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Abstract—Recent studies from social, biological, and engi-
neering network systems have drawn attention to the dynam-
ics over signed networks, where each link is associated with
a positive/negative sign indicating trustful/mistrustful, activator/
inhibitor, or secure/malicious interactions. We study asymptotic
dynamical patterns that emerge among a set of nodes that interact
in a dynamically evolving signed random network. Node interac-
tions take place at random on a sequence of deterministic signed
graphs. Each node receives positive or negative recommendations
from its neighbors depending on the sign of the interaction arcs,
and updates its state accordingly. Recommendations along a pos-
itive arc follow the standard consensus update. As in the work by
Altafini, negative recommendations use an update where the sign
of the neighbor state is flipped. Nodes may weight positive and
negative recommendations differently, and random processes are
introduced to model the time-varying attention that nodes pay to
these recommendations. Conditions for almost sure convergence
and divergence of the node states are established. We show that
under this so-called state-flipping model, all links contribute to a
consensus of the absolute values of the nodes, even under switching
sign patterns and a dynamically changing environment. A no-
survivor property is established, indicating that every node state
diverges almost surely if the maximum network state diverges.

Index Terms—Consensus dynamics, random graphs, signed
networks.

I. INTRODUCTION
A. Motivation

HE need to model, analyze, and engineer large complex
networks appears in a wide spectrum of scientific dis-
ciplines, ranging from social sciences and biology to physics
and engineering [1]-[3]. In many cases, these networks are
composed of relatively simple agents that interact locally with
their neighbors based on a very limited knowledge about the
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system state. Despite the simple local interactions, the resulting
networks can display a rich set of emergent behaviors, including
certain forms of intelligence and learning [4], [5].

Consensus problems, where the aim is to compute a weighted
average of the initial values held by a collection of nodes,
play a fundamental role in the study of node dynamics over
complex networks. Early work [1] focused on understanding
how opinions evolve in a network of agents, and showed that
a simple deterministic opinion update based on the mutual
trust and the differences in belief between interacting agents
could lead to global convergence of the beliefs. Consensus
dynamics has since then been widely adopted for describing
opinion dynamics in social networks, for example, [S]-[7]. In
engineering sciences, a huge amount of literature has studied
these algorithms for distributed averaging, formation forming,
and load balancing between collaborative agents under fixed
or time-varying interaction networks [8]-[15]. Randomized
consensus seeking has also been widely studied, motivated by
the random nature of interactions and updates in real complex
networks [16]-[21], [23]-[25].

Interactions in large-scale networks are not always collabo-
rative since nodes take on different, or even opposing, roles.
A convenient framework for modeling different roles and rela-
tionships between agents is to use signed graphs. Signed graphs
were introduced in the classical work by Heider in 1946 [28]
to model the structure of social networks, where a positive
link represents a friendly relation between two agents, and
a negative link an unfriendly one. In [29], a dynamic model
based on a signed graph with positive links between nodes
(representing nations) belonging to the same coalition and neg-
ative otherwise, was introduced to study the stability of world
politics. In biology, sign patterns have been used to describe
activator—inhibitor interactions between pairs of chemicals
[30], neural networks for vision and learning [31], and gene reg-
ulatory networks [32]. In all of these examples, the state updates
that occur when two nodes interact depend on the sign of the arc
between the nodes in the underlying graph. The understanding
of the emergent dynamical behaviors in networks with agents
having different roles is much more limited than our knowledge
about collaborative agents performing consensus algorithms.

It is intriguing to investigate what happens when two types
of dynamics are coupled in a single network. Naturally we ask:
how should we model the dynamics of positive and negative
interactions? When do behaviors, such as consensus, swarming,
and clustering emerge, and how does the structure of the sign
patterns influence these behaviors? In this paper, continuing the
previous efforts in [36] and [37], we answer these questions
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for a general model of opinion formation in dynamic signed
random networks.

B. Contributions

In this paper, we study a scheme of randomized node interac-
tion over a signed network of nodes, and show how the nodes’
states asymptotically evolve under these positive or negative
interactions. A sequence of deterministic signed graphs defines
the dynamics of the network. Random node interactions take
place under independent, but not necessarily identically dis-
tributed, random sampling of the environment. Once interaction
relations have been realized, each node receives a positive
recommendation consistent with the standard consensus al-
gorithm from its positive neighbors. Nodes receive negative
recommendations from their negative neighbors. In this paper,
we investigate a model where neighbors construct negative
recommendations by flipping the sign of their true state during
the interaction. This definition of negative interaction was in-
troduced in [36]. After receiving these recommendations, each
node puts a (deterministic) weight to each recommendation,
and then encodes these weighted recommendations in its state
update through stochastic attentions defined by two Bernoulli
random variables.

Our model is general and covers many of the existing node
interaction models, for example, consensus over the Erdds-
Rényi graph [16], pairwise randomized gossiping [17], random
link failure [19], etc. We allow the sign of each link to be time-
varying as well in a dynamically changing environment. We es-
tablish conditions for almost sure convergence and divergence
of the node states. We show that under the state-flipping model,
all links contribute to a consensus of the absolute values of the
nodes, even under switching sign patterns. We also show that
strong structural balance [39] is crucial for belief clustering,
which is consistent with the results derived in [36]. In the almost
sure divergence analysis, we establish that the deterministic
weights nodes placed on negative recommendations play a
crucial role in driving the divergence of the network. A no-
survivor property is established, indicating that every node state
diverges almost surely given that the maximum network state
diverges. Our analysis does not rely on a spectrum analysis as
that used in [36], but instead we study the asymptotic behavior
of the node states using a sample-path analysis.

C. Organization

In Section II, we present the network dynamics and the node
update rules. The state-flipping model is defined for the nega-
tive recommendations. Section III presents our main results on
the state-flipping model, and the detailed proofs are presented
in Section IV. Finally, some concluding remarks are drawn in
Section V.

Notations: A simple directed graph (digraph) G = (V, &)
consists of a finite set VV of nodes and an arc set £ C V x V,
where e = (i, j) € € denotes an arc fromnode i € Vtoj €V
with (4,4) & & for all 4 € V. We say that node j is reachable
from node ¢ if there is a directed path from ¢ to j, with
the additional convention that every node is reachable from

itself. A node v from which every node in V is reachable
is called a center node (or a root). A digraph G is strongly
connected if every two nodes are mutually reachable; G has a
spanning tree if it has a center node; G is weakly connected if
a connected undirected graph can be obtained by removing all
of the directions of the arcs in £. A subgraph of G = (V, ) is
a graph on the same node set ) whose arc set is a subset of
E. The induced graph of V; C V on G, denoted as G|y,, is the
graph (V;,&;) with & = (V; x V;) NE. A weakly connected
component of G is a maximal weakly connected induced graph
of G. If each arc (7, j) € £ is associated with a sign, either “+”
or “—." G is called a signed graph and the sign of (i, j) € £ is
denoted as o;;. The positive and negative subgraphs containing
the positive and negative arcs of G are denoted as G+ = v, & +)
and G~ = (V, E7), respectively.

Depending on the argument, |- | stands for the absolute
value of a real number, the Euclidean norm of a vector, or
the cardinality of a set. The o-algebra generated by a random
variable X is denoted as o(X).

II. RANDOM NETWORK MODEL AND NODE UPDATES

We consider a dynamic network where each node holds and
updates its belief or state when interacting with other nodes. In
this section, we present a general model specifying the network
dynamics and the way nodes interact.

A. Dynamic Signed Graphs

We consider a network withasetV = {1,...,n} of n nodes,
with n > 3. Time is slotted and at each slot ¢t = 0,1, ..., each
node can interact with its neighbors in a simple directed graph
G: = (W, &:). The graph evolves over time in an arbitrary and
deterministic manner. We assume G; is a signed graph, and we
denote by o;;(t) the sign of arc (i,j) € &. The sign of arc
(4,7) indicates whether ¢ is a friend (o;;(t) = +), or an enemy
(0i;(t) = —) of node j. The positive and negative subgraphs
containing the positive and negative arcs of G; are denoted by
G =, &) and G, = (V, &, ), respectively. We say that the
sequence of graphs {G; }:>¢ is sign consistent if the sign of any
arc (i, j) does not evolve over time, that is, if for any s,¢ > 0

(i,7) € EsNE = 045(s) = 045(2).

