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Abstract: We consider a second order non-linear consensus (flocking) network of a finite population of autonomous agents and
prove that the long term behavior of its solution is towards a common value while the flock remains connected. We elevate the
analysis to a collision avoidance type flocking after taking into consideration repelling forces between agents.

Key Words: Second order consensus, asymmetric coupling weights, flocking solutions, collision avoidance

1 Introduction

Dynamics of collectives is a perpetually interesting field

of the applied science. Autonomous agents that form global

patterns out of local interactions is a concept generally ac-

cepted to model living entities that cooperate towards a com-

mon goal [1, 15]. In mathematical modeling this problem

has been considered with the introduction and study of dis-

tributed asymptotic consensus algorithms the literature of

which is enormous. As only a brief introduction to the sub-

ject the interested reader is referred to [4, 5, 7, 9, 10, 12].

Recent results in the field of linear consensus dynamical

systems [13, 14] shed light to some of the few remaining

unexplored aspects of these algorithms and have motivated

this technical paper in which we introduce and discuss the

dynamics of two closely related non-linear collective algo-

rithms regarding them as new members of the large family

of flocking networks.

1.1 Related literature & contribution
Tne flocking networks are well-known in the literature

[4, 5, 12, 15]. The standard framework consists of a finite

number N of birds which exchange information according

to the following scheme:

i ∈ {1, . . . , N} :

{
ẋi = ui

u̇i =
∑

j aij(x)
(
uj − ui

) (0)

The main objective is to derive initial conditions so that

limt→∞ |ui(t) − k| = 0, for some k ∈ R, while at the

same time supt |xij(t)| := |xi(t) − xj(t)| < ∞. This is

the very well-known asymptotic flocking definition intro-

duced in [4, 5]. With the exception of [12], the rigorous

investigation of the long-term behavior of the solutions of

these models ask for symmetrical communication weights

(i.e. aij = aji) so that tools from Algebraic Graph Theory

apply. As symmetry is generally accepted to be an unrealis-

tic mathematical abstraction [1], the problem remained open

for networks of type (0) until a very interesting approach was

discussed in [12]. The main defects of that work are that it

required increased connectivity as well as smallness of the

communication weights. In [13, 14] the authors followed a

different implementation of fundamental concepts of Non-

Negative matrix theory [6] and they managed to extend the

convergence results so as to include asymmetric communi-
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cations while at the same time they substantially relaxed the

connectivity conditions to the mildest possible improving the

results of [12]. In the case of collision avoidance flocking it

is additionally asked that |xi(t)−xj(t)| > d, t ≥ t0 for some

fixed d > 0. To the best of our knowledge, there is only one

framework along this direction with dynamics of the type (0)

and it is presented in [3]. The analysis relies in the symme-

try of both the weights and the repelling forces that act on

the dynamics preventing the agents from approaching one

another.

In the spirit of [13, 14], the present technical paper con-

tinues the investigation by increasing the complexity of 0

by two levels. The first system we introduce is a second

order consensus (flocking) algorithm with state-dependent

coupling forces and non-linear observations of the agents’

states. The second system is an elevation of the first and con-

siders the case of collision avoidance. We provide conditions

under which the agents achieve asymptotic speed alignments

without collision between them whereas the communication

is not vanished since the flock keeps communicating and ex-

changing information (i.e. it remains connected).

The core of the mathematical arguments deviate from the

conventional methods used in the aforementioned literature.

Initially we follow the spirit of [13] but in the second part

we, employ a novel stability in variation argument and prove

asymptotic convergence of the collision avoiding model by

means of fixed point theory. We produce a number of new

conditions between the initial values of the problem and its

parameters which ensure exponential convergence to a com-

mon value.

1.2 Organization
This paper is structured as follows. In § 2 basic notations,

definitions and related underlying theorems are stated. In § 3

we state the two models, we describe the sets of Assumptions

that are to be used in the analysis to follow as well as the sta-

bility definitions of interest. In addition, we provide a series

of instrumental preliminary results on which the proofs of

the main two theorems rely. In § 4 we state and prove the

two results of this work in the form of theorems whereas in

§ 5 we conduct a discussion about the implications of the

derived results, the advantages and disadvantages of the fol-

lowed methodology and we conclude with a number of gen-

eralizations for future work.
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2 Notations & Definitions

Henceforth N < ∞ denotes the number of autonomous

agents and [N ] = {1, . . . , N}. Each agent i ∈ [N ] is defined

through the pair of position and velocity (xi, ui) or (zi, vi)
for each model respectively so that both (x,u) and (z,v) ∈
R

N × R
N . By | · | we denote any appropriate norm on R

N

and for any y ∈ R
N its spread is defined as

S(y) = max
i

yi −min
i

yi.

