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Abstract— With the increasing popularity and ubiquity of
online social networks (SNS), many advertisers choose to post
their advertisements (Ads) within SNS. As a central problem
for Ad platforms, Ad allocation is to maximize its revenue
without overcharging advertisers, and it has received increas-
ing attention from both industry and academia. The offline
approach is a high dimensional integer programming problem
with constraints incorporating potential allocation requirements
from advertisers. In this paper we investigate the SNS Ad
allocation problem in a single target group setting, study the
connection of SNS advertising and hyperbolic geometry, and
propose an approximation using hyperbolic embedding, which
not only reduces the dimensionality of SNS Ad allocation
problem significantly, but also provides a general framework
for designing allocation strategies incorporating business rules.
We evaluate the optimality and efficiency of our approach.

I. INTRODUCTION
In modern social networks (SNS), users expose many

personal behaviors and connect to each other based on
real world relationships, which makes SNS ideal for target
advertising. Advertisers publish their product advertisements
within social networks via advertisement platforms (e.g.
Facebook), who allocate each advertisement (Ad) to users
impressions (i.e. when user is reading a page).

The advertising mechanism used by online Ad platforms,
including social network websites, is essentially large auc-
tions where advertisers place bids on user impressions with
specified daily or total budgets [1]. In the cost-per-mille
model, the advertisement platforms receive the commission
for one thousand user impressions displaying the Ad. The
Ad allocation problem is a central problem for online Ad
platforms: how to maximize revenue while respecting adver-
tisers bid and budget constraints.

Previous research is mainly focusing on search engine
settings, where the impression is ad-hoc and associated
with search queries. The Ad allocation problem has been
formulated as a bipartite matching problem, and several
algorithms have been used in practice [1].

Different from search engine setting, in the SNS setting,
instead of keywords, each advertiser bids for a target group
of users, where the impression of the user is by no means
of unit value, and is no longer ad-hoc. Consider a user
engaging with the Ad (e.g. “like”in Facebook), her friends
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in the ego-network can see the Ad and potentially engage
with it as well. Without considering the social influence
in the Ad allocation, one can easily exceed advertisers’
budgets and waste valuable user impressions. Furthermore,
the advertising platform needs to define and consider the
domain constraints of the Ad allocation to advertisers. For
example, there can be a constraint on fairness (i.e. users
allocated to advertisers have similar influence distributions),
or asking higher price for more influential users.

How to allocate the impressions of users to a set of
advertisers with bid constraints while considering the social
influence as well as domain constraints at the same time is
not well studied. In this paper, we focus on the homogeneous
setting, where all advertisers bid on the same group of users
(e.g. the whole set of SNS users).

A classic and intuitive approach to tackle the SNS Ad
allocation problem is to formulate it as an integer program-
ming (IP) problem, which has two disadvantages. First, the
decision variable representing the allocation profile is defined
in N|A|⇥|V | with A the advertiser set and V the user set,
which makes it less efficient in large-scale problems. Second,
the domain constraints, such as allocating all advertisers the
same user influence distribution, are hard to describe.

In this paper, we propose a novel formulation by mapping
the network to a hyperbolic plane [2] to improve the offline
running time for the problem (Sec. III). By doing so, we
are able to approximate the large scale user-wise calculations
with region-wise integrals, changing the discrete domain to a
continuous domain, which enables describing the allocation
strategy using a 2-D geometry shape and largely reduces
the dimensionality (in the order of O(V )). On the other
hand, region-wise Ad allocation is a convenient framework
for representing and visualizing domain constraints. We
further develop the optimization process by using impression
decomposition that divides the problem into a series of
smaller and simpler ones without introducing strong assump-
tions (Sec. IV-A), and discuss different allocation strategies
and their implications to domain constraints (Sec. IV-B).
We show the optimality and efficiency with experiments
(Sec. V). Finally in Sec. VI we summarize our work and
discuss future directions.