We also define G, = (V,&,) with & = J;=, & as the total
graph of the network. If {G;}+>0 is sign consistent, then the
sign of each arc &, never changes and in that case, G. = (V, &,)
is a well-defined signed graph.

Remark 1: Note that G, is defined over directed graphs. The
only requirement on G;” and G, is that they should be disjoint,
so the signed graph model under consideration is quite general.
In particular, we allow for the two possible edge directions to
coexist between a pair of nodes and that the two directions can
have different signs.

Next, we introduce the notion of positive cluster in a signed
digraph, which will play an important role in the analysis of the
belief dynamics (see Fig. 1).

Definition 1: Let G be a signed digraph with positive sub-
graph GT. A subset V, of the set of nodes V is a positive
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Fig. 1. Signed network and one of its three positive clusters encircled. The
positive arcs are solid, and the negative arcs are dashed. Note that negative arcs
are allowed within each positive cluster.

cluster if V, constitutes a weakly connected component of GT.
A positive cluster partition of G is a partition of V into 7}, > 1
positive clusters V;,i = 1,...,T}, such that V = cup?zplvi.

Note that negative arcs may exist between the nodes of a
positive cluster. Therefore, a positive-cluster partition of G can
be seen as an extension of the classical notion of weak structural
balance for which negative links are strictly forbidden inside
each positive cluster [40]. From the above definition, it is clear
that for any signed graph G, there is a unique positive cluster
partition V = cup;F:pri, where T, is the number of maximal
positive clusters covering the entire set of nodes.

B. Random Interactions

Time is discrete and at time ¢, node ¢ may only interact
with its neighboring nodes in G;. We consider a general model
for the random node interactions. At time ¢, some pairs of
nodes are randomly selected for interaction. We denote by
E, C &, the random subset of arcs corresponding to interacting
node pairs at time ¢t. More precisely, E; is sampled from the
distribution y; defined over the set {2; of all subsets of arcs in
&i. We assume that Ey, E1, ... form a sequence of independent
sets of arcs. Formally, we introduce the probability space
(6, F,P) obtained by taking the product of the probability
spaces (4, St, 11t), where S; is the discrete o-algebra on {2
0= Ht>0 Q, F is the product of o-algebras S, t > 0, and P
is the product probability measure of ji;, ¢t > 0. We denote by
Gy = (V, E;) the random subgraph of G; corresponding to the
random set F; of arcs. The disjoint sets ;" and E;” denote the
positive and negative arc sets of I, respectively. Finally, we
split the random set of nodes interacting with node ¢ at time
t depending on the sign of the corresponding arc: for node
i, the set of positive neighbors is defined as N;"(t) := {j :
(j,4) € E;"}, whereas similarly, the set of negative neighbors
is N (8) = {5 : (iri) € Bf ).

Remark 2: The above model is quite general. It includes as
special cases the classical Erd6s-Rényi random graph [26], gos-
siping models where a single pair of nodes is chosen at random
for interaction [7], [17], or where all nodes interact with their
neighbors at a given time [1], [5], [9], [18]. Independence is
the only hard requirement in our random graph process, which
is imposed in most existing works on randomized consensus
dynamics, for example, [7] and [17]-[19]. Nonindependent ran-
dom graph models for randomized consensus were discussed in
[22]-[24], and [41].

C. Node Updates

Next, we explain how nodes update their states. Each node 7
holds a state s;(¢) € Ratt = 0,1, .. .. Toupdate its state at time
t, node ¢ considers recommendations received from positive and
negative neighbors:

a) The positive recommendation node 7 received at time ¢ is

Yo (silt) = (1)

Nt
JEN;(¢)

W (E) = -

b) The negative recommendation node ¢ received at time ¢ is

hi(t):=— > (si(t)+s;(1)).

JEN; (1)

In the above expressions, we use the convention that sum-
ming over empty sets yields a recommendation equal to zero,
for example, when node ¢ has no positive neighbors, then
hi(t) = 0.

Now let {B;}s>0 and {D;}:>o be two sequences of inde-
pendent Bernoulli random variables. We further assume that
{Bi}t>0, { D¢ }+>0, and {G; }+>¢ define independent processes.
For any ¢ >0, define b, = E{B;} and d; = E{D,}. The
processes {B;}>0 and {D;};>o represent the attention that
node ¢ pays to the positive and negative recommendations,
respectively.

Node ¢ updates its state as

si(t +1) = s;(t) + aBht (t) + BD.h; (t) (1)

where v, 5 > 0 are two positive constants marking the weight that
each node puts on the positive and negative recommendations.

The role of A (t) in (1) is consistent with the classical
DeGroot’s social learning model [1] along trustful interactions.
In view of the definition of h; (t), in contrast to h; (t), the
model is referred to as the state-flipping model.

Remark 3: The state-flipping model can be interpreted as
a situation where the neighbors connected by a negative link
provide false values of their states to each node by flipping
their true sign [36]. Under this interpretation, it is the head
node along each negative arc that knows the sign of that arc.
However, the tail node does not see the sign of the arc associated
with the recommendations it receives. The weights and atten-
tions of recommendations, represented by «/8 and B:/D;,
respectively, are then descriptions of each node’s possible prior
knowledge of the signs of its neighbors.

Remark 4: In standard consensus algorithms, nodes commu-
nicate relative states. In other words, nodes hold no absolute
state information. For the state-flipping model to make sense,
there must exist a global origin (state equal to 0) known by
each node so that sign flipping is possible in the negative
interactions.

Let s(t) = (s1(t)...5,(t))T be the random vector repre-
senting the network state at time ¢. The main objective of
this paper is to analyze the behavior of the stochastic process
{5(t) }+>0. In the following text, we denote by IP the probability
measure capturing all random components driving the evolution
of the network state.
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III. MAIN RESULTS

In this section, we present our main results. We begin by
stating two natural assumptions on the way nodes are selected
for updates, and on the graph dynamics. In the first assumption,
we impose that at time ¢, any arc is selected with positive
probability. The second assumption states that the unions of
the graphs G; over time windows of fixed duration are strongly
connected.

Al. There is a constant p, € (0, 1) such that for all ¢ > 0 and
1,7 €V, P((i,)) € By) > p.if (i, ) € &

A2. There is an integer K > 1 such that the union graph
G(It,t + K —1]) = (V, cupreft,t+x—1)E7) is strongly con-
nected for all £ > 0.

The following theorem provides conditions under which the
system dynamics converges almost surely. Surprisingly, these
conditions are mild: we just require that the sum of the updating
parameters « and S is small enough, and that node updates
occur with constant probabilities, that is, E{B;} and E{D;}
do not evolve over time. In particular, the state of each node
converges almost surely even if the signs of the arcs change
over time.

Theorem 1: Assume that A1 and A2 hold, and that o, 5 > 0
are such that « + § < 1/(n — 1). Further assume that for any
t>0,b; =band d; = dfor some b, d € (0,1). Then under the
state-flipping model, we have, for all ¢ € V and all initial state
5(0), P(limy_,oo s (t)exists) = 1.

In the above theorem, we say that lim;_, . $;(t) exists if s;(¢)
converges to a finite limit as ¢ tends to infinity.

Remark 5: Theorem 1 shows an interesting property of the
state-flipping model: negative updates, together with the posi-
tive updates, contribute to the convergence of the node states
whenever it holds that o« + 8 < 1/(n — 1).

Characterizing the limiting states is, in general, challenging.
There are, however, scenarios where this can be done, which
require the notion of structural balance [39].

Definition 2: Let G = (V,€) be a signed digraph. G is
strongly balanced if we can divide V into two disjoint nonempty
subsets V1 and V-, where negative arcs exist only between these
two subsets.

To predict the limiting system behavior, we make the follow-
ing assumption.

A3.{G;}+>0 is sign consistent.

Recall that G, denotes the total graph. The following theorem
holds.

