition in Lemma 1 can be enforced by only allowing the
helpees to request for help when their path loss is greater than
PLD2D . More formally, we have

ρ0,i ≥ ρ0,D2D ≥ ρ0,i j (56)

where ρ0,D2D is calculated based on PLD2D .

3.2.4 Design of cooperative rules

In BDS, the cooperative duration Tc is kept small so that user
mobility does not make the D2D link go out of range. If after
Tc, the helper and the helpee still satisfy the beneficial coop-
erative conditions, they can request the eNodeB to extend
the cooperative duration to another Tc. This will reduce the
amount of signaling as the helpee does not need to go through
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Fig. 6 Utility as functions of available battery for user categories C1 and C2. The target usage time T is fixed. μB = λT/ν. a C1: probability of
survival (18). b C2: expected valued usage time (21)

the full help requesting procedure. With this choice, (6) can
be used to guide the design of cooperative rules.

According to (6), the rate of change of the helpee’s util-
ity with respect to battery must be greater than that of the
helper. Since we have established that the battery consump-
tion process under our model can be approximated as a
Gaussian random process, we can use (18) and (21) to calcu-
late the utility functions discussed in Sect. 3.1.4. We plot the
values of those two functions with respect to the available
battery in Fig. 6. Notice that we are looking at the resource
dimension of the utility, as opposed to the time dimension as
in Sect. 3.1.4.3.

In Fig. 6, the available battery B is normalized with
respect to μB , the amount of battery that would give the
expected time until outage E[TO ] equal to the target usage
time T . From (50), we know that E[TO ] = Bν/λ. There-
fore, μB = λT/ν. In Fig. 6b, the dashed line represents the
expected valued usage time when there is much less battery
than required to meet target usage, as seen in (16). Since
E[TO ]/T = B/μB , this line has slope 1.

We can see that for both utility functions, there exists
a utility value above which the resource-slope decreases.
Therefore we can use thresholding for our cooperative rules
and design appropriate thresholds that guarantee beneficial
cooperation. To achieve the condition in (6), we set a upper
cooperative threshold (the helping threshold) γ2 such that
the helper is operating above this threshold, and thus on
the slope-decreasing region. The helpee has to be operat-
ing below another threshold γ1 (γ1 ≤ γ2). For utility type 2,
that is all we need to do to ensure that the helpee’s resource-
slope is greater than the helper’s. For utility type 1, the helpee
needs to be above 1−γ2 to have a steeper slope. The intuition

is that if the helpee’s available battery is so far off his target
usage, a cooperative session will not improve his probability
of survival much, and he is still very likely to go into outage.
This is a characteristic of the all-or-nothing utility type.

3.2.5 Evolution of user utility over time

In this section we describe what happens to the utility of a
user as time progresses. For the simplicity of the discussion,
let us assume that the consumption parameter L does not
change. In this case, there are only two factors affecting the
user’s utility: the remaining time until the target usage T and
the amount of remaining battery B. Between data bursts, the
amount of remaining battery stays the same. The user’s utility
thus increases as the time until target usage decreases. When
the user has a new data burst, the battery drops suddenly,
which also leads to a sudden drop in utility.

To illustrate these evolutions, we simulate a user with ran-
dom data bursts and plot the values of the two utility functions
over time for this user in Fig. 7. For this case, the two types
of utility function follow a quite similar path, albeit on dif-
ferent scales. This user starts out with a 0.3 probability of
meeting his target usage. His expected usage duration at the
beginning is 0.91 of his target usage duration T . There is a
big data burst at t = 0.05T , resulting in a large dip in the
user’s utility. As time progresses from t = 0.05T to 0.5T ,
the user has less data than expected, thus his utility increases
(on average). From t = 0.5T to 0.7T , the user uses the typi-
cal amount of data. His utility stays constant on average over
this range. From t = 0.7T to 0.8T he uses more data than
expected, which results in a dip in utility values. His usage
decreases to less than typical from t = 0.8T to the target
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Fig. 7 Evolutions of user’s utility. Notice the scale difference. a Utility for user category C1: probability of survival. b Utility for user category
C2: expected valued usage time

usage T . He ends up meeting his target usage. However, he
becomes relatively certain about that fact only at t = 0.95T .