II. PRELIMINARIES
A. Advertisement Allocation in Social Networks

AdWords [1], [3], [4] proposed by Mehta et al. solves
Ad allocation problem in search engine setting in Google.
In its setting, the agent allocates impressions resulting from
search queries to advertisers, with each advertiser having a
budget constraint on the total spend. Each bidder puts in a
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set of bids for different keywords relevant to the Ad. Once an
advertiser’s budget is exhausted, it cannot be allocated any
more queries. The objective is to maximize the total amount
of money (budget) spent by the advertisers, in other words
to maximize the total efficiency of the matching. The offline
algorithm is formulated as an integer programming (IP) [3].
Due to incomplete information and problem size, AdWords is
solved as an online optimization problem in practice, which
has achieved near (1� 1

e ) optimality for the worst case [1],
[3], [4].

In SNS setting, users’ daily impression can be derived
from usage history, which makes offline optimization ap-
proachable. The offline optimization result hints how to
leverage social connections to improve the revenue, and
gives guidance in designing online optimization algorithms.
Consider the single target group setting, where the target
group is the same among advertisers, each advertiser a j 2
A = {a1, ...,a|A|} bids p j for all users in the social network.
The agent assigns user impressions to a j before exhausting
its budget b j. The allocation problem here is to maximize the
total amount of money (revenue) spent by advertisers. Com-
paring with AdWords, there are three major differences in
SNS setting. First, single user may have multiple impressions
that can be assigned to different Ads, comparing to the ad-
hoc query-Ad matching. Second, user engagement (for exam-
ple ’like’ a sponsored Ad) incurs influence over other users
connected in the network, due to the interconnection nature
of social networks. Third, there are domain constraints like
fairness within the system. Thus the optimization formulation
needs to be adjusted to accommodate the issue of multiple
impressions, social influence, and domain constraints.

The offline advertisement allocation problem in this setting
can be formulated as an integer programming (IP) problem:

max
S,I

|A|

Â
j=1

p j Â
ui2S j

Ii, jg(ui)

subject to p j Â
ui2S j

Ii, jg(ui) b j, 8a j 2 A (budget)

Â
ui2S j

Ii, j  Ii, 8ui 2 S (impression)

Ii, j 2 N+, 8ui 2 S,a j 2 A
(S, I) 2 RD (domain)

(1)

where a j 2 A is an Ad with bid p j, ui is a user (node) in
the network with impression Ii =Â|A|

j=1 Ii, j sum of impressions
assigned to all Ads. g(ui) is the function that describes the
social influence of ui. S and I are optimization variables,
where I = {Ii, j|ui 2 V,a j 2 A} is the impression allocation
strategy for users (nodes) in the network, with V the whole
user set. S = {S1, ...,S|A|} is the Ad allocation profile, with
S j = {ui|Ii, j > 0}✓V the set of users assigned to a j. RD is the
feasible set determined by domain constraints. All possible
solution (S, I) must be compatible with domain constraints.

We discuss fairness as an important example for domain
constraints, since it appears as a common requirement and
business model in SNS Ad platforms, however our method
can be extended to other constraints as well.

According to the differences of allocated user influence

demography among Ads, we classify the fairness related
domain constraints into three major categories:

1) Fairness model: User influences (degree) demography
among advertisers are required to be similar. Corre-
spondingly, the fairness constraint over the allocation
strategy S in the optimization problem can be analyti-
cally expressed as:

var(f(S)) h (2)
where f(S) = (f(S1), · · · ,f(S|A|)) is the fairness mea-

sure of user demography over the vector of optimal
allocation; greater f(·) corresponds to higher ratio of
influential users. Here we use variance to reflect the
demography difference, with h as the threshold.

2) Priority model: Contrary to the fairness model, the
priority model requires more influential users allocated
to advertisers of higher priority (e.g. with higher bids).
The allocation constraint for the priority model can be
described as:

f(S j) f(Sl) 8a j,al 2 A,r j  rl (3)
where r j is Ad a j’s priority, and greater value repre-

sents higher priority.
3) Partial Fairness model (Hybrid model): If we want

both fairness and priority to co-exist in advertisement
allocation (i.e. low bid advertiser is allowed to have
some higher influence users), then the allocation strat-
egy should consider both sides:

var(f(S)) 2 [h ,h ]

f(S j) f(Sl) 8a j,al 2 A,r j  rl
(4)

where h and h are the lower and upper bounds for
the variance.