We remark that S is always non-negative and satisfies the tri-

angular inequality but it is only a pseudo-norm on R
N since

S(y) = 0 if and only if y1 = · · · = yN . By � we under-

stand the column vector of all ones in R
N . Occasionally for

y ∈ R
N we will use the notation yij = yi − yj . As the anal-

ysis will include derivatives of S(y) the non-smoothness of

the spread suggests the use of generalized type of derivatives.

Hence, all the time-derivatives d
dt are assumed to be right-

Dini derivatives. Furthermore the gradient ∇S(y) denotes a

row vector with 1 at the place of the maximum element of

y, −1 at the place of the minimum element of y and zero

elsewhere.

A square N × N matrix P = [pij ] is said to be m-

stochastic, if pij ≥ 0 for all i, j and
∑

i pij ≡ m.

By Cr(I, B) we denote the space of functions defined on

I and taking values on B with r ≥ 0 continuous derivatives.

By B we understand the space of continuous, bounded func-

tions defined on R and taking values on R. This space is

endowed with the supremum norm so that for any φ ∈ B,

supt∈R
|φ(t)| < ∞. It is well known that (B, | · |) defines

a metric space and any subset M of B is compact if each

sequence {φn} ∈ M has a sub-sequence with limit in M.

Also a set M is convex if for any φ1, φ2 ∈ M it follows that

αφ1 + (1− α)φ2 ∈ M for any α ∈ [0, 1]. The following re-

sult is known in the literature as Schauder’s first fixed point

theorem [2]:

Theorem 2.1 Let M be a non-empty compact convex subset
of a Banach space and let P : M → M be continuous. Then
P has a fixed point in M.

The stability definition of interest is this of asymptotic

flocking introduced in [5]. Let (y,w) be a solution of ei-

ther of the flocking systems to be introduced in § 3 so that it

exists in the large.

Definition 2.2 We say that the solution (y,w) exhibits
asymptotic flocking if

S(w(t)) → 0 as t → ∞ & sup
t

S(y(t)) < ∞

The objective of the agents is to align their speed fast enough

so that their distances remain finite. It should be noted here

that the nature of the schemes that are to be discussed favor

a convergence to a common fixed value. This means that the

first part of the Def. 2.2 translates to

w(t) → �k

for some k ∈ R. It will be remarked that the proposed algo-

rithms sustain only such types of solutions .

3 The Models

In this section, we will state the evolution equations and

the accompanying hypotheses together with a couple of in-

troductory remarks. Additionally, we prove a number of pre-

liminary results to be used in § 4.

3.1 The primary model
The first scheme to be studied consists of N autonomous

agents each of which is defined through the pair (xi, ui). The

velocity coordination is achieved through the set of equa-

tions

i ∈ [N ] :

{
ẋi = ui

u̇i =
∑

j aij(x)
(
gij(uj)− gij(ui)

) (1)

with initial data x0 =
(
x1(t0), . . . , xN (t0)

)
, u0 =(

u1(t0), . . . , uN (t0)
)
. In vector form we will use the rep-

resentation
d

dt

(
x
u

)
=

(
u

C(x,u)

)
(1)

The system (1) is a non-linear alternative of flocking net-

works introduced in the literature, [4, 12, 13]. Recent re-

sults in this type of models allow for further generalizations

[13, 14]: In particular, (1) does not ask for a linear type of av-

eraging of states between agents any more. Here each agent

has a different, essentially non-linear, perception of the ve-

locity it receives after interacting with the rest of the popula-

tion. Similar first order consensus networks were studied in

[11] under unreasonably strong assumptions. The conditions

we impose on our model are:

Assumption 3.1 ∀i 	= j ∈ [N ], aij(t,y) : (RN → [0, a]
integrable, for some a < ∞ such that

aij(t,y) ≥ f
(
S(y)

)
for some integrable, non-increasing function f with the
property that limz→∞ f(z) = 0.

Assumption 3.2 ∀i 	= j ∈ [N ] and fixed W ⊂ R there exist
numbers 0 < c ≤ c that depend on W such that:

c ≤ gij(x)− gij(y)

x− y
≤ c, ∀x, y ∈ W

It is easy to understand that the larger the spread of the flock

is, the weaker the coupling communication rate becomes.