4 User incentive

As we discussed in Sect. 1, the helpers do not get any imme-
diate benefit from a cooperative BDS session. Therefore they
need to be incentivized. A currency system is most suitable
for BDS because we can leverage the centralized infrastruc-
ture. We discussed two such currency systems: virtual cur-
rency (token-based) and real currency.

The advantage of a virtual currency system is that it is
self-contained. The amount of credits in the system is con-
trolled by the network. Therefore the behavior of the users is
predictable (as long as they are rational). The advantage of a
real currency system is that it can potentially provide more
cooperation as the users can always request for BDS ser-
vice. However user interaction is required and the behavior
is harder to predict.

4.1 Virtual currency

In a token-based incentive system, each user is initialized
with a number of tokens, k0, when they activate their phone
number. To request BDS service, the user has to pay one
token. The selected helper receives that token. Since the num-
ber of tokens of each user is kept by the network, fake tokens
are not an issue. The network also sees data connections.
Therefore a helper cannot lie that he relayed the helpee’s
traffic while he did not. Security of the token system there-

fore is not a major concern because of the centralized nature
of BDS.

When a UE with k tokens receives RRCConnReconfig
for BDS listeners (Fig. 1), it estimates the utility cost c for
helping in a cooperative session. If the cost is less than the
utility gain then the UE listens for BDSDiscovery. Let the
value of k tokens be Vk . The UE listens for BDSDiscovery
if Vk+1 − Vk > c. [41] studies a token system for down-
link relay service with the goal of improving data rates. It is
shown that the optimal strategy for users is thresholding. A
user receiving help request accepts if his number of tokens
is smaller than a threshold, k ≤ K (c). If all users follow
this optimal strategy, the network designer can control the
total number of tokens in the network to achieve the maxi-
mum efficiency, i.e. the probability of a BDS request being
accepted.

4.2 Real currency

We envision a real auction system where the helpee set a max-
imum amount of dollars that he is willing to pay for a help ses-
sion, dmax. This information is sent with BDSInitSerReq.
Each potential helper sends an amount they want to receive
for the service, di , in BDSReply. If there are more than one
helpers whose request fees are less than dmax, the AppSer
selects the helper with the lowest request fee, and pays him
the amount equal to the second lowest fee. This is known in
the literature as a reversed auction. It is proven that the sec-
ond lowest request fee is a form of Vickrey-Clarke-Groves
(VCG) payment [42], and it achieves the optimal social out-
come of everybody telling their true price.
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Table 2 Simulation parameters

Parameter Value

Cell radius 300 m

Number of UEs 500

Mean data inter-arrival time 30 s

Mean burst size 7800 bytes

Speed 0.1–6 m/s

Pause duration 0–300 s

Walk duration 30–300 s

Path loss compensation factor α 0.8

Constant energy cost factor 15 mJ

Base power P0 −69 dBm

Maximum transmit power 24 dBm

Modulation order QAM16

Code rate 1/3

Carrier frequency 2 GHz

eNodeB antenna height 25 m

UE antenna height 1.5 m

Number of walls for indoor NLOS 1

Cooperation threshold γ1, γ2 0.5, 0.9

Cooperation path loss threshold 110 dB

Cooperation radius 30 m

A real currency system is simple to implement. How-
ever, user interaction is expected to prevent “surprised” large
phone bills. In crowded area (e.g. malls), there are plenty of
potential helpers (high supply). Therefore the service will be
cheaper. In remote area (e.g. parks), there are fewer potential
helpers (low supply). As a result the service will be more
expensive. The users, with some level of software automa-

tion, have to adjust their prices based on the area. We foresee
a tendency that the users will keep their battery high in order
to gain money. This change of behavior is interesting to study,
but it is out of the scope of this paper.