B. Hyperbolic Embedding

Hyperbolic embedding was developed as a geometric
framework to study the structure and function of complex
networks by Kleinberg et. al [5] and Krioukov et. al [2]
respectively. With the assumption that hyperbolic geometry
underlies complex networks like the Internet and social
networks, it has been shown [2], [6] that heterogeneous
degree distributions and strong clustering in complex net-
works emerge naturally as simple reactions of the negative
curvature and metric property of the underlying hyperbolic
geometry. Meanwhile, a network would have an effective
hyperbolic geometry underneath if the network is scale-free
with heterogeneous degree distribution. Currently hyperbolic
embedding [7] has been applied in several areas, including
navigability analysis [8], routing algorithms design [9], [10]
and link prediction [6], [7] in complex networks.

By utilizing the relation between hyperbolic geometry and
properties of complex networks, Krioukov et. al [7] designed
HyperMap, a mapping scheme between hyperbolic geometry
and statistical mechanics of complex networks. For a social
network, it can be mapped into a 2-dimensional disc of
hyperbolic space H2 in 2-D Poincaré model, with each node
assigned a virtual coordinate. This mapping captures the
most important features of social network, which are small-
world effect, power-law degree distribution (scale-free effect)
and community structure [7], [11]. After mapping, both
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expected degree and node density are well-defined within
the network radius R 2 [0,1); expected degree E[deg(r)] =
pd(r) µ e�r/2, and node density pn(r) µ er, where r 2 [0,R]
is the distance towards the center of the Poincaré disc.

Due to well-defined degree distribution and node density,
this geometric framework can be applied in formulating the
optimization problem. It can capture the influence factor in
SNS and approximate sum over nodes by the integral over a
certain area, which could largely reduce the dimensionality
and simplify the optimization problem.

III. PROBLEM DEFINITION

As we mentioned in Sec. II, using hyperbolic embedding,
we can map the induced subgraph of bidding category users
to a Poincaré disc C into 2-D hyperbolic space. Under single
target group setting, we can use uniformly random angle
assignment instead, which runs as a linear time embedding
algorithm. In this disc, it has uniform node density and
exponentially distributed degree along the radius, which is
important to formulate the influence effect in the SNS. As
shown in Fig. 1, the base circle is the Poincaré disc.

(a) Ad Allocation on
Poincaré disc

(b) Influence in SNS

Fig. 1. Hyperbolic embedding based SNS Ad allocation

The Ad allocation problem, after the hyperbolic embed-
ding, is to assign each Ad a region of population according to
an allocation strategy to maximize the revenue. In Fig. 1(a),
the three circles represent the three sets of users assigned to
three different advertisers. In Fig. 1(b), we give an example
of assigning two advertisers using different geometric shape
on C, where the surface on top of C is the degree distribution
which describes the influence capability of the user at her
position. The allocation is shown as a column corresponding
to an area in the circle of the network in the 3-D plot. When
considering the impression, the actual profit that the Ad agent
can get from allocating the Ad at a user ui is proportional to

Ii · (1+w ·di) (5)
where Ii is the impression of the user ui, di is the degree

of the user. w is a constant presenting click through rate
(CTR), which is around 0.003 [12] and a property of the
Ad. Without loss of generality, we treat it as a constant.
The influence w ·di expresses the influence that shows how
many neighbors of ui are able to see the allocated Ad if
ui clicks it. Since the agent charges the same price for the
influence, it should be considered in the optimization. Note
that social influence should be related to multi-hop neighbors
[13], however in our application scenario, as the CTR is very
small, the influence over multi-hop neighbors is negligible.

With the influence definition, we give our formulation of
the SNS Ad allocation in single target group setting.

Problem 1: Optimal SNS Ad allocation problem: On a 2-
D Pincaré disc C with interior representing user set V , each
user ui 2V has a virtual position (ri, qi), degree di = e�ri/2

and impression Ii. Given a set of Ads A, each a j 2 A has a
budget b j, bidding price p j, we allocate an area S j (of certain
geometry shape) to a j. To maximize the revenue of the SNS
(Ad agent) is to solve the following optimization problem:

max
(S,I)

|A|

Â
j=1

p j f j(S, I) (volume)

s. t. p j f j(S, I) b j 8 j 2 {1, ..., |A|} (budget)
|A|

Â
j=1

si(S j, I) Ii, 8ui 2V (impression)

S 2 RD (domain constraint)

(6)

where f j(S, I) is the total impression (volume) assigned to
advertiser a j, and si(S j, I) is ui’s impression assigned to a j.
The allocation profile S lies in the feasible set RD determined
by the given fairness model.