This is the actual difficulty in these models as the challenge

is to derive sufficient conditions for flocking in the sense of

Def. 2.2. We will see that this condition will be a formula

that combines the initial data and the function f . Also, for

the sake of simplicity, we effectively assumed the commu-

nication graph to be fully connected. This strong connec-

tivity condition may be relaxed along the lines explained in

[13, 14].

3.2 The collision free model
The flocking structure with colision avoidance is de-

scribed via the following set of equations

i ∈ [N ] :

⎧⎪⎨
⎪⎩
żi = vi

v̇i =
∑

j aij(t, z)
(
gij(vj)− gij(vi)

)
+

+V (|zij |2)J(zij)
∣∣gij(vj)− gij(vi)

∣∣3/2 (2)
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with initial data z0 =
(
z1(t0), . . . , zN (t0)

)
, v0 =(

v1(t0), . . . , vN (t0)
)

and J(zij) = sgn(zij)
√|zij |. In vec-

tor form

d

dt

(
z
v

)
=

(
v

C(x,v) +R(x,v)

)
(2)

with R standing for the repelling forces term. For the anal-

ysis of this system, together with Assumption 3.1 we shall

need a slightly harder assumption on the gij functions.

Assumption 3.3 ∀i 	= j ∈ [N ] it holds that gij ∈ C1(R,R)
such that g′ij ∈ [c, c] for some 0 < c ≤ c < ∞.

The extra term in (2) is the repelling force. Under the follow-

ing condition the agents’ positions are to remain away from

each other by at least a prescribed distance:

Assumption 3.4 There exists d > 0 such that the functions
V ∈ C0((d,∞],R+) and for all d′ > d:∫ d′

d

V 2(s)ds = ∞ &

∫ ∞

d′
V 2(s)ds < ∞ (3)

The purpose is for the agents not to approach each other

a distance smaller than d. Examples of such repelling func-

tions are provided in [3].

3.3 Preliminaries
The first technical proposition is an adaptation of a well

known result on the effect of m-stochastic matrices [6].

Proposition 3.5 Let P = [p
ij
] and P = [pij ] be two m-

stochastic matrices and z,y ∈ R
N . If Py ≤ z ≤ Py, then

S(z) ≤ (
m− min

h,h′∈[N ]

∑
j

min{p
hj
, ph′j}

)
S(y).

Proof For fixed h, h′ ∈ [N ], zh − zh′ ≤ ∑
j pjyj with

pj := phj − p
h′j

. Let j′,j′′ denote the indices in [N ] such

that pj′ > 0 and pj′′ < 0 and note that
∑

j pj ≡ 0. Set 0 <
θ :=

∑
j′ pj′ =

∑
j′ |pj′ | = −∑

j′′ pj′′ =
∑

j′′ |pj′′ | =
1
2

∑
j |pj | = 1

2

∑
j |pj | = 1

2

∑
j |ph′j − p

hj
| and see that for

appropriate h, h′ ∈ [N ]

S(z) = zh−zh′ = θ

(∑
j′ pj′yj′∑
j′ pj′

−
∑

j′′ pj′′yj′′∑
j′′ pj′′

)
≤ θS(y)

and the expression for θ = m −
minh,h′∈[N ]

∑
j min{p

hj
, ph′j} can be obtained in view of

the identity |α − β| = α + β − 2min{α, β} and the fact

that P and P are m-stochastic.

Henceforth, we set ρ := minh,h′∈[N ]

∑
j min{p

hj
, ph′j}.

3.3.1 Bounds on the solutions

We will briefly discuss two important remarks on the so-

lutions (x,u) and (z,v) of (1) and (2) respectively. Based

on Assumption 3.2 we have a valuable result regarding the

bounds of u :

Lemma 3.6 Let the Assumptions 3.1 and 3.2 hold. Then the
solution (x,u) of (1) satisfies

min
j∈[N ]

uj(t0) ≤ ui(t) ≤ max
j∈[N ]

uj(t0), i ∈ [N ]

Proof Let t∗ ≥ t0 be the first time that for some i ∈ [N ],
ui is to escape the aforementioned interval, say to the right.

