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A Generalized Gossip Algorithm
on Convex Metric Spaces

Ion Matei, Christoforos Somarakis, and John S. Baras, Life Fellow, IEEE

Abstract—A consensus problem consists of a group of dynamic
agents who seek to agree upon certain quantities of interest. This
problem can be generalized in the context of convex metric spaces
that extend the standard notion of convexity. In this paper we
introduce and analyze a randomized gossip algorithm for solv-
ing the generalized consensus problem on convex metric spaces,
where the communication between agents is controlled by a set
of Poisson counters. We study the convergence properties of the
algorithm using stochastic calculus. In particular, we show that
the distances between the states of the agents converge to zero
with probability one and in the rth mean sense. In the special case
of complete connectivity and uniform Poisson counters, we give
upper bounds on the dynamics of the first and second moments
of the distances between the states of the agents. In addition, we
introduce instances of the generalized consensus algorithm for
several examples of convex metric spaces together with numerical
simulations.

Index Terms—Consensus, convex metric spaces, gossip algo-
rithms, stochastic differential equations.

I. INTRODUCTION

D ISTRIBUTED algorithms are found in applications re-
lated to sensor, peer-to-peer and ad-hoc networks. A

particular distributed algorithm is the consensus (or agreement)
algorithm, where a group of dynamic agents seek to agree
upon certain quantities of interest by exchanging information
among themselves, according to a set of rules. This problem
can model many phenomena involving information exchange
between agents such as cooperative control of vehicles, forma-
tion control, flocking, synchronization, parallel computing, etc.
Distributed computation over networks has a long history in
control theory starting with the work of Borkar and Varaiya [1],
Tsitsikils et al. [32], [33] on asynchronous agreement prob-
lems and parallel computing. A theoretical framework for
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solving consensus problems was introduced by Olfati-Saber
and Murray in [19], [20], while Jadbabaie et al. [8] studied
alignment problems for reaching an agreement. Relevant ex-
tensions of the consensus problem were done by Ren and
Beard [25], by Moreau [16] or, more recently, by Nedic and
Ozdaglar [17], [18].

Network topologies change with time (as new nodes join and
old nodes leave the network) or exhibit random behavior due
to link failures, packet drops, node failure, etc. This motivated
the investigation of consensus algorithms under a stochastic
framework [6], [11], [13], [22], [26], [27]. In addition to
network variability, nodes in sensor networks operate under
limited computational, communication, and energy resources.
These constraints have motivated the design of “gossip” algo-
rithms, in which a node communicates with a randomly chosen
neighbor. Studies of randomized gossip consensus algorithms
can be found in [2], [29]. In particular, consensus based gossip
algorithms have been extensively used in the analysis and
study of the performance of wireless networks, with random
failures [21].

In this paper, we introduce and analyze a generalized ran-
domized gossip algorithm for achieving consensus. The algo-
rithm acts on convex metric spaces, which are metric spaces
endowed with a convex structure. We show that under the
given algorithm, the agents’ states converge to consensus with
probability one and in the rth mean sense. The convergence
study is based on analyzing the dynamics of a set of stochastic
differential equations driven by Poisson counters. Additionally,
for a particular network topology we investigate in more depth
the rate of convergence of the first and second moment of the
distances between the agents’ states. We present instances of
the generalized gossip algorithm for three convex metric spaces
defined on the set of real numbers, the collection of compact,
convex sets, and the set of discrete random variables. It is
widely recognized that asymptotic agreement among agents
is achieved if their states move towards the interior of the
convex hull they define. This fundamental notion is explained
in [16] for dynamics evolving in finite dimensional Euclidean
spaces. In our work we extend these results to be applicable in
convex metric spaces. Then one can define update algorithms
which yield asymptotic consensus over autonomous agents, a
probabilistic-gossip alternative of which is the topic of this pa-
per. Generalizing the convex property to non-Euclidean spaces
allows for dropping a number of smoothness assumptions on
the dynamics. For example, the continuity assumption of the
maps in [16], necessary for the stability analysis together
with properties such as compactness and boundedness are no
longer necessary. The present work is a continuation of our

0018-9286 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1176 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 5, MAY 2015

previous results regarding the consensus problem on convex
metric space, where only deterministic, time-varying commu-
nication topologies are studied [9], [10], [12]. Compared with
the aforementioned work, the stochastic framework assumed
in the current paper requires a completely different approach
for studying the convergence properties of the algorithm. A
preliminary short version of this paper can be found in [14],
where due to space limitations most of the results are introduced
without proof. Here, we refine and improve the results initially
introduced in [14], we include all necessary proofs together
and some new examples of convex metric spaces and their
corresponding agreement algorithms.