5 Performance analysis

We established in Sect. 3.2 that by using thresholding, we can
ensure that the cooperative sessions in BDS improve the over-
all network performance. In this section, we analyze this per-
formance improvement through simulation. Our simulation
setup is described in [14]. In particular, we use 3GPP reports
[37,38,43] to set the parameters of our traffic model. We use
WINNER II channel models [16] for our communication
links. We use urban macro-cell model (scenario C2) for UE-
eNodeB links and indoor office model (scenario A1) for UE-
UE links. We use a modified version of the random waypoint
model to simulate user mobility. The reception and idle cir-
cuit energy consumption is modeled as a constant factor, the
value of which is derived from [37]. In this work, we imple-
ment new functionalities to calculate battery utility to use in
cooperative decisions. The simulation parameters are shown
in Table 2. Our simulator source code is available at [18].

We compare the performance of the UEs when they do
and do not cooperate. When cooperation is used, we com-
pare the cooperative rules using probability of survival u1(·)
(category C1—Sect. 3.1.4), expected valued usage time u2(·)
(category C2), and battery level B (used in [14]) as thresh-
olds. The valued usage time as a fraction of the target usage
time, TV /T , of the UEs for those algorithms are shown in
Fig. 8. The probability of survival for all 4 algorithms can
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Fig. 8 Cumulative distribution functions of the valued usage time for 3 cooperative algorithms and no cooperation. The higher battery capacity is
14 % more than the lower battery capacity. a Lower battery capacity. b Higher battery capacity
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Table 3 Overall network gains in valued usage time

u1(·) =
P[TO > T ] (%)

u2(·) =
E[TV ]/T (%)

B (%)

Lower battery capacity 7 11 2

Higher battery capacity 7 10 1

Table 4 Overall network gains in probability of survival

u1(·) =
P[TO > T ] (%)

u2(·) =
E[TV ]/T (%)

B (%)

Lower battery capacity 6 6 4

Higher battery capacity 13 13 8

also be inferred from Fig. 8. The intersecting points of the
curves with the right-most vertical line, TV /T = 1, are the
probabilities of outage. In addition, we study the level of
cooperation, which leads to performance gain, as the amount
of resource in the network changes. In Fig. 8a, the users have
low battery capacity, resulting in a probability of outage of
0.5. In Fig. 8b, we increase the battery capacity of the users by
14%, which results in a lower probability of outage of 0.41.
We show the overall network gains in valued usage time as
a percentage in Table 3. The overall gains in probability of
survival are shown in Table 4.

We can clearly see that cooperation provides benefit over
no cooperation. We also see that using utility functions as
thresholds is better than using battery level. As we discussed
in Sect. 1, by factoring in the target usage, we can take advan-
tage of more cooperative opportunities than considering the
battery level alone. Between the two utility functions, u2(·)
performs better when we consider valued usage time. This is
consistent because it is designed for this performance met-
ric. Interestingly, it can be seen that u2(·) does not have any
significant performance loss compared to u1(·) for category
C1. Therefore we can conclude that the cooperative thresh-
olds perform well in limiting the impact on the helpers.

We can see from Table 3 that the overall network gains
in valued usage time (as a ratio) are similar for lower and
higher battery capacity cases. However the helpees in the
latter clearly benefit more, as can be seen from their CDF
curves. This is because when the overall network resource
increases, there are more helpers and fewer helpees. As a
result, each helpee receives a higher benefit. In addition, the
fraction of helpees brought out of outage also becomes more
significant. This leads to a larger increase in probability of
survival, as evident from Table 4.