Then it must hold ui(t
∗) = maxj∈[N ] uj(t0) and u̇i(t

∗) >
0. This set of conditions is incompatible with the dynamics

of (1) in view of Assumption 3.2. Hence, the solution does

not escape the interval to the right. A similar argument can

be made for the lower bound minj∈[N ] uj(t0) and the proof

is complete.

The above Lemma answers in the affirmative on the exis-

tence of (x,u) in the large but it seizes to hold for (2). This

is of course not the only issue regarding the collision free

model. The imposed discontinuity with respect to z sets

questions not only on the existence of a solution for all times

(a prerequisite of statibility) but also on its uniqueness. As-

sumption 3.4 reassures us that not only solutions are unique

but, wherever they exist, appropriate agents’ initial positions

ensure collision-less evolution.

Lemma 3.7 Let the Assumptions 3.1, 3.3 and 3.4 to hold.
Consider the solution (z,v) of (2) to exist on the interval
[t0, T ). Then mini�=j |zi(t0) − zj(t0)| > d implies that the
solution is unique with |zi(t) − zj(t)| > d for t ∈ [t0, T )
and i 	= j.

Proof By Assumption 3.4 V (s) → +∞ as s ↓ d. The ini-

tial position configuration implies the existence of an enu-

meration i1, i2, . . . , iN such that {zil(t0)}l≥1 are in strictly

ascending order with distance at least d. Let zil(t0) <
zil+1

(t0). For the J(zilil+1
) to change sign we must nec-

essarily have a collision, i.e. {tn} ∈ [t0, T ) such that

zil+1
(tn) − zil(tn) ↓ d as n → ∞. This case implies, in

turn, the following scenario: there exists ε > 0 arbitrarily

small such that

d− ε < zil+1
(t)− zil(t) < d, t ∈ (t1, t2)

for some t0 ≤ t1 < t2 < T such that u :=
infs∈(t1,t2) |uil+1

(s) − uil(s)| > 0 (as agent il approaches

il+1 from below). We choose ε > 0 so small so that

V ≥ Ξ + (N − 1)c sups∈(t1,t2) S(u(s))√
d c u3/2

where Ξ =
d−ε−zil+1il

(t1)−(t2−t1)uil+1il
(t1)

(t2−t1)
. This gives

an estimate on u̇il+1il > Ξ throughout (t1, t2) and a di-

rect calculation yields zil+1il(t2) = zil+1il(t1) + (t2 −
t1)vil+1il(t1) +

∫ t2
t1

v̇il+1il(s) ds > d − ε which contradicts

the condition in (3.3.1), concluding the proof.

The aftermath of Lemma 3.7 is that the sign function de-

pends only on the initial configuration and plays no other

role throughout the solution of (2). This means that (z,v) is

uniquely determined in the interval of its existence which is,

however, yet to be proved that it extends for all t ≥ t0. As a

final remark we state without proof that if either u or v are

bounded and satisfy S
(
u(t)

)
, S

(
v(t)

) → 0 as t → ∞, then

it holds that u(t),v(t) converge to a common value. Either

of the forward limit sets are non-empty and each point υ of

which necessarily satisfies S(υ) = 0 so any solution starting

from this set will remain constant.
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4 Main Results

This section states and proves the pair of theorems that

consist the contribution of this paper. The first is a conver-

gence result of (1) and the second is a convergennce result

of (2).

4.1 Convergence of the primary model
In the proof of the following theorem the argument of [5]

was adapted.

Theorem 4.1 Let the Assumptions 3.1 and 3.2 hold. The so-
lution (x,u) of (1) exhibits asymptotic flocking if the initial
conditions satisfy:

S(u0) < Nc(u0)

∫ ∞

S(x0)

f(s) ds

for c(u0) in the sense of Assumption 3.2.

Proof At first, the initial velocity u0 defines the constants c
and c from Assumption 3.2 and Lemma 3.6. Next it can be

easily shown that throughout the solution (x,u)∑
j

bij(t)
(
uj(t)−ui(t)

) ≤ u̇i(t) ≤
∑
j

bij(t)
(
uj(t)−ui(t)

)
where:

1. bij(t) =

{
caij(t,x(t)), if uj(t) ≥ ui(t)

caij(t,x(t)), if uj(t) < ui(t)

2. bij(t) =

{
caij(t,x(t)), if uj(t) ≥ ui(t)

caij(t,x(t)), if uj(t) < ui(t)

for all i ∈ [N ]. Next we pick m > (N − 1 + c)a such that

P (t)u(t) ≤ e−mt d

dt

(
emtu(t)