Theorem 2: Assume that Al, A2, and A3 hold, and that
a, 8 >0 are such that o« + 3 < 1/(n — 1). Suppose G, con-
tains at least one negative arc and that every negative arc in G,
appears infinitely often in {G; }+>¢. Further assume that for any
t>0,b; = band d; = dforsomebd,d € (0,1). Then, under the
state-flipping model, we have, for any initial state s(0):

a) Ifg, isstrongly balanced, then there is arandom variable v,
withy, <|s(0)||; almost surely, such that P(limy_,, s;(t) =
Ys, Vi € V13 limy o 85() = —y,Vi € Vo) = 1.

b) If G. is not strongly balanced, then P (lim;_,~ s;(t) =0,
VieV)=1.

Theorem 2 states that strong structural balance is crucial

to ensure convergence to nontrivial clustering states, which

is consistent with the result of [36] derived for fixed graphs
under continuous-time node updates. To establish the result, we
do not rely on a spectral analysis as in [36], but rather study
the asymptotic behavior for each sample path. Using similar
arguments as in [36], the value of y, can be described as the
limit of a random consensus process with the help of a gauge
transformation.

Next, we are interested in determining whether the states
could diverge depending on the values of the updating parame-
ters v and (5. We show that by increasing /3, that is, the strength
of the negative recommendations, one may observe such diver-
gence. To this aim, we make the following assumptions.

A4. There is an integer K > 1 such that the union graph
GH([t,t + K]) = V.U, epp 14 5-1) &7 ) 1s strongly connected
forall t > 0.

AS. There is an integer K > 1 such that the union graph
G ([t.t+ K]) = (V,U,cit 111 €5 ) 1s strongly connected
forall ¢t > 0.

AG6. The events {(i,7) € By}, 4,5 €V, t=0,1,... are in-
dependent and there is a constant p* € (0, 1) such that for all
t>0andi,j eV, P((i,j) € Ey) < p* whenever (i, j) € &.

Proposition 1: Assume that Al, A4, A5, and A6 hold, and
that for any ¢ >0, b;=>b and d; =d for some b,d € (0, 1). Fix
a € [0, (4n)!]. Then, under the state-flipping model, there is
B, >0 such that whenever 3> f3,, we have P(lim;_,, max;cy
|s;(t)| = o0) = 1 for almost all initial states s(0).

Proposition 1 shows that under appropriate conditions,
max;ey |s;(t)| diverges almost surely if the negative updating
parameter [ is sufficiently large. We can, in fact, derive an
explicit value for j3,.

Remark 6: The main difficulties of establishing Proposition 1
lie in the fact that we need on one hand to establish an
absolute bound for the way max;ey |s;(t)| decreases (which
is obtained by a constructive proof) and, on the other hand, to
establish a probabilistic lower bound for the possible increase of
max;cy |s;(t)| (which is obtained by combining A4—A6 and by
constructing and analyzing sample paths). These constructive
derivations are rather conservative since we consider general
random graph processes, but they nevertheless establish a posi-
tive drift for {max;ecy |s;(t)|} with an explicit 5, so that almost
sure divergence is guaranteed.

Remark 7: We also remark from Proposition 1 that a large
deterministic weight on negative recommendations leads to the
divergence of the node states. It can also been seen from the
forthcoming Lemma 1 that if these weights on the recommen-
dations are sufficiently small, max;cy |s;(t)| always converges
regardless of how the random attentions {B;} and {D,} are
selected.

Actually, one may even prove that when max;cy |s;(¢)]
grows large when ¢t — oo, the state of any node diverges. This
result is referred to as the no-survivor property, and is formally
stated in the following result.

Theorem 3: Assume that A1, A2, and A6 hold, and that for
any t >0, by = b and d; = d for some b,d € (0,1). Fix the
initial state s(0). Then, under the state-flipping model, we have

]P(limsup|si(t)|=oo,i €V |limsup max |s;(t)| =o0) =1.

t—o0 t—oo 1€
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Remark 8: A similar kind of no-survivor property was first
established in [38] under the model of repulsive negative dy-
namics for pairwise node interactions. Theorem 3 establishes
the same property for the considered state-flipping model,
but for the general random graph process. From the proof
of Theorem 3, it is clear that it is the arc independence
(assumption A6, see [41]), rather than synchronous or asyn-
chronous node interactions, that directly result in the no-
survivor divergence property for dynamics over signed random
networks.

In all of the aforementioned results, it can be seen from their
proofs that extensions to time-varying {b:}>o and {d;}>¢ are
straightforward under mild assumptions. The resulting expres-
sions are, however, more involved. We omit those discussions
here to shorten the presentation.

IV. PROOFS

In this section, we present the detailed proofs of the results
stated in the previous section. We first establish some technical
lemmas, and then the proofs of each result.

A. Supporting Lemmas

Forany ¢t > 0, we define M (t) = max;ey |s;(t)| and Y;(¢) =
aBy|N;T ()| + BD¢|N; (t)|, which will be used throughout the
rest of this paper.

Lemma 1: Suppose o+ <1/(n—1). Then M (t+1) <M (t).

Proof: Observe that |[N;"(t)| + |N; (t)| < n — 1. Hence,
Yi(t) € [0,1] aslongasa + 8 < 1/(n — 1). Now forany i € V

it + )| = | (L= Yi(t) sa(t) +aBy Y s5(t)

JEN(¥)

—B8D; Y s(t)
JEN; (1)
< (1= Yi(t)| + Yi(t)) ma|s; (1)

= (t
max |s; (¢)]

which completes the proof. |

Remark 9: Lemma 1 establishes the nonexpansiveness prop-
erty of the considered model. It is clear from its proof that
the condition a + § < 1/(n — 1) in Lemma 1 can be relaxed
to a + § < 1/Deg(G;), where Deg(G,) denotes the maximum
degree of the graph G;. Here, for convenience, we use the
current statement since Deg(G;) < n — 1 for all ¢.

Lemma 2: Assume that o« + 3 < 1/(n —1). Leti € V and
assume that |s;(t)| < (oM (t) for some 0 < (y < 1. Then

|si(t+ k)| < (1= (1= (o)) M(t),

where 7, = 1 — (a+ 8)(n — 1).
Proof: We have

Jsi(t+ 1)) < (1= Yi(0)) sa(0)] + Ya()) M (1)
< (1= Yi) M (1) + Vi) M ()

< (1= (a+B8)(n—1))GME) + (a+ B)(n — )M (t)
= (1= (1= Go)y) M(2).

k=0,1,...

The lemma is then obtained by applying a simple induction
argument. |

Lemma 3: Assume that o« + 3 < 1/(n —1). Leti € V and
assume that |s;(t)] < (oM (t) forsome 0 < (o < 1.Let (7,7) €
&:. Then conditioned on B, =1 if (i,7) € &, D, =1 if
(i,7) € & , we have

[s;(t+1)] < (1= (1= Co) min{a, B}) M (t).

Proof: Suppose (i,j) € 8t+ with B; = 1. Then we have

[s;(t+1)] = [s;(6) —aBy > (s;(t) — sk(t))

+
keNT (1)

—BDy Y (s(t) + sk(t))

keN;(t)

= |asi(t) + (1 = Y;(t)) 55(1)

+ OLBt

>

ReN; (O\(i)
< afsi(t)] + (1 = Yj(t) + Yj(t) — o) M(¢)
< min{a, 8}s;(t)| + (1 — min{e, 8}) M (t)
(2)

sk(t) — BDy Z sk(t)

keN;(t)

where in the last inequality we have used the fact that |s;(¢)] <
M (t). It is straightforward to see that (2) continues to hold with
D; =1if (i,7) € & . Plugging in the assumption that |s; (¢)| <
CoM (t) into (2), one gets the desired inequality. This proves the
lemma. |

Note that if the conditions in Lemmas 2 and 3 are replaced by
|si(t)| < CoM(t), then we have the same conclusions but with
strict inequalities. Moreover, in view of Lemma 1, the following
limit is well defined: M, = limy_,o M ().