The paper is organized as follows. Section II introduces
the main concepts related to convex metric spaces. Section III
formulates the problem and states our main results. Sections IV
and V give the proof of our main results, together with pertinent
preliminary results. In Section VI, for a complete communi-
cation topology and uniform Poisson counters, we present an
in-depth analysis of the rate of convergence to consensus, in
the first and second moments sense. Section VII shows in-
stances of the generalized consensus algorithm for three convex
metric spaces.

Basic Notations: Given W ∈ R
n×n by [W ]ij we refer to

the (i, j) element of the matrix. The underlying graph of W
is a graph of order n without self loops, for which every
edge corresponds to a non-zero, off-diagonal entry of W . We
denote by 1l{A} the indicator function of the event A. Given two
symmetric matrices M1 and M2, by M1 � M2 (M1 � M2) we
understand that M1 −M2 is a positive definite (positive semi-
definite) matrix. Additionally, by M1 ≺ M2 (M1 � M2) we
understand that M2 −M1 is a positive definite (positive semi-
definite) matrix.

II. CONVEX METRIC SPACES

In this section, we introduce a set of definitions and basic re-
sults about convex metric spaces. Additional information about
the following definitions and results can be found in [30], [31].

Definition 2.1 ([31, pp. 142]): Let (X , d) be a metric space.
A mapping Ψ : X × X × [0, 1] → X is said to be a convex
structure on X if

d (u,Ψ(x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y)

∀x, y, u ∈ X and ∀λ ∈ [0, 1].
Definition 2.2 ([31, pp. 142]): The metric space (X , d)

together with the convex structure Ψ is called a convex metric
space, and is denoted henceforth by the triplet (X , d,Ψ).

Definition 2.3 ([31, pp. 144]): A convex metric space
(X , d,Ψ) is said to have Property (C) if every bounded decreas-
ing net of nonempty closed convex subsets of X has a nonempty
intersection.

Fortunately, convex matric spaces satisfying Property (C) are
not that rare. Indeed, by Smulian’s Theorem ([3, page 443]),
every weakly compact convex subset of a Banach space has
Property (C).

The following definition introduces the notion of convex set
in convex metric spaces.

Definition 2.4 ([31, pp. 143]): Let (X , d,Ψ) be a convex
metric space. A nonempty subset K ⊂ X is said to be convex if
Ψ(x, y, λ) ∈ K, ∀x, y ∈ K and ∀λ ∈ [0, 1].

Let P(X ) be the set of all subsets of X . We define the set
valued mapping Ψ̃ : P(X ) → P(X ) as

Ψ̃(A)
Δ
= {Ψ(x, y, λ)| ∀x, y ∈ A, ∀λ ∈ [0, 1]}

where A is an arbitrary subset of X .
In Proposition 1 of [31, p. 143] it is shown that in a convex

metric space, an arbitrary intersection of convex sets is also
convex, and therefore the next definition makes sense.

Definition 2.5 ([30, p. 11]): Let (X , d,Ψ) be a convex metric
space. The convex hull of the set A ⊂ X is the intersection of
all convex sets in X containing A and is denoted by co(A).

Another characterization of the convex hull of a set in X
is given in what follows. By defining Am

Δ
= Ψ̃(Am−1) with

A0 = A for some A ⊂ X , it is discussed in [30] that the set
sequence {Am}m≥0 is increasing, lim supm→∞ Am exists,
and lim supm→∞ Am = lim infm→∞ Am = limm→∞ Am =⋃∞

m=0 Am.
Proposition 2.1 ([30, p. 12]): Let (X , d,Ψ) be a convex

metric space. The convex hull of a set A ⊂ X is given by

co(A) = lim
m→∞

Am =
∞⋃

m=0

Am.

It follows immediately from above that if Am+1 = Am for
some m, then co(A) = Am.

We give several examples of convex metric spaces in Sec-
tion VII. Among them, the most familiar convex metric space
in the set of real numbers, together with the Euclidean distance
and the standard convex combination operator. More interesting
convex metric spaces are based on the collection of compact,
convex sets on R

n and on the set of discrete random variables.
We show that the collection of compact, convex sets endowed
with the Hausdorff distance and a convex structure based on the
Minkowski sum is indeed a convex metric space. This space
allows us to generate set dynamics that will drive a collection
of sets to the same value. Similarly, the set of discrete random
variables endowed with the (expected value) of the discrete
metric and a convex structure based on indicator functions is
also a convex metric space. As it will be seen later, such a
space allows for generating probabilistic consensus algorithm
on finite, countable sets.