) ≤ P (t)u(t) (4)

where P (t) = [pij(t)] with pij(t) = bij(t) and pii(t) =(
m −∑

j bij(t)
)

and similar for P (t). We are interested in

obtaining an upper bound for d
dtS(u):

d

dt
S(u) =

d

dt

(
e−mtS

(
emtu

))

= −mS(u) + e−mt d

dt
S(emtu)

≤ −mS(u) + S

(
e−mt d

dt
(emtu)

)
≤ −mS(u) +

(
m− ρ(t)

)
S(u) = −ρ(t)S(u)

in view of Proposition 3.5. From the choice of m a di-

rect calculation of ρ(t) yields the lower bound ρ(t) >
Ncf

(
S(x(t))

)
so that

d

dt
S
(
u(t)

) ≤ −Ncf
(
S(x(t))

)
S
(
u(t)

)
(5)

If supt≥t0 S
(
(t)

)
< S(x0) then from (5) we have

d

dt
S
(
u(t)

) ≤ −Ncf
(
S(x0)

)
S
(
u(t)

)
(6)

i.e. exponential fast speed alignment and therefore flocking.

Otherwise, consider the functional

W (x,u) = S(u) +Nc

∫ S(x)

0

f(s) ds

the time-derivative of which along the solution (x,u) yields
d
dtW ≤ 0 in view of (5). Then from the imposed condition

on the initial data there is r∗ such that

S(u0) = Nc

∫ r∗

S(x0)

f(s) ds (7)

and since W (t) ≤ W (t0) for t ≥ t0 we have

S
(
u(t)

)
+Nc

∫ S(x(t))

0

f(s) ds ≤ S(u0)+Nc

∫ S(x0)

0

f(s) ds

and substituting from (7) we have that

0 ≤ S
(
u(t)

)
= Nc

(∫ r∗

S(x0)

+

∫ S(x0)

0

−
∫ S(x(t))

0

f(s) ds

)

from which it is deduced that
∫ r∗

S(x(t))
f(s) ds > 0 and this

implies that S(x(t)) ≤ r∗ a valuable upper bound for the

range of the flock so that again from (5)

d

dt
S
(
u(t)

) ≤ −Ncf(r∗)S
(
u(t)

)
and that exponential speed alignment implies

S(x(t)) ≤ S(x0) +
S(u0)

Ncf(r∗)
< ∞

and the proof is complete.

4.2 Convergence of the collision-free model
In this section, we study the asymptotic behavior of the

solution (z,v). It is reminded that the preliminary analysis

does not shed light upon the existence of the solution in the

large. The first step is to express the solution using a stabil-

ity in variation technique. Then we create a fixed point the-

ory argument by applying Theorem 2.1 in an appropriately

defined subset of B. In this subset, sufficient conditions for

both existence in the large and stability according to Def. 2.2

are established. Based on Theorem 4.1, we will express the

solution v in terms of u in the Lyapunov like form of S(v).
Our approach closely follows the methodologies presented

in [8]. Then we will make a fixed point theory argument via

Schauder’s first fixed point theorem. We shall silently ne-

glect the positions states x(t) or z(t) and this is due to the

fact that, given the initial positions, they both depend on u
and v, respectively, hence they are effectively functions of

u and v. Contrary to the presentation followed for Theorem

4.1 here the proof precedes the statements of the result.

Fix t0 ≤ s ≤ t and consider the solution u
(
t, s,v(s)

)
,

that is the solution x,u that begins at s with initial data

x0,v(s). Then differentiating l(s) := S
(
u(t, s,v(s))

)
with

respect to s we obtain

d

ds
l(s) = ∇S

[
∂u(t, s,v(s))

∂s
+

∂u(t, s,v(s))

∂ξ
v̇(s)

]

where ∇S = ∇S
(
u(t, s,v(s))

)
is a vector full of zeros

apart from 1 at the spot of the maximum and -1 at the spot

of the minimum of the vector u(t, s,v(s)), ∂u(t,s,v(s))
∂ξ is the

principal matrix solution of the linear system

ẏ = A(t)y (8)
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with

A(t) =

⎡
⎢⎢⎢⎣
−∑

j a1jg
′
1j · · · a1Ng′1N

a21g
′
21 · · · a2Ng′2N

... · · · ...