Lemma 4: Assume that Al and A2 hold «, 5 > 0 and o +
B < 1/(n — 1). Further assume that for any ¢ > 0, b, = b and
d; = d for some b,d € (0,1). Then, for any initial state s(0),
we have P(limy_. |s;(t)| = M., Vi € V) = 1.

Proof: We prove this lemma using sample path arguments
by contradiction. Let us assume that:

Hl1. There exists ip €V and 0,q. € (0,1) such that
P(liminf, . |si, (t)| < 0M.) > q..

Let € > 0. Define T'(¢) := infy>o{ M (t) < (1 + €)M, Vt >
k} and T* := inf,>p o {si,(t) < 0M.}. Note that T'(¢) is a
stopping time, and the monotonicity of M (¢) guarantees that T’
is bounded almost surely [27]. Moreover, T is also a stopping
time, and it is bounded with a probability of at least g, in view
of H1. Next, we use Lemmas 2 and 3 to obtain a contradiction.
Plugging in the fact that M (T*) < M,(1 +€) and invoking
Lemma 2, conditioned on {T* < oo}, we have that for all
k=0,1,...

830 (T + K)| < (1 — (1= &)7F) M.(1+e). 3)
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Now consider the time interval [T, T* + K — 1]. The in-
dependence of {Bi}i>0, {Dt}i>0, and {G:}i>0 guarantees
that (GT* , B, DT*), (GT*+1, Br«i1, DT*+1), ... are inde-
pendent random variables, and they are independent of Frp«_;
[27, Theor. 4.1.3]). From their definitions, we also know
that (Brps«, Dp+), (Br+y1, Drsy1), ... are iid. with the
same distribution as (Bg, Dp), and Assumption A2 guar-
antees that G([T*, 7" + K — 1]) = (V,Urep= 1+ 4k -1)E7) is
strongly connected. Therefore, there exists a node i; # ig and
71 < K such that (ig,i1) € Ep+yr, (note that ¢; and 7 are
random variables, but they are independent with Fr«_; since
T is a stopping time). Hence, we can apply Lemma 3 and
conclude that

|56, (T" + )| < (1 = (1 = 0)7]* min{a, B}) M.(1 + €)

with a probability of at least p, min{b,d}. Taking {y =1 —
(1 = 6)y* min{a, B} for the ¢, introduced in Lemma 2, we
have

1— (1= =1-0 -0y * min{a, 5}.
Therefore, applying Lemma 2 (note that we can replace M (t)
with M. (1 + €) in Lemma 2), we have that for all k = K, K +
1,...

50y (T + B)| < (1= (1= 8)7 minfa, B}) M.(L + o).

We can repeat the same argument over time inter-
vals [T+ K, T*+2K —1],....[T*+ (n — 2) K, T*+(n —
1)K — 1]. Assuming that the node set Ij, := {ig,...,ix_1} is
selected, it follows from the strong connectivity assumption A2
that there exists an arc from Ij, to V' \ I, in the union graph of
the corresponding interval. In this way, we add the tail node of
such an arc into [; and obtain I 4; fork=1,...,n —1. We
can thus recursively find io, ..., 4,-1 with V = {ig, ..., i1}
and bound the absolute values of their states. Finally, we obtain

P (M(T* + (n— )K) < |1 — 4" DX (min{a, 1)

x(1— 5)}M*(1 +6)|T" < 00) > (p.min{b,d})" . @

Now select e sufficiently small so that 6:= (1 — (1 —
5" VX (min{a, B})"2)(1 + €) < 1. Using the monotonic-
ity of M (t) established in Lemma 1, we deduce from (4)

P (M, < OM,|T* < o0) > (p, min{b,,d.})" "

which is impossible and, hence, H1 is not true. We have proved
that
P (liminf |si(8)] = M., Vi € V) = 1.

The claim then follows easily from Lemma 1. |

Remark 10: 1t is easy to see from the proof that Lemma 4
continues to hold if we relax the requirement of b;, d; to 0 <
b<b <land0 < d <d; <1forsomebd,de(0,1). Lemma4
indicates that with sufficient connectivity on the graphs defining
the dynamical environment (Assumption A2), the absolute val-
ues of the nodes states will eventually converge to a consensus

with probability one under quite general conditions on how the
random interactions take place in the environment. Noting that
A2 is imposed on the overall underlying graph, this concludes
that the positive and negative links contribute to the node states’
consensus in absolute value.

Lemma 5: Let a < (4n)~! and 8 > 16n""1. Then, M (t +
1) > (2n) "t M (t) defines a sure event.

Proof: Letus first assume that Dy = 0. Let¢ € V such that

|si(t)] = M(t). Then, with o < (4n)~!, we have

M(t+1) > [si(t + 1)
> |1 —aB |N;"(t)|] - |si(t)] — aBy |N;"(t)] - M(¢)

> |1 —2aB, [N (t)|] - M(#)
> %M(t).

Now assume that D; = 1. We first prove the following claim.

Claim: Suppose there exits i1 € V such that |s; ()] €
[(1 — ZQ)M(t)7 (1 — Zl)M(t)} with 0 < 71 < Zy < nZy <
1/4 and Z5 > 2. Then, H1 U Hs is a sure event, where

Hi={M@Et+1)> M(t)/4}
and
Ho = {Fia : |si,(t)| € [(1 —nZo)M(t), (1 — Za)M(t)]}.

To prove this claim, we distinguish three cases:

Case 1) Lets;, (t)€[(1 — Zy)M(t), (1 — Z1)M(t)] and as-
sume that there exists j. € V such that j, € N; (t)
and s, (t) € [—(1—nZy) M (t), M (t)]. Then, s;, (t)+
5. (t) > (n—1)ZaM(t) > 0 and s;, (t) + s;(t) >
—ZyM(t) for all j € V' \ {i1, j«}. Thus, taking out
the term s;, (t) + s;, (t) in h; (t) from (1), some
simple algebra leads to

M@t+1) > |s;, (t+1)]

> Blsi (t) + 5. (1) = M(t) — 2a(n — 1) M (t)
— B(n—2)ZyM(t)

> [BZy —1—(n—1)(2n)""| - M(2)

> L M(1) )
where in the last inequality we have used the as-
sumption that 8 Z5 > 2.
Case2) Let s;,(t) € [(1— Z2)M(t),(1 — Z1)M(t)] and
assume that s;(t) € [-M(t), —(1 — Z1)(M(¢))]
for all j € N; (t), and, more generally, s;, (t) +
s;(t) <0 for all j € N; (t), which implies that
h;, (t) > 0. Observing that s;, (£) > 0, we obtain

M(t+1) > |s;, (t+1)]
> |si, (£)] = 2a(n — 1)M(2)
> 1= 2Zy— (n—1)(2n)" "] - M(2)

1
> M(t). (6)
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Case 3) Letmy,...,m¢ € Vand wy,...,w, € V satisfy

sy (1) € (1= Zo)M (1), (1 - Z)M(1)], 0=1,....¢
and
S, (t) € [—(1—=Z1)M(@),—(1—=Z2)M(t)], 0o=1,...,7

respectively. Without loss of generality, we assume
the existence of such m, and w, since otherwise
the desired conclusions immediately fall to Cases 1)
and 2).

Now without loss of generality, suppose $,,, (t) =
ming—1, .. ¢ Sm,(t). From Cases 1) and 2), the de-
sired claim can possibly be violated only when there
exists wy, € Ny, (t) with sy, (1) + 5p,(t) >0
for some o, € {1,...,)} [otherwise we can bound
[$m, (t + 1)| from Case 2)]. While due to the choice
of my, it holds that

Sw,, (1) + 8m,(t) >0, 0=1,... L

We can therefore denote y;(t) = —s;(t),7 € V and
obtain y,,, (t)€[(1=Z2)M(t),(1—Z1)M(t)] and
Yuw,, () +Ym,(t) <0, o=1,...,L. We can thus
establish the bound for |y, ()| = |sw,, ()], again
applying Case 2).

From the aforementioned three cases, we deduce that if Ho
does not hold, then #; must be true. This proves the claim.

Finally, we complete the proof of the lemma using the claim
we just established. Take ¢ = 8 'n~""! and B = 16n"*1. We
proceeds in steps.