III. PROBLEM FORMULATION AND MAIN RESULTS

Let (X , d,Ψ) be a convex metric space. We consider a set
of n agents indexed by i, with states denoted by xi(t) taking
values on X , where t represents the continuous time.

A. Communication Model

The communication among agents is subject to a commu-
nication network modeled by a undirected graph G = (V,E),
where V = {1, 2, . . . , n} is the set of agents, and E = {(j, i)|j
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can send information to i} is the set of edges. In addition, we
denote by Ni the inward neighborhood of agent i, i.e.,

Ni
Δ
= {j| (j, i) ∈ E}

where by assumption node i does not belong to the set Ni.
We make the following connectivity assumption.
Assumption 3.1: The graph G = (V,E) is connected.

B. Randomized Gossip Algorithm

In the following, we describe the mechanism used by the
agents to update their states. Agents can be in two modes:
sleep mode and update mode. Let Ni(t) be a Poisson counter
associated to agent i. In the sleep mode, the agents maintain
their states unchanged. An agent i exits the sleep mode and
enters the update mode when the associated counter Ni(t)
increments its value. Let ti be a time-instant at which the
Poisson counter Ni(t) increments its value. Then at ti, agent
i picks agent j with probability pi,j , where j ∈ Ni and updates
its state according to the rule

xi

(
t+i

)
= Ψ(xi (ti), xj(ti), λi) (1)

where λi ∈ [0, 1), Ψ is the convex structure and
∑

j∈Ni
pi,j =

1. By xi(t
+
i ) we understand the value of xi(t) immediately after

the instant update at time ti, which can be also written as

xi

(
t+i

)
= lim

t→ti, t>ti
xi(t)

which implies that xi(t) is a left-continuous function of t.
After agent i updates its state according to the above rule, it
immediately returns to the sleep mode, until the next increase
in value of the counter Ni(t).

Assumption 3.2: The Poisson counters Ni(t) are indepen-
dent and with rate μi, for all i.

A similar form of the above algorithm (the Poisson counters
are assumed to have the same rates) was extensively studied in
[2], in the case where X = R.

Let d(xi(t), xj(t)) be the distance between the states of
agents i and j, at time t. We note that since the agents update
their state at random times, the distances between agents are
random processes. We introduce the following convergence
definitions.

Definition 3.1: For given r ≥ 1, we say that the agents
converge to consensus in rth mean sense if

lim
t→∞

E {d (xi(t), xj(t))
r} = 0, ∀ (i, j), i 
= j.

Definition 3.2: We say that the agents converge to consensus
with probability one if

Pr

(
lim
t→∞

max
i,j

d (xi(t), xj(t)) = 0

)
= 1.

The following theorem states our main convergence results.
Theorem 3.1: Under Assumptions 3.1 and 3.2 and under the

randomized gossip algorithm
(a) the agents converge to consensus in rth mean for all

r ≥ 1, in the sense of Definition 3.1;

(b) the agents converge to consensus with probability one, in
the sense of Definition 3.2;

(c) if in addition the convex metric space satisfies Property
(C), then for any sample path ω of state processes, there
exists x∗ ∈ X (that may depend on ω) such that

lim
t→∞

d (xi(t, ω), x
∗(ω)) = 0.

The above theorem states that the agents will reach consensus
in the rth mean sense and almost sure sense. In addition, not
only that the distances between the states of the agents will
converge to zero, but in fact, all agents will converge to some
common point in X with probability one.

We point out that although we use Poisson statistics for the
activation times, other statistics can be used as well. The Pois-
son statistics, however, allow us to use Itô calculus to derive
expressions for the first and second moments of the distances
between agents. Note that even though the communication
graph is assumed undirected, most communications take place
unidirectionally. The only situation when bidirectional links are
required is at the instance an agent wakes up and needs to signal
one of its neighbors that is ready to receive its latest state.