The meta formulation is concretized if one defines an
allocation strategy (i.e. shape design) for S, which should be
able to cope with business rules. For example, fan-shaped S
guarantees the fairness model, while ring-shaped S represents
the priority model. Depending on the actual geometry shape
of S = (S1, ...,S|A|) chosen, the f j function varies.

The optimal SNS Ad allocation problem in such formula-
tion is non-trivial to solve. There are three major challenges:

a) Region Design: Different geometry shapes have various
practical impacts on fairness and complexity. Complex shape
will make the volume f j hard to integrate and loses the
advantages of the hyperbolic embedding, as in the worst case
we need discretize the region to calculate f j.

b) Uncorrelated Impressions: Although degree distribu-
tion is well-defined after hyperbolic embedding, the distri-
bution of impression is still unknown and uncorrelated with
degree. Without introducing strong assumptions, this will
result in sum over users’ impression in S j to get f j, which
significantly increases the dimensionality of the problem.

c) Region Overlapping: Users of multiple impressions
could be shown more than 1 Ads, which causes intersections
among allocated regions of different Ads, appearing as in the
Poincaré circle (e.g. in Fig. 1(a)). Region overlapping makes
the overall optimization problem more difficult.

To address these issues, we propose a novel unit-
impression based decomposition method (in Sec IV-A) which
preserves the advantages of hyperbolic embedding, mean-
while derives an optimal solution without strong assump-
tions. We further discuss shape design in Sec IV-B. As shown
later, some simple shapes such as Fan not only give scalable
formulation but also have sound practical meanings.

IV. ALGORITHM

A. Unit Impression Decomposition

In order to avoid the issues mentioned above, we introduce
the unit impression graph, based on which we discuss our
novel decomposition method called Unit Impression Decom-
position without introducing strong assumptions.
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Fig. 2. Illustration of unit impression graph transformation

Definition 1: Unit Impression Graph: For a SNS G(V,E),
where V represents users, E represents relationships between
user pairs, and each ui 2V has an impression Ii. G is called
a Unit Impression Graph, if 8ui 2V , Ii = 1.

The non-overlap constraint emerges naturally with unit
impression graphs. Given a SNS, we can induce a set of unit
impression graphs. For example, an SNS represented by the
first cell in Fig. 2 with impression vector I listed as the table
below can be decomposed into a series of Unit Impression
Graphs {G(k)|k = 1,2,3,4}. I(k) is the impression vector in
kth iteration. When k = 1, I(1) = I, and the first cell shows
the induced unit impression subgraph G(1). An optimization
is performed in G(1). Assuming all users are allocated, the
impression vector I(2) is updated by subtracting 1 from each
node. Since v4’s impression is 0 when k = 2, it is not included
in the graph G(2) shown in the second cell. In other words, if
a user has no impressions anymore, her friends’ clicked Ads
will not influence her any more that day, thus v1 is removed
in G(3). The decomposition ends at k = 4, as no one has
nonzero impression afterwards.

Algorithm 1 Multi-Stage Optimization with Unit Impression
Let K be the max impression of users max{Ii|ui 2V}
Construct first unit graph G(1) = (V (1),E(1)): V (1) =V,E(1) =E
Let remaining Ad A(1) = A, budget B(1) = B
Initial population P(1) = P
for k = 1 to K �1 do

Run optimization over G(k) = (V (k),E(k)) in Eq. 7
Reach optimal solution (S(k)⇤, I(k)⇤)
for each a j 2 A(k) update budget do

b(k+1)
j = b(k)j � p j f j(S

(k)⇤
j )