We further quantify the level of cooperation by studying
the probabilities that a BDS request is accepted in the 2 cases
of varying battery capacity. These probabilities are shown in
Table 5. We can see that using utility functions creates at
least twice the amount of cooperation compared to using

Table 5 Probability that a BDS request is accepted

u1(·) =
P[TO > T ]

u2(·) =
E[TV ]/T

B

Lower battery capacity 0.46 0.57 0.25

Higher battery capacity 0.51 0.65 0.27

battery level B. In addition, u2(·) consistently leads to more
cooperation than u1(·). This explains the larger amount of
valued usage time created by using u2(·). It is also clear that
there are more chances for cooperation to take place when
the network resource is high.

6 Conclusions

In this paper we have shown that we can prolong the bat-
tery life of mobile devices by utilizing diversity of usage in
cellular networks. In particular, we developed a Proximity
Service (ProSe) for future LTE networks which allows UEs
to cooperatively relay traffic of one another. We named our
system the “Battery Deposit Service” (BDS). To utilize diver-
sity of usage, we must understand the value of battery for the
UEs. We proposed a general framework to study utility of
a resource. We applied this framework to BDS and showed
that by setting appropriate thresholds as cooperative rules,
the performance of the network is guaranteed to improve. It
is important to provide incentive for users to cooperate. We
discuss currency systems using virtual tokens and real money
to incentivize users.

We believe that diversity of usage is an important concept
and warrants further study. In particular, combining diver-
sity of usage with traditional types of diversity (time, fre-
quency, space) could yield more realistic results. Applying
our framework for studying utility to other systems is also
an interesting research direction. In particular, for BDS, we
do not need to consider the transfer graph. This graph can be
significant in the design of other systems.

Acknowledgments This material is based upon research partially
supported by the National Science Foundation (NSF) grants CNS1018
346 and CNS1035655.

Appendices

Proof of Lemma 1

Since the consumption process ζL(·) is non-negative, and
the utility function is monotonically non-decreasing in
B, the helper will never gain utility after a cooperative
session

123



22 T. Ta, J. S. Baras

u j (B j − ζL j (Tc), Tj −Tc, L j )

− u j (B j −ζL j (Tc)−ΔB ji , Tj −Tc, L j ) ≥ 0. (57)

From (4)

ui (Bi − ζLi (Tc) + ΔB ji − δ j i , Ti − Tc, Li )

− ui (Bi − ζLi (Tc), Ti − Tc, Li ) ≥ 0. (58)

(5) follows from property (1) of the utility function. ��

Expected valued usage time for Gaussian consumption
process

We want to calculate the expected valued usage time E[TV ]
for the case the consumption process ζL(t) is Gaussian. As
seen in (20), the time until outage TO is approximated as a
Gaussian random variable N (μ, σ 2). From (10)

E[TV ] = T −
∫ T

0
(T − τ)

1√
2πσ 2

e− (τ−μ)2

2σ2 dτ

= T − (T − μ)

∫ T

0

1√
2πσ 2

e− (τ−μ)2

2σ2 dτ

+
∫ T

0
(τ − μ)

1√
2πσ 2

e− (τ−μ)2

2σ2 dτ. (59)

Since TO ≥ 0, for the approximation TO ∼ N (μ, σ ) to
hold we need Φ(

−μ
σ

) ≈ 0. This is true for sufficiently large
μ. Consequently, we have

(T − μ)

∫ T

0

1√
2πσ 2

e− (τ−μ)2

2σ2 dτ ≈ (T − μ)Φ

(
T − μ

σ

)
.

(60)

To compute the last term of (59), we make the change of

variable u = (τ−μ)2

2σ 2 . We have (τ−μ)dτ = σ 2du. Therefore,

∫ T

0
(τ − μ)

1√
2πσ 2

e− (τ−μ)2

2σ2 dτ

=
∫ (T −μ)2

2σ2

μ2

2σ2

σ√
2π

e−udu

= σ√
2π

(
e− μ2

2σ2 − e− (T −μ)2

2σ2

)
. (61)

Finally (59) becomes

E[TV ] = T − (T − μ)Φ

(
T − μ

σ

)

+ σ√
2π

(
e− μ2

2σ2 − e− (T −μ)2

2σ2

)
. (62)
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