aN1g
′
N1 · · · −∑

j aNjg
′
Nj

⎤
⎥⎥⎥⎦

evaluated at the solution (x(t),u(t)) of (1) starting at s with

initial conditions v(s) and z(s) = z0 +
∫ s

t0
v(q) dq. Since

∂u(t, s,v(s))

∂s
= −∂u(t, s,v(s))

∂ξ
C
(
s,v(s)

)
then for v(s) to satisfy (2) we conclude that

d

ds
l(s) = ∇S

∂u(t, s,v(s))

∂ξ
R(z(s),v(s))

so integrating from t0 to t, we get the following expression

for the solution v of (2)

S
(
v(t, t0,v

0)
)
= S

(
u(t, t0,v

0)
)
+

+

∫ t

t0

∇S
∂u

∂ξ

(
t, s,v(s)

)
R
(
z(s),v(s)

)
ds

(9)

Now it is important to understand how the stability of ∂u
∂ξ

actually depends effectively on the initial data z(s) and v(s).
This takes us back to Theorem 4.1 as (8) is a special case

of (1). Indeed, if

S(v(s)) < Nc

∫ ∞

S(z(s))

f(q) dq (10)

then the principal matrix solution of linearized system satis-

fies ∣∣∣∣∂u(t, s,v(s))∂ξ
− ��

T

∣∣∣∣ = e−ψ(t−s) (11)

for ψ = Nf(r̃)c > 0, r̃ : S(v(s)) =
∫ r̃

S(z(s))
f(s) ds. Let us

focus on the integral
∫ t

t0
∇S ∂u

∂ξ

(
t, s,v(s)

)
R
(
z(s),v(s)

)
ds

and the effect of ∇S on the product which makes it equal

to
∫ t

t0
∇S

[
∂u
∂ξ

(
t, s,v(s)

)−��T
]
R
(
x(s),v(s)

)
ds and this

is upper bounded by

∫ t

t0

e−ψ(t−s)S
(
R(z(s),v(s))

)
ds ≤

∫ t

t0

e−ψ(t−s)K max
i,j∈[N ]

V (|zij |2)
√
|zij ||vij |3/2 ds ≤

K

√∫ t

t0

V 2(|zij |2)|zij ||vij | ds ·
√∫ t

t0

e−2ψ(t−s)|vij |2 ds

where K = 2(N − 1)c3/2 and after using the Cauchy-

Schwarz inequality for integrals. Next we need a bound on∫ t

t0
V 2(|zij |2)|zij ||vij |ds and this is obtained as follows: As-

sume that for any t close enough to t0, the solution (z,v)
exists. From Lemma 3.7 we know that zij does not change

sign. Pick i, j ∈ [N ] so that zi(s) > zj(s) for s ∈ [t0, t]. It

is easy to see that the upper bound of the integral is obtained

from the worst case scenario, that of zi(s) − zj(s) ↓ d i.e.

vij(s) < 0. Then we read∫ t

t0

V 2(|zij |2)|zij ||vij |ds = −
∫ t

t0

V 2(|zij |2)zijvijds =
∫ z2

ij(t0)

z2
ij(t)

V 2(s) ds ≤
∫ ∞

ω(v)

V 2(s) ds

where ω(v) = infs≥t0 mini,j∈[N ] z
2
ij(s) where the depen-

dence on v is to remind that z is defined through v. We end

up with the following estimate

S(v(t)) ≤ S(u(t)) +K

√∫ ∞

ω(v)

V 2(s) ds×

×
√∫ t

t0

e−2ψ(v)(t−s)S2(v(s)) ds

(12)

At this point we observe that a simple stability in variation

argument does not work. exactly because we need a-priori

estimates on the convergence rate of v to approximate ψ and

ω. This can be achieved with the very special type of analysis

to follow.

4.2.1 A fixed point argument

Given the initial data v0, z0 and take for brevity d0 :=
mini�=j |zij(t0)|. We fix γ,M > 0 to satisfy:

M < γ · (d0 − d) (13)

Then we set

ψ := Nf(r̃)c (14)

where r̃ is such that

M = Nc

∫ r̃

S(z0)+M/γ

f(s) ds (15)

Then we consider the space of functions

M =
{
ζ ∈ C0([t0,∞),R+) :ζ(t0) = S(v0),

sup
t≥t0

eγ(t−t0)ζ(t) ≤ M
}

Proving existence of a solution (x,v) so that S(v) ∈ M

implies supt S
(
z(t)