A(k+1) = A(k) \a j (remove a j in next round) if b(k+1)
j = 0

end for
for each ui 2V (k) update her impression do

I(k+1)
i = I(k)i �1

Remove ui and her edges from G(k+1) if I(k+1)
i = 0

end for
end for
for each advertiser a j 2 A do

Optimal solution S⇤j = [K
k=1S(k)⇤j

end for

With the Unit Impression Decomposition, we can solve the
original problem using a multi-stage optimization process,
as shown in Alg. 1. In each iteration we solve the sub-step
problem shown in Eq 7. In iteration k, users assigned to
Ads in last iteration will subtract theirs impression by 1. If
impression is 0, the user is removed from her neighbor’s ad-
jacency list and kth unit impression graph G(k) = (V (k),E(k)),
with population P(k) updated accordingly. For 8a j 2 A(k�1),

her budget b(k)j is updated as b(k�1)
j � p j f j(S

(k)⇤
j ). If b(k)j > 0,

a j will participate in the kth iteration. After mapping G(k)

onto Poincaré disc, the optimization (Eq. 7) over G(k) is
conducted. The whole process finishes when all Ads are
allocated or all budgets are used.

max
S(k)

|A(k)|

Â
j=1

p j f j(S(k), I) =
|A(k)|

Â
j=1

p j f j(S
(k)
j )

s. t. p j f j(S
(k)
j ) b(k)j 8 j 2 {1, ..., |A(k)|}

S(k)i \S(k)j = /0 ui 2V (k),8 j 2 {1, ..., |A(k)|}

[N
j=1 S(k)j  P(k)

(S, I) 2 RD

(7)

The maximum number of iterations is bounded by
max{Ii|i2V}, i.e. maximum user impression, which is finite.
If the optimization has n rounds, the optimal allocation of
Ad a j is an aggregation of assigned areas: [n

k=1S(k)⇤j .
The unit impression decomposition process largely sim-

plifies the optimization problem in each stage. The original
problem of solving multiple-location Ad allocation with
overlapping can be transformed to a multi-stage, single-
location Ad allocation problem without overlapping.

B. Allocation Strategies and Impacts
Choosing different geometry shapes defines different opti-

mal SNS Ad allocation problems. In this section, we analyze
the impact of different allocation strategies w.r.t. convexity,
efficiency, and fairness. We discuss Fan, Ring, Circle, and
general shapes. Because of the impression decomposition,
we only consider non-intersection case.

1) Fan: We propose the Fan shaped Ad allocation strat-
egy for the fairness model discussed in Sec. II, where each
advertiser is assigned a fan area, as shown in Fig. 3. The
allocation area S j for advertisement j is a fan (or pie) of angle
q j in the Poincaré circle of network. As expected degree
is exponentially distributed along the radius, thus at point
(x

0
,q 0

), it will be:
d (x0,q 0) = d (x0) = c · e�

x0
2 (8)

The corresponding volume function f j(S j) is:
f j(S j) = f j(q j) = a

Z R

0
et

Z q j

0
(1+w ·d (t)))dadt

= a ·q j(2wc(e
R
2 �1)+ eR �1) = a ·q j

(9)

with a = a(2wc(eR/2 �1)+ eR �1) a constant. Integrating
the unit impression decomposition and fan-shaped allocation
strategy, we re-formulate the optimization problem in Eq. 7:

max
Q

|A(k)|

Â
j=1

p ja(k)q (k)
j

s.t. p j f j(q
(k)
j ) b(k)j 8 j 2 {1,2, ..., |A(k)|}

q (k)
j � 0 8 j 2 {1,2, ..., |A(k)|}

|A(k)|

Â
j=1

q (k)
j  2p

(10)

Here S j 2RD is eliminated as Fan shape enforces the fairness
model. With impression decomposition and Fan shape Ad
allocation strategy, the optimization problem now is a series
of linear programming (LP) problems. Comparing with the
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(a) Fan allocation 2D (b) Fan allocation 3D
Fig. 3. Fan allocation strategy

(a) Ring allocation 2D (b) Ring allocation 3D
Fig. 4. Ring allocation strategy

IP formulation described in Eq. 1, the decision variable Q 2
[0,2p]|A| in our formulation only has |A| dimensions, which
is much lower than |A|⇥ |V |. This improvement is significant
as |A| is around one million, but |V | is at billion level [14].

The Fan shaped allocation strategy has many advantages:
a) Convexity: f j is a linear function of q j (Eq. 9), which

makes the optimization problem a linear programming (LP)
problem (Eq. 10) and much easier to solve than other shapes.

b) Efficiency: Fans of different Ads can be arranged tightly
close to each other and impressions can be completely
utilized in each round of optimization with enough budgets,
thus number of iterations are minimized. Furthermore, resid-
ual graphs can be generated independently, thus all iterations
can run in parallel with careful budget arrangement.

c) Fairness: The fairness model is well supported, since all
the areas allocated to Ads have similar demography due to
well-defined node density and expected degree distribution.