IV. PRELIMINARY RESULTS

In this section, we construct the stochastic dynamics of the
vector of distances between agents. Let ti be a time-instant
at which counter Ni(t) increments its value. According to the
gossip algorithm, the distance between agents i and j at time
t+i is given by

d
(
xi(t

+
i ), xj(t

+
i )

)
= d (Ψ (xi(ti), xl(ti), λi) , xj(ti)) (2)

with probability pi,l. Let θi(t) be an independent and identically
distributed (i.i.d.) random process, such that Pr(θi(t) = l) =
pi,l for all l ∈ Ni and for all t. It follows that (2) can be
equivalently written as

d
(
xi(t

+
i ), xj(t

+
i )

)
=

∑
l∈Ni

1l{θi(ti)=l}d (Ψ (xi(ti), xl(ti), λi) , xj(ti))

where 1l{·} denotes the indicator function. Using the inequality
property of the convex structure introduced in Definition 2.1,
we further get

d
(
xi(t

+
i ), xj(t

+
i )

)
≤ λid (xi(ti), xj(ti))+

+(1− λi)
∑
l∈Ni

1l{θi(ti)=l}d (xl(ti), xj(ti)) . (3)

Assuming that tj is a time-instant at which the Poisson
counter Nj(t) increments its value, in a similar manner as
above, we get that

d
(
xi(t

+
j ), xj(t

+
j )

)
≤ λjd (xi(tj), xj(tj))+

+(1− λj)
∑
l∈Nj

1l{θj(tj)=l}d (xl(tj), xi(tj)) . (4)
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Consider now the scalars ηi,j(t) whose dynamics satisfy (3)
and (4), but with equality, that is

ηi,j
(
t+i

)
= λiηi,j(ti) + (1− λi)

∑
l∈Ni

1l{θi(ti)=l}ηj,l(ti) (5)

and

ηi,j
(
t+j

)
= λjηi,j(tj) + (1− λj)

∑
l∈Nj

1l{θj(tj)=l}ηi,l(tj) (6)

with ηi,j(0) = d(xi(0), xj(0)).
Remark 4.1: Note that the index pair of η refers to the

distance between two agents i and j. As a consequence, ηi,j
and ηj,i will be considered the same objects and counted only
once.

Proposition 4.1: The following inequalities are satisfied
with probability one:

ηi,j(t) ≥ 0 (7)
ηi,j(t) ≤ max

i,j
ηi,j(0) (8)

d (xi(t), xj(t)) ≤ ηi,j(t) (9)

for all i 
= j and t ≥ 0.
Proof: Inequalities (7) and (8) follow immediately, noting

that for any sample path of the Poisson counters, ηi,j(t) are
updated by performing convex combinations of non-negative
quantities. To show inequality (9) we can use an inductive
argument. Let ti be the time instant at which the counter
Ni(t) increments its value and assume that d(xi(ti), xj(ti)) ≤
ηi,j(ti) for all i, j. Immediately after ti, the new value of
d(xi(t), xj(t)) is given by

d
(
xi(t

+
i ), xj(t

+
i )

)
≤ λid (xi(ti), xj(ti))+

+ (1− λi)
∑
l∈Nj

1l{θj(ti)=l}d (xl(ti), xi(ti)) ≤

≤ λiηi,j(ti) + (1− λi)
∑
l∈Ni

1l{θi(ti)=l}ηj,l(ti) = ηi,j
(
t+i

)
.

Therefore, after each increment of counter Ni(t), we get that

d
(
xi

(
t+i

)
, xj

(
t+i

))
≤ ηi,j

(
t+i

)
.

Using the same argument for all Poison counters, inequality (9)
follows. �

We now elaborate on the dynamics of ηi,j(t). From (5) and
(6) we note that ηi,j(t) at time ti and tj must agree with the
solution of a stochastic differential equation driven by Poisson
counters. Namely, we have

dηi,j(t) =

[
− (1− λi)ηi,j(t) + (1− λi)

×
∑
l∈Ni

1l{θi(t)=l}ηj,l(t)

]
dNi(t)+[

− (1− λj)ηi,j(t) + (1− λj)

×
∑
m∈Nj

1l{θj(t)=m}ηi,m(t)

⎤
⎦ dNj(t). (10)

Let us now define the n̄ dimensional vector η = (ηi,j), where
n̄ = n(n− 1)/2 (since (i, j) and (j, i) correspond to the same
distance variable). Equation (10) can be compactly written as

dη(t) =
∑

(i,j),i
=j

Φi,j (θi(t))η(t)dNi(t)

+
∑

(i,j),i
=j

,Ψi,j (θj(t))η(t)dNj(t). (11)

where the n̄× n̄ dimensional matrices Φi,j(θi(t)) and
Ψi,j(θj(t)) are defined as

Φi,j (θi(t)) =

⎧⎪⎨
⎪⎩

−(1− λi) at entry [(i, j)(i, j)]
(1− λi)1l{θi(t)=l} at entries [(i, j)(l, j)],

l ∈ Ni, l 
= j, l 
= i
0 all other entries

and

Ψi,j (θj(t))=

⎧⎪⎨
⎪⎩

−(1− λj) at entry [(i, j)(i, j)]
(1−λj)1l{θj(t)=m} at entries [(i, j)(m, i)],

m ∈ Nj ,m 
= j,m 
= i
0 all other entries.