Step 1) Let my € V with |sy,, (t)| = M(t). Applying the
claim with Z; =0 and Z5 = ¢, we deduce that either
the lemma holds or there is another node my € V
such that |s,,, ()] € [(1 —ne)M (t), (1 — €)M (t)].
If in the first step, we could not conclude that the
lemma holds, we can apply the claim to mo and
then obtain that either the lemma holds, or there is a
node mj such that |s,,, (t)| € [(1 —n?e)M(t), (1 —
ne) M (t)].

The argument can be repeated for ms, . . . applying the claim
adapting the value of € and 3. Since there are a total of n nodes,
the aforementioned repeated procedure necessarily ends, so the
lemma holds. |

Remark 11: The purpose of Lemma 5 is to establish an
absolute lower bound regarding the possible decrease of M (t).
This lower bound is absolute in the sense that it does not depend
on the random graph processes, and requires the constructive
conditions o < (4n)~! and 8 > 16n™"! to hold. These con-
ditions are certainly rather conservative for a particular node
interaction process.

Step 2)

B. Proof of Theorem 1

From Lemma 4, we know that for any ¢ € V, one of
the following events happens almost surely: {lim; ,, s;(t) =
M.}, {limy o 8;(t) = =M, }, {liminf,_, s;(t) = —M,, and

4M*(1 - 6)

1 1 1 1 1 1 >
—M, Gy Cy

Fig. 2. Illustration of the existence of ty in the proof of Theorem 1. Here,
Cri=—vyMi(1—€) + (1—y)Ms(1 +¢€), Coi=—72M,(1—¢) + (1—
Y2)M. (1 + €). By (7), s; starting from the interval [— M., —M. (1 — €)]
entering [M (1 — €), 0o0) must go through the interval [C1, Ca].

lim sup,_, ., s;(t) = M. }. Therefore, we just need to rule out the
last case. We actually prove that P(M, >0, liminf; - s;(t)=
— M, limsup,_, s;(t) = My, limy_,o |s;(t)] = M) = 0.

The following claim holds.

Claim: Suppose o+ 8 <1/(n—1). Then, s;(t+k)<
VEsi(t) + (1 —~*)M(¢t) for all k > 0, where 7, = 1 — (o +
B)(n — 1) was introduced in Lemma 2.

First, we note that

si(t+1) < (1 -Yi(t)) si(t) + Ya(t) M (2)
< Yesi(t) + (1= ) M(2)

where the last inequality holds from the fact that 1 — Y;(¢) >
1—(a+ B)(n—1) =, and that s;(t) < M (t). A simple re-
cursive analysis leads to the claim immediately.

Now take € >0 and define 77 (¢) := inf{k : M (k) <M. (1 +
€)}. Note that T} () is a stopping time due to the monotonicity
of M (t) established in Lemma 1. In light of the aforementioned
claim, we obtain

si(t+k) <Afsi(t) + (1 —8)M.(1 +¢) )

forallk =0,1,...and ¢t > T.

Let M, > 0. Assume that liminf; ., s;(t) = —M,. Then,
for the given ¢, we can find an infinite sequence Tj(¢) <
t1 <ty <... such that s;(tm) <—M,(1—¢). Now, if
lim sup,_,, si(t) = M., for any ¢,,, we can find ¢, > t,, with
5i(tm) > M.(1 — €). Then, based on (7), there must be ,, €
[tm, tm] such that (see Fig. 2)

ML= &) + (1= 7)M.(1+€) < s5i(Em)
<M1 —€)+ (1 —)M.(1+¢). (8)
We then deduce that forallm = 1,2, ...
|8i(fm)] < max {|—7.M,(1 =€) + (1 — 3) M. (1 +€)],
|—VZM.(1 =€)+ (1 —72) M(1+€)|}

= M*max{|1 — 27, + ¢,

1—-292 + €|}
1-29[})

<M, (T4+max {|1-2%],[1-297]}) /2 9

< M, (e+max{|1 — 27,

if we choose ¢ sufficiently small so that

€< (1—max{|1—2’y*|, 1 — 22

}) /2.
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Now we see that (9) contradicts limy_,, |s;(t)] = M, since

-27[}) /2 <1

when 0 < v, < 1. We have completed the proof.

0 < (1+max {|1 —2v,],|1

C. Proof of Theorem 2

In view of Theorem 1, with probability one, we can divide the
node set V into the following two subsets of nodes Vj := {i €
Vilimy oo 8i(t) = =M, }and V3 :={i € V : limy_,0 8;(t) =
M. }. Apparently at least one of the sets is nonempty. Without
loss of generality, we assume Vi # () and P(M, > 0) > 0 for
the rest of the proof. With Assumption A3, each arc (7, j) € &,
is associated with a unique sign. We therefore denote the sign of
(i,7) € &« as o;;. To establish the desired conclusion, we first
show the followmg claim holds.

Claim: 1f (i, j) € E. withi, j € V], then 0}; = +.

The above claim indicates that the arcs among nodes in Vj
are necessarily positive. We now prove this claim by using
a similar sample-path analysis as the proof of Theorem 1
by a contradiction argument. Suppose there exists i, jT € Vi
such that (i', j) € & with o7, ;; = —. By our assumption, the
arc (if,j!) appears infinitely often in {G;};>0. This means
that there exists an infinite subsequence {t,,}57_, such that
(if, j1) € &, forall m > 0. We assume without loss of gener-
ality that (if, j7) € & for all t > 0 since the following analysis
can indeed be carried out along the subsequence {¢,,}59_.

Based on the definition of V; and Vs, for any € > 0, we can
define

Ti(e) := inf {k : s; ( ) € [~M.(1+¢€),~M.(1—€)] i € Vi;

si(k) € [Mo(1—¢), My(1+ )] i € V3}.
Since (if, j7) € & for all t > 0 with o7 ; = —, we conclude
that

s (T +1) = (1= Y;4(T))) 51 (T) = 8Dy (T7)

>

+ (ot
keN (1))

>

keN L (O\iT}

+aByy sk(T})

_ 5DT1" sk(T))
> — (1Y (T])) M.(1+6)+BM.(1-¢)

(THM.(1+€)
—1=B+el+p)]M

> —(1— €)M, (10)

if Dy = 1 and € is chosen to satisfy € < (1-758)/(2(1+ B)).
We can recursively define
T:n+1(€)

=inf {k > T, : si(k) €
i€ Vissi(k) € [M.(1 -

[ M.(1+¢€), —M,(1—¢)],
), M.(1+¢€)],i€V;}.

Repeating the aforementioned analysis, we have

s;t (T}, + 1) > —(1 — €)M, (11)

for each m > 1 conditioned on that D+ =1. Note that { Dj.¢ }fc
defines a sequence of independent random variables since {7},
are a sequence of stopping times. We can therefore invoke
the second Borel-Cantelli Lemma (e.g., [27, Theor. 2.3.6]) to
conclude that (11) holds for infinitely many m. In other words,
we have established that

hmlnfs T(T +1) >

m

—(1—¢e)M,

for any e < (1 — 8)/(2(1 + /3)). This contradicts the fact that
41 € V. We have now proved the given claim.

Having established the above claim, the rest of the argument
becomes straightforward. Next, the following analysis will be
carried out for the two cases in the theorem statement.

a) The total graph G, is strongly balanced with nonempty

V1 and Vs and, hence, Vj is for example included in
V, which, in turn, implies that Vj # ). Again, there
are only positive arcs among nodes of V3. We simply
deduce that {V;,V,} = {V}, Vs }. Thus, the required y, is
exactly M,.

b) We take a contradiction argument. Since P(M, > 0) >
0, we have Vi NV5 = (). Again, arcs between nodes in
the same set from V;,¢ = 1,2 are necessarily positive.
However, there is at least one negative link in G. by
assumption, which can only be an arc between V| and
V5. Thus, Vi and V5 are nonempty, which implies that G,
must be strongly balanced.

The proof is complete.