2) Ring: When considering the priority model by as-
signing more influential users to higher priority bidders, we
propose to use the Ring shaped allocation strategy (Fig. 4).
Let r j,s and r j,e be the starting and ending radius, and r j be
the priority value of a j, the expression for f j over the ring
[r j,s,r j,e) in Poincaré disc is a function of r j,s and r j,e:

f j(S j) = f j(r j,s,r j,e) = a
Z r j,e

r j,s

et
Z 2p

0
(1+w ·d (t)))dadt

= 2pa (2wc · e
r j,e

2 �2wc · e
r j,s

2 � er j,s + er j,e)

(11)

The optimization can be formulated as:

max
S(k)

|A(k)|

Â
j=1

p j f j(r
(k)
j,s ,r

(k)
j,e )

s.t. p j f j(r
(k)
j,s ,r

(k)
j,e ) b(k)j 8 j 2 {1,2, ..., |A(k)|}

0  r(k)j,s  r(k)j,e  R 8 j 2 {1,2, ..., |A(k)|}

r(k)j,e  r(k)l,s 8rl  r j

(12)

where the last constraint abstracts the priority model, that
Ads of higher priority are arranged in inner area. Decision
variable ((r1,s,r1,e), · · · ,(r|A|,s,r|A|,e)) 2 R2|A|.

The features of the Ring shaped allocation strategy are:
a) Convexity: As we can see in Eq. 11, the volume function

f j(r j,s,r j,e) is nonlinear in r j,e and r j,s.

(a) Circle allocation 2D (b) Circle allocation 3D
Fig. 5. Circle Ad allocation strategy

b) Efficiency: Similar to fan-shape, rings of different Ads
can be arranged tightly and impressions can be completely
utilized in each round of optimization. Sub-step iterations
are minimized and parallel iteration could be supported.

c) Fairness: Ring shaped allocation strategy represents
priority model, in the sense that Ads of different priorities
have different demographical population.

3) Circle: Another natural idea to allocate Ads within
hyperbolic embedded SNS is to use circle as the allocation
region, as shown in Fig. 5. It’s a potential solution to
incorporate the partial fairness model mentioned in Sec. II.
The Circle allocation strategy for a j can be represented using
center position and radius (x j,q j,r j). f j(S j) therefore is:

f j(S j) = f j(x j,q j,r j) = a
Z r j

0
et

Z 2p

0
(1+w ·d (dis(x j,t,a)))dadt

(13)
where dis(x j,t,a) =

p
x j2 + t2 �2x jtcos(a) is the dis-

tance between a point (t,a) from x j and the disc center.
Using such allocation strategy, the kth round of the se-

quential optimization problem can be written as

max
x(k),q (k),r(k)

|A|

Â
j=1

f j(x
(k)
j ,q (k)

j ,r(k)j )

s.t. f j(x
(k)
j ,q (k)

j ,r(k)j ) b(k)j , 8 j 2 {1,2, ..., |A(k)|}

0  x(k)j , r(k)j  R(k), 8 j 2 {1,2, ..., |A(k)|}

x(k)j + r(k)j  R(k), 8 j 2 {1,2, ..., |A(k)|}

(x(k)l )2 +(x(k)j )2 �2x(k)l x(k)j cos(q (k)
l �q (k)

j )

� (r(k)l + r(k)j )2 8 j, l 2 {1,2, ..., |A(k)|}

(14)

Features corresponding to Circle allocation strategy are:
a) Convexity: The f j (Eq. (13)) is not convex in q (k)

j .
b) Efficiency: Impressions cannot be fully utilized in each

iterations thus more iterations are needed.
c) Fairness: The Circle allocation reflects the partial

fairness model, since circles of similar sizes and centers
have similar influence demography, while circles at different
positions with different radii have different demography. It
can be tuned by adding size and position constraints.