)
< ∞ because of the exponential con-

vergence. It is vital to be able to estimate both ω and ψ in

terms of S(v). Indeed provided that
∫∞
0

|vij(s)|ds < d0
then ω(v) ≥ (

d0 −
∫∞
0

|vij(s)|ds)2. The former condition

can be met in M from (13). Next (14) is the second estima-

tion since from (15) and consequently from the definition of

M we have that

M < Nc

∫ ∞

S(z0)+M/γ

f(s) ds.

which satisfies (10) that justifies ψ. Then the stability of (12)

translates to the existence of a fixed point of the following

non-linear integral equation

ζ(t) = e−ψ(t−t0)S(v0)+

+K

√∫ ∞

(d0−M
γ )2

V 2(s) ds ·
√∫ t

t0

e−2ψ(t−s)ζ2(s) ds

(16)
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in M, by applying Theorem 2.1. For any ζ ∈ M define the

operator

(Pζ)(t) = ζ(16)(t). (17)

The first step is to prove that P : M → M. Indeed this is

true if γ < Nf(r̃)c and M is chosen large enough so that

M >
S(v0)

1− 2(N−1)c3/2√
2(ψ−γ)

√∫∞
(d0−M

γ )2
V 2(s) ds

(18)

where we assumed that

1− 2(N − 1)c3/2√
2(ψ − γ)

√∫ ∞

(d0−M
γ )2

V 2(s) ds > 0 (19)

The second step is to show that P is continuous in M en-

dowed with the supremum norm. Indeed it is an elementary

exercise to find Q > 0 such that

|(Pζ1(t)− Pζ2(t)| ≤ Q sup
s∈[t0,t]

√
|ζ1(s)− ζ2(s)|

from which continuity in the supremum norm trivially fol-

lows.

The third step is to show that M is a compact, non-empty,

convex subset of B. Convexity follows in fairly standard way

as it is easy to check that for ζ1, ζ2 ∈ M αζ1 + (1 − α)ζ2
is also in M for any α ∈ [0, 1]. M is clearly non-empty

since M is always greater than S(v0) and hence for exam-

ple e−
γ
2 (t−t0)S(v0) is a member of M. The final and hard-

est step is compactness the proof of which is omitted due to

space limitation. We only mention that it follows a crucial

variation of Arzela-Ascoli theorem for sets of functions de-

fined on unbounded intervals (as in our case [t0,∞)) and the

proof can be found in [2]. In view of the preceding discus-

sion we have the following result.

Theorem 4.2 Let the Assumptions 3.1, 3.3 and 3.4 to hold.
Let (z,v) to be the solution of 2 with initial data z0 such
that d0 > d. If the initial data z0,v0, the coupling function
f and the repelling function V are such that there exist M,γ
to satisfy conditions (13), (14), (15), (18) and (19) then the
solution (x,v) is unique and it exhibits asymptotic flocking
in the sense of Defn. 2.2 with collision avoidance.

5 Discussion

We introduced and examined the dynamics of two closely

related non-linear flocking models via non-linear analysis

techniques. Our approach is novel and it manages to deal

both with the essential non-linear nature of the models and

their lack of asymmetry. Our objective was to derive a re-

lation between the initial conditions and the systems param-

eters for the existence of flocking solutions with or without

the restriction of collision avoidance. For the latter system

we would like to mention (19) cannot hold when d0−M/γ is

close to d if one considers Assumption 3.4 and this is a proof

for collision avoidance flocking. Among the advantages of

the approach we note that the model is general enough for

both coupling and repelling asymmetric forces, although for

the sake of simplicity we assumed a uniform repelling func-

tion V among all agents. We also mention that with extra

work the connectivity assumptions can be relaxed along the

lines of [13].

One of the main concerns is whether conditions (13), (14),

(15), (18) and (19) can be satisfied at the same time. It is an

easy yet tedious exercise, assuming d0 large enough, to come

up with examples of coupling and repelling functions which

indeed satisfy all the above conditions under certain initial

data and the parameters c, c. We omit this section due to

space limitation.

Futhermore, if the coupling functions are non-summable

(
∫∞

f(s) ds = ∞) then the condition of Theorem 4.1 is

satisfied for all x0 and u0 and this is the case of uncondi-

tional flocking. Such an important feature is not an option

for (2) and this is exactly because we implemented a stability

in variation argument. This inability of unconditional flock-

ing is perhaps the severest drawback of the method and it

naturally paves the way for future research along these lines.
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