D. Proof of Proposition 1

Let 8 > 16n™t! so the conditions of Lemma 5 hold. Let us
fix t > 0 and assume that |s;, (t)| = M(t) for some iy € V. By
symmetry, we can also assume without loss of generality that
Sip(t) = M(t). Let i, € V \ {ip}. Under Assumptions A4 and
A6, we prove the following claim.

Claim: There is an integer Ny > 1 and ¢¢ > 0 such that

P (siy(t + NoK) = M(t),s;, (t + NoK) > M(t)/2) = qo.

In view of the connectivity assumption A4 and the arc
independence assumption A6, the event

{8i,(t + NoK) = M(t),s;, (t + NoK — 1) > M(t)/2}
given s;,(t) = M(t) can be easily constructed by selecting a
proper sequence of positive arcs for time slots ¢,¢ + 1,...,t +
NoK — 1, and by imposing that B, =1,D, =0, 7 =t,t +
1,...,t+ NoK — 1. This analysis follows standard arguments
to analyze basic consensus algorithms (e.g., [37]), and we omit
the details. The given claim therefore holds by computing the
probability of the selection of the above sequence of arcs and
the event {B, =1,D, =0,7=1t,t+1,...,t + NoK — 1}.
Note that Ny and gy depend on «, b,, d,, p.,p",n but do not
depend on fS.
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In addition, in view of Assumption A5, we can select a

node i, # ig satisfying (i«,i0) € Ure[r4 Nk, t+(No+ 1) K-1]E7 -
Consider the following sequence of events:

{1 (t + NoK) = M(t), 5. (t + NoK) > M(t)/2}
{3r e [t+ NoK,t+ (No+ 1)K — 1] s.t. (iv,i0) € E; };
{DT = 1}§

{Bm =Dp,=0m#7€[t+ NoK,t + (No+ 1)K —1]}.

If they all happen, then

[sio (t + (No + 1)K)|

= Sio(t+ N()K)

>

GENT (T\{ix}

+az

"
JEN; (7)

2<251n2>M(t)

n

— B (sio(t + NoK) + 54, (t + NoK))

-3 (8io(t + NoK) + 5;(7))

— 8o (t + NoK))

12)

where the last inequality is obtained from the facts that
sm(t—kNoK) M(t), B(si,(t+ NoK) + si, (t + NoK)) >
(3/2)BM(t) szezv (7—)\{1*}<820(t+N0K)+SJ( 7)) =0, and

(n—2)
2n

a Y (s5(7) = siy(t+ NoK))| <

JENT (1)

x 2M (t)

in light of [N;"(7)| <n —2and o < (4n)~*

It then follows that:
-2
r ) M(t)) > 9o
n

b))% ~1. This implies

]P<|si0(t+ (No + DE)| > (‘;’3

where ¥y = qop.d((1 — d)(1 —

P (M(t+ (No + )K) = (38 — )M()/2) = o  (13)
Now assume that M(0)>0 so that U(m)=
log(M(m(No + 1)K)) for m >0 is well defined. Note
that from Lemma 5 and (13), we have
E{U(m+1)—U(m)}>—NoK log(2n) -+ log (36—4)/2).
For g large enough, the right-hand side in the above inequality
is strictly positive. We can then easily conclude, using clas-
sical arguments in random walks, that the process U(m) has
a strictly positive drift, from which it can be deduced that
P(liminf,, ;oo M(mNoK) = c0) = 1 (for 5 large enough).
Using Lemma 5, one can easily conclude the desired theorem.

E. Proof of Theorem 3

The argument is based on the intuition that when one of
the node states diverges, there is always a realization of edges
with nonzero probability that “pulls” another node toward
divergence since these pulling actions happen infinitely often
due to the Borel-Cantelli Lemma. Then suitable connectivity
of the interaction graphs recursively leads to the desired no-
survivor property.

Assume that for some ¢. >0, we have P(limsup,_
max;ey |8;(t)| = 00) > ¢.. There must be a node i satisfying
P(limsup; . |si,(t)] = 00) > g« /n. Let Cy > 0, and define
Ty :=infi{]s;, (t)| > Co}. Ty is a stopping time. Let K >
0 be an integer. We can further recursively define 73, ...,
Tr.,...by
{Isi, ()| = Co} -

T ,:= inf
m—+1 RN

Based on [27, Theor. 4.1.3], each 1}, is a stopping time for
all m Z 0 and (GTl*,BTl*,DTl*), NN
Drsik-1); (Grg, Bry, D1y ),
DT2*+ k-1);... are independent random variables that
are also independent of ]-'Tl*,l. In addition, we have
P(Ty <oo,m=1,2,...) > g./n. Under Assumption A2,
G([Ty, Ty + K — 1]) being strongly connected is a sure
event. As a result, there exists another node i; € V' \ iy and
70 € [T, T + K — 1] such that (ig,i1) € &;,. Assume the
event s;,(70) = i, (15) (whose probability can be lower
bounded by B; = D; =0,t € [Ty, 70 — 1] and is then used
to derive the xo below). We treat two cases: o;,;, = — and
Tigiy = +.

a)>

s (Grpv k-1, Bryy k-1,
(G141, Bry k-1,

O’ioil = -

— If g=1, then |Bs;(10)+ (1—p0)si,(70)| =
1Bsi,(10)] = |81, (TF) = Co.

— If ﬁ 7é 1 and |8i1(7’0)| < ﬂCO/(2|]. — 6
1Bsio(10) + (1 = B)si, (10)] = BCh — (1 —
B)lsiy (10)|= BCo /2.

), then

b)> Oigiy = +.

— Ifa= ]., then |Oé$i0 (T()) + (]. - Oé)Sil (T0)| = CO-
— If a#1 and |[s;(70)] < aCy/ (2|1 — ), then
lasi, (10) + (1 = a)si, (10)] = aCo/2.

Now s;, (170 + 1) = —fs;,(10) + B)si, (10) when ig is
the unique node in Nz’:<7—0) = 1. Also observe
that s;, (10 + 1) = as;, (70) + ( (10) when iq is the
unique node in N; (7o) and BTO = 1. Stationarity ensures
that (BT;,DTl*), , (BTf+K_1,DT1*+K_1) have the same
distribution as (By, Dp). We can therefore simply bound the
probabilities of the above events and establish

(1-
and D,
a)si,

P (Jiy € V\ {io} : [si, (T + K)| > ¢Co) > xo0

where xo=((1 —b)(1 — d))** ' min{b, d}p.(1-p*)"~* and
¢ = min{[a/(2]1 — )], a/2,[8/(2]1 — B|)], B/2,1} (we use

[-] to indicate that the corresponding term is taken into account
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in the min only if it is well defined). Repeating the analysis on
T3, ..., we obtain

P (Jim € V\ {io} : [si,, (T7, + K)|[ = ¢Co) = xo.

Since we have a finite number of nodes, independence allows us
to invoke the second Borel-Cantelli Lemma [27, Theor. 2.3.6]
and conclude that

P 3216]/\{20}
limsup |s;, (t)] > ¢Co|T;, < oco,m=1,... | =1. (14)
t—00

Note that Cy can be chosen arbitrarily and, hence, (14)
implies that there exists i € V \ {io} such that

]P(limsup [s;, ()| = oo |lim sup max |si(t)‘ :oo> =1. (15)
1€

t—00 t—o00

We can apply the same argument recursively, to show that (15)
holds for any node ¢; in the network. This concludes the proof.

V. CONCLUSION

Inspired by examples from social, biological, and engineer-
ing networks, the emerging behaviors of node states evolving
over signed random networks in a dynamical environment were
studied. Each node received positive and negative recommenda-
tions from its neighbors determined by the sign of the arcs. The
positive recommendations were consistent with the standard
consensus dynamics, while the negative recommendations flip
the sign of node states in the local interactions as introduced by
Altafini in [36]. After receiving recommendations, each node
puts a deterministic weight and a random attention on each
recommendation and then updates its state. Various conditions
were derived regarding the almost sure convergence and diver-
gence of this model. These results have significantly extended
the analysis of the results of [36] to more general models
and detailed results. The corresponding relative-state flipping
model [37], [38] under this general random graph model will
be investigated in our future work. Some other interesting
future directions include the co-evolution of the signs of the
interaction links along with the node states, as well as the
optimal placement of negative links with the aim of breaking
the effect of positive updates as much as possible.