4) General Allocation Strategies: As we showed earlier,
shape design is a powerful and intuitive way to represent
domain constraints, such as fairness. It’s worth discussing the
general allocation strategy to incorporate with other domain
constraints and show the limitation of our method.

a) Convexity: Convex problems have prominent advan-
tages in solvability, reliability and efficiency. To have con-
vexity, we can design shapes of convex volumes about radial
coordinate r and angular coordinate q . Non-convex volume
require to apply numerical or combinatorial methods.
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TABLE I
OPTIMAL VALUE OF DIFFERENT APPROACHES

Network size 1,000 10,000 100,000

Revenue

Baseline IP 108 1157 11703

Baseline IP (Priority) 108 1157 11700

Baseline IP (fairness) 108 1157 11703

Fan shape allocation 108 1156 11669

TABLE II
ALGORITHM EFFICIENCY OF DIFFERENT APPROACHES

Network size 1,000 10,000 100,000

Runtime (sec.)
IP (fairness) 19.5157 132.9285 500.2050

Fan shape allocation 0.1092 0.0763 0.0780

b) Efficiency: Another important factor of runtime is the
number of unit impression graphs. The less unallocated area
in one iteration, the fewer iterations needed. Parallel execu-
tion could be supported with careful budget arrangement if
no residual space left in each iteration.

c) Domain constraint: Fairness constraints are well-
defined by user influence demography, which allows us to
use fan, ring and circle to specify different fairness models.
Other business rules that have well-defined metrics over the
graph have the potential to apply in our framework.

V. EXPERIMENTS

We conducted experiments to show advantages of our for-
mulation over the original IP formulation. We implemented
the hyperbolic embedding algorithm mentioned in Sec. II
and the unit graph impression optimization routine in Alg. 1.
To model the fairness constraints in the IP formulation, we
added the following constraints as RD in Eq. 1:

1) Fairness model: We define the linear constraint as:

|
Âui2S j di

|S j|
�dV | h , 8 j 2 {1, ..., |A|} (15)

where di is the degree of ui, dV is the average degree of
the whole network graph, h is the threshold to measure
the deviation of the user influence demography.

2) Priority model: We define the linear constraint as:
Â

ui2S j

di  Â
ui2Sl

di, 8 j, l 2 {1, ..., |A|}, pl  p j (16)

where the constraint enforces advertisers with higher
bid have the users with higher influence in the model.

3) Other models can formulate constraints accordingly.
We used the Stanford Network Analysis Platform (SNAP)

[15] to generate networks of power-law degree distribution
with a = 2.2. We generated graphs of size 1,000, 10,000
and 100,000 of which the impressions following a Poisson
distribution with mean l = 10. We fixed the number of Ads
to be 10, each a j bids p j ⇠N(0.1, 0.01). For 1,000, 10,000
and 100,000 graphs, we generated the budgets of adver-
tisers from normal distributions N(15, 25), N(150, 2500),
N(1,500, 2.5⇥ 105) accordingly. Both baseline IP and our
novel approach are based on the same impression decom-
position procedure. Without loss of generality, we compare
both models via the optimization over the first graph G(1).
For the optimization, we used IBM ILOG CPLEX 12.6 for
both the baseline IP and Fan shape LP formulation.

For optimality, we compared the optimal values of our
approach against the baseline IP under various network
sizes. As shown in Table I, we notice that (1) different
fairness constraints lead to different optimal solutions, but
they reach similar optimal values. (2) the approximation
approach has impressive performance in approaching the
optimal value. In terms of efficiency, we listed the runtime
for our Fan shape allocation and the baseline IP formulation
under fairness model in Table II. Our approach is 2-6 orders
of magnitudes faster than IP whose runtime grows linearly
with size of the graph, while our approach has constant
runtime when number of Ads is fixed. Our algorithm has
prominent advantage in efficiency while close to the optimal
value.

VI. CONCLUSION
In this paper, we developed a novel formulation of the

SNS Ad allocation problem via hyperbolic embedding. We
proposed an impression decomposition method to make it
highly scalable and tractable. We also discussed fairness
constraints and corresponding allocation strategies. Our for-
mulation successfully reduces the dimensionality and com-
plexity of the optimization problem while respecting fairness
as domain constraint, and enables application in large-scale
social networks, without introducing strong assumptions.

We will extend our work to incorporate more real-world
domain constraints as well as multiple target groups. The
possibility of parallel execution of different iterations, and
the feasibility of our approach in online setting would be
significant parts of our future work as well.
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