ACKNOWLEDGMENT

The authors would like to thank the Associate Editor as well
as the reviewers for their valuable comments. Particularly, the
authors gratefully thank one anonymous reviewer for his/her
careful reading and constructive suggestions, which have been
very helpful in improving the technical clarity and the presen-
tation of this paper.

REFERENCES

[1] M. H. DeGroot, “Reaching a consensus,” J. Amer. Stat. Assoc., vol. 69,
pp. 118-121, 1974.

[2] T. Vicsek, A. Czirok, E. B. Jacob, I. Cohen, and O. Schochet, “Novel type
of phase transitions in a system of self-driven particles,” Phys. Rev. Lett.,
vol. 75, pp. 12261229, 1995.

[3] A.Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” IEEE Trans. Autom.
Control, vol. 48, no. 6, pp. 988-1001, Jun. 2003.

[4] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From
Natural to Artificial System. New York, USA: Oxford University Press,
1999.

[5] B. Golub and M. O. Jackson, “Naive learning in social networks and the
wisdom of crowds,” Amer. Econ. J.: Microecon., vol. 2, pp. 112-149,
2010.

[6] P. M. DeMarzo, D. Vayanos, and J. Zwiebel, “Persuasion bias, social
influence, unidimensional opinions,” Quart. J. Econ., vol. 118, no. 3,
pp- 909-968, 2003.

[7]1 D. Acemoglu, A. Ozdaglar, and A. ParandehGheibi, “Spread of
(Mis)information in social networks,” Games Econ. Behayv., vol. 70, no. 2,
pp. 194-227, 2010.

[8] J. N. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Trans. Autom. Control, vol. AC-31, no. 9, pp. 803-812, Sep. 1986.

[9] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Syst. Control Lett., vol. 53, pp. 65-78, 2004.

[10] V. Blondel, J. M. Hendrickx, A. Olshevsky, and J. Tsitsiklis, “Conver-
gence in multiagent coordination, consensus, flocking,” in Proc. IEEE
Conf. Dec. Control, 2005, pp. 2996-3000.

[11] L. Moreau, “Stability of multi-agent systems with time-dependent com-
munication links,” IEEE Trans. Autom. Control, vol. 50, no. 2, pp. 169—
182, Feb. 2005.

[12] W. Ren and R. Beard, “Consensus seeking in multi-agent systems un-
der dynamically changing interaction topologies,” IEEE Trans. Autom.
Control, vol. 50, no. 5, pp. 655-661, May 2005.

[13] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation
in networked multi-agent systems,” in Proc. IEEE, Jan. 2007, vol. 95,
no. 1, pp. 215-233.

[14] M. Cao, A. S. Morse, and B. D. O. Anderson, “Reaching a consensus
in a dynamically changing environment: A graphical approach,” SIAM J.
Control Optimiz., vol. 47, no. 2, pp. 575-600, 2008.

[15] J. M. Hendrickx and J. N. Tsitsiklis, “Convergence of type-symmetric and
cut-balanced consensus seeking systems,” IEEE Trans. Autom. Control,
vol. 58, no. 1, pp. 214-218, Jan. 2013.

[16] Y. Hatano and M. Mesbahi, “Agreement over random networks,” IEEE
Trans. Autom. Control, vol. 50, no. 11, pp. 1867-1872, Nov. 2005.

[17] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2508-2530,
Jun. 2006.

[18] F. Fagnani and S. Zampieri, “Randomized consensus algorithms over
large scale networks,” IEEE J. Sel. Areas Commun., vol. 26, no. 4,
pp. 634-649, May 2008.

[19] S. Kar and J. M. F. Moura, “Distributed consensus algorithms in sen-
sor networks with imperfect communication: Link failures and chan-
nel noise,” IEEE Trans. Signal Process., vol. 57, no. 5, pp. 355-369,
May 2009.

[20] B. Touri and A. Nedi¢, “On ergodicity, infinite flow and consensus in
random models,” IEEE Trans. Autom. Control, vol. 56, no. 7, pp. 1593—
1605, Jul. 2011.

[21] A. Tahbaz-Salehi and A. Jadbabaie, “A necessary and sufficient condi-
tion for consensus over random networks,” IEEE Trans. Autom. Control,
vol. 53, no. 3, pp. 791-795, Apr. 2008.

[22] A. Fazeli and A. Jadbabaie, “Consensus in martingale graph processes,”
in Proc. Amer. Control Conf., 2012, pp. 845-850.

[23] T. C. Aysal and K. E. Barner, “Convergence of consensus models
with stochastic disturbances,” IEEE Trans. Inf. Theory, vol. 56, no. 8,
pp- 4101-4113, Aug. 2010.

[24] 1. Matei, J. S. Baras, and C. Somarakis, “Convergence results for the linear
consensus problem under markovian random graphs,” SIAM J. Control
Optimiz., vol. 51, no. 2, pp. 1574-1591, 2013.

[25] D. W. Soh, W. P. Tay, and T. Q. S. Quek, “Randomized information dis-
semination in dynamic environments,” IEEE/ACM Trans. Netw., vol. 21,
no. 3, pp. 681-691, Jun. 2013.

[26] P. Erdos and A. Rényi, “On the evolution of random graphs,” Publ. Math.
Inst. Hungarian Acad. Sci., pp. 17-61, 1960.

[27] R. Durrett, Probability Theory: Theory and Examples,
Cambridge, U.K.: Cambridge University Press, 2010.

4th ed.



152 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 2, NO. 2, JUNE 2015

[28] F. Heider, “Attitudes and cognitive organization,” J. Psychol., vol. 21,
pp. 107-112, 1946.

[29] S. Galam, “Fragmentation versus stability in bimodal coalitions,” Phys.
A., vol. 230, pp. 174188, 1996.

[30] L. Edelstein-Keshet, Mathematical Models in Biology. New York, USA:
McGraw-Hill, 1987.

[31] S. Grossberg, “Adaptive resonance theory,” Scholarpedia, 2013. [Online].
Available: http://www.scholarpedia.org/article/Adaptive_resonance_
theory

[32] N. Yosef, A. K. Shalek, J. T. Gaublomme, H. Jin, Y. Lee, A. Awasthi et al.,
“Dynamic regulatory network controlling TH17 cell differentiation,”
Nature, vol. 496, pp. 461-468, 2013.

[33] B. T. Polyak, Introduction to Optimization.
Software, USA, 1987.

[34] S. A. Marvel, J. Kleinberg, R. D. Kleinberg, and S. H. Strogatz,
“Continuous-time model of structural balance,” PNAS, vol. 108, no. 5,
pp- 1751-1752, 2011.

[35] G. Facchetti, G. Iacono, and C. Altafini, “Computing global structural
balance in large-scale signed social networks,” PNAS, vol. 108, no. 52,
pp- 20953-20958, 2011.

[36] C. Altafini, “Consensus problems on networks with antagonistic inter-
actions,” IEEE Trans. Autom. Control, vol. 58, no. 4, pp. 935-946,
Apr. 2013.

[37] G. Shi, M. Johansson, and K. H. Johansson, “How agreement and dis-
agreement evolve over random dynamic networks,” IEEE J. Sel. Areas
Commun., vol. 31, no. 6, pp. 1061-1071, Jun. 2013.

[38] G. Shi, A. Proutiere, M. Johansson, J. S. Baras, and K. H. Johansson,
The Evolution of Beliefs Over Signed Social Networks, 2013,
arXiv:1307.0539.

[39] D. Cartwright and F. Harary, “Structural balance: A generalization of
Heider’s theory,” Psychol Rev., vol. 63, pp. 277-293, 1956.

[40] J. A. Davis, “Structural balance, mechanical solidarity, interpersonal rela-
tions,” Amer. J. Sociol., vol. 68, pp. 444-462, 1963.

[41] G. Shi and K. H. Johansson, Consensus Computations Over Random
Graph Processes, 2011, arXiv:1112.1336.

New York, Optimization

Guodong Shi received the Ph.D. degree in sys-
tems theory from the Academy of Mathematics and
Systems Science, Chinese Academy of Sciences,
Beijing, China, in 2010.

From 2010 to 2014, he was a Postdoctoral Re-
searcher at the ACCESS Linnaeus Centre, School
of Electrical Engineering, KTH Royal Institute of
Technology, Stockholm, Sweden. Since 2014, he has
been with the College of Engineering and Com-
puter Science, The Australian National University,
Canberra, Australia, as a Lecturer and Future Engi-
neering Research Leadership Fellow.

Dr. Shi was selected in the Triennial IFAC Young Author Prize Finalist in
2011, and was a co-receipt of the Best Paper Award in Control Theory from the
11th World Congress on Intelligent Control and Automation in 2014.

Alexandre Proutiere graduated in Mathematics
from Ecole Normale Superieure, Paris, France, the
engineering degree from Ecole Nationale Superieure
des Telecoms, Paris, and the Ph.D. degree in applied
mathematics from Ecole Polytechnique, Palaiseau,
France, in 2003.

He is an Engineer from Corps of Mines. In 2000,
he joined France Telecom R&D as a Research En-
gineer. From 2007 to 2011, he was a Researcher at
Microsoft Research, Cambridge, U.K. Currently, he
is an Associate Professor in Automatic Control at
KTH Royal Institute of Technology, Stockholm, Sweden.

Prof. Proutiere was the recipient in 2009 of the ACM Sigmetrics rising star
award, and received the best paper awards at ACM Sigmetrics conference
in 2004 and 2010, and at the ACM Mobihoc Conference in 2009. He was
an Associate Editor of IEEE/ACM TRANSACTIONS ON NETWORKING, and
is currently editor of IEEE TRANSACTIONS ON CONTROL OF NETWORK
SYSTEMS and IEEE TRANSACTIONS ON QUEUING SYSTEMS.

Mikael Johansson received the M.Sc and Ph.D. de-
grees in electrical engineering from Lund University,
Lund, Sweden, in 1994 and 1999, respectively.

He held postdoctoral positions at Stanford Uni-
versity, Stanford, CA, USA, and University of
California, Berkeley, CA, USA, before joining KTH
Royal Institute of Technology, Stockholm, Sweden
in 2002, where he now serves as Full Professor. He
has published two books and more than a hundred
papers, several which are highly cited and have re-
ceived recognition in terms of best paper awards. He
has served on the editorial boards of Automatica and the IEEE TRANSACTIONS
ON CONTROL OF NETWORK SYSTEMS, as well as on the program committee
for several top-conferences organized by IEEE and ACM. He has played a
leading role in several national and international research projects in control
and communications.

John S. Baras (LF’14) received the Diploma
in Electrical and Mechanical Engineering (Hons.)
from the National Technical University of Athens,
Athens, Greece, in 1970, and the M.S. and Ph.D.
degrees in applied mathematics from Harvard Uni-
versity, Cambridge, MA, USA, in 1971 and 1973,
respectively.

Since 1973, he has been with the Department of
Electrical and Computer Engineering, University of
Maryland at College Park, College Park, MD, USA,
where he is currently a Professor; member of the
Applied Mathematics, Statistics and Scientific Computation Program Faculty;
and Affiliate Professor in the Fischell Department of Bioengineering and the
Department of Mechanical Engineering. From 1985 to 1991, he was the Found-
ing Director of the Institute for Systems Research (ISR) (one of the first six
National Science Foundation Engineering Research Centers). In 1990, he was
appointed to Lockheed Martin Chair in Systems Engineering. Since 1991, he
has been the Director of the Maryland Center for Hybrid Networks (HYNET),
which he co-founded. He has held visiting research scholar positions with
Stanford, Stanford, CA; the Massachusetts Institute of Technology, Cambridge,
MA; Harvard, Cambridge; the Institute National de Reserche en Informatique
et en Automatique (INRIA); the University of California at Berkeley, Berkeley,
CA, USA; Linkoping University; and the Royal Institute of Technology (KTH),
Lund, Sweden. His research interests include control, communication, and
computing systems.

Prof. Baras’ awards are the 1980 George S. Axelby Award of the IEEE
Control Systems Society; the 1978, 1983, and 1993 Alan Berman Research
Publication Awards from the NRL; the 1991, 1994, and 2008 Outstanding
Invention of the Year Awards from the University of Maryland; the 1998
Mancur Olson Research Achievement Award from the University of Maryland
College Park; the 2002 and 2008 Best Paper Awards at the 23rd and 26th
Army Science Conferences; the 2004 Best Paper Award at the Wireless Security
Conference WISE(04; the 2007 IEEE Communications Society Leonard G.
Abraham Prize in the Field of Communication Systems; the 2008 IEEE
Globecom Best Paper Award for wireless networks; and the 2009 Maryland
Innovator of the Year Award. In 2012, he was honored by the awards for
the Principal Investigator with Greatest Impact and for the Largest Selling
Product with Hughes Network Systems for HughesNet, over the last 25 years
of operation of the Maryland Industrial Partnerships Program. These awards
recognized his pioneering invention, prototyping, demonstration, and help
with commercialization of Internet protocols and services over satellites in
1994, which created a new industry, serving tens of millions worldwide. In
2014, he was awarded the 2014 Tage Erlander Guest Professorship by the
Swedish Research Council, and a three-year (2014-2017) Hans Fischer Senior
Fellowship by the Institute for Advanced Study of the Technical University
of Munich. He has been the initial architect and continuing innovator of the
pioneering MS on Systems Engineering program of the ISR. He holds eight
patents and has four more pending. He is a Fellow of SIAM and a Foreign
Member of the Royal Swedish Academy of Engineering Sciences (IVA).



SHI et al.: EMERGENT BEHAVIORS OVER SIGNED RANDOM DYNAMICAL NETWORKS

Karl Henrik Johansson (F’13) received the M.Sc.
and Ph.D. degrees in electrical engineering from
Lund University, Lund, Sweden.

Currently, he is Director of the ACCESS Linnaeus
Centre and Professor at the School of Electrical
Engineering, KTH Royal Institute of Technology,
Stockholm, Sweden. He is a Wallenberg Scholar and
has held a six-year Senior Researcher Position with
the Swedish Research Council. He is also heading
the Stockholm Strategic Research Area ICT The
Next Generation. He has held visiting positions at
UC Berkeley from 1998 to 2000 and the California Institute of Technology from
2006 to 2007. He has been on the editorial board of IEEE TRANSACTIONS ON
AUTOMATIC CONTROL. His research interests are in networked control sys-
tems, hybrid and embedded systems, as well as applications in transportation,
energy, and automation systems.

Dr. Johansson is on the Editorial Board of IEEE TRANSACTIONS ON
CONTROL OF NETWORK SYSTEMS and the European Journal of Control.
He has been Guest Editor for special issues, including two issues of IEEE
TRANSACTIONS ON AUTOMATIC CONTROL. He was the General Chair of the
ACMI/IEEE Cyber-Physical Systems Week 2010 in Stockholm and IPC Chair
of many conferences. He has served on the executive committees of several
European research projects in the area of networked embedded systems. He
received the Best Paper Award of the IEEE International Conference on Mobile
Ad-hoc and Sensor Systems in 2009 and the Best Theory Paper Award of
the World Congress on Intelligent Control and Automation in 2014. In 2009,
he was awarded Wallenberg Scholar, as one of the first ten scholars from all
sciences, by the Knut and Alice Wallenberg Foundation. He was awarded an
Individual Grant for the Advancement of Research Leaders from the Swedish
Foundation for Strategic Research in 2005. He received the triennial Young
Author Prize from IFAC in 1996 and the Peccei Award from the International
Institute of System Analysis, Austria, in 1993. He received Young Researcher
Awards from Scania in 1996 and from Ericsson in 1998 and 1999. He has been
a member of the IEEE Control Systems Society Board of Governors and the
Chair of the IFAC Technical Committee on Networked Systems. He has been on
the editorial boards of several journals, including Automatica and IET Control
Theory and Applications.





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