The dynamics of the first moment of the vector η(t) is given
by

d

dt
E {η(t)} =

∑
(i,j),i
=j

E {Φi,j (θi(t))η(t)μi

+ Ψi,j (θj(t))η(t)μj} . (12)

Using the independence of the random processes θi(t), we can
further write

d

dt
E {η(t)} = WE {η(t)}

where W is a n̄× n̄ dimensional matrix whose entries are
given by

[W ](i,j),(l,m) =⎧⎪⎨
⎪⎩

−(1−λi)μi−(1−λj)μj l= i and m = j
(1−λi)μipi,l l∈Ni, m=j, l 
=j,
(1−λj)μjpj,m l= i, m∈Nj , m 
= i,
0 otherwise.

(13)

The elements of the matrix W are calculated from the elements
of Φi,j and Ψij after taking the expected value in (11). It
is a matrix whose entries depend on the rates of the Poisson
counters, on the parameters of the convex structure, on the
probabilities of choosing neighbors, and on the connectivity
structure of the communication graph. More importantly, it
controls the dynamics of the first moment of η.

The following Lemma studies the properties of the matrix
W , introduced above.

Lemma 4.1: Let W be the n̄× n̄ dimensional matrix defined
in (13). Under Assumption 3.1, the following properties hold:

(a) Let Ḡ be the directed graph (without self loops) corre-
sponding to the matrix W , that is, a link from (l,m) to
(i, j) exists in Ḡ if [W ](i,j),(l,m) > 0. Then Ḡ is strongly
connected.
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(b) The row sums of matrix W are non-positive, i.e.,

∑
(l,m),l 
=m

[W ](i,j)(l,m) ≤ 0, ∀(i, j), i 
= j.

(c) There exists at least one row (i∗, j∗) of W whose sum is
negative, that is,

∑
(l,m),l 
=m

[W ](i∗,j∗)(l,m) < 0.

Proof: (a) Consider the pair of nodes (i, j). From
the structure of matrix W we note that in one step
(i, j) is connected to the set of nodes V(1)

(i,j) = {(l, j)| l ∈
N 1

i }
⋃
{(i,m)| m ∈ N 1

j } (where the pairs (l,m) and (m, l)
are considered equivalent and counted only once, and l 
= m).
Fixing m, from a node (i,m) we can travel in one step to any
node in the set {(l,m)| l ∈ Ni}. Similarly, fixing l, from (l, j)
we can travel in one step to any node in the set {(l,m)| m ∈
Nj}. Therefore, in two steps, the pair (i, j) is connected to

the nodes in the set V(2)
(i,j) = {(l,m)| l ∈ Ni,m ∈ Nj}. Using a

simple inductive argument, from the node (i, j) of graph Ḡ, we
can reach in 2k steps the nodes in the set V(2k)

(i,j) = {(l,m)| l ∈
N k

i ,m ∈ N k
j }, where N k

i denotes all the nodes that can be
reached from node i of graph G in k steps. By Assumption 3.1,
we have that Nn

i = {1, 2, . . . , n}, and therefore in 2n steps we
can visit any node in graph Ḡ starting from (i, j).

(b) Consider a row (i, j). For convenience, let us define the
following positive scalars:

ξi
Δ
= (1− λi)μi and ξj

Δ
= (1− λj)μj . (14)

We can express the sum of the entries of the row (i, j) as

∑
(l,m)

[W ](i,j)(l,m) = −(ξi + ξj) + ξi
∑

l∈Ni,l 
=j,m=j

pi,l +

+ ξj
∑

m∈Nj ,m 
=i,l=i

pj,m ≤ −(ξi + ξj) + ξi + ξj = 0.

(c) Consider an arbitrary row (i, j). The row (i, j) would sum
up to zero in two cases. In the first case, i 
∈ Nj and j 
∈ Ni,
which implies

∑
l∈Ni,l 
=j,m=j

pi,l = 1 and
∑

m∈Nj ,m 
=i,l=i

pj,m = 1

and therefore

∑
(l,m)

[W ](i,j)(l,m) = −(ξi + ξj) + ξi + ξj = 0.

However, having i 
∈ Nj and j 
∈ Ni for all i and j means
that the communication graph G = (V,E) is not (strongly)
connected, contradicting Assumption 3.1. In the second case,
i ∈ Nj and j ∈ Ni and |Ni| = 1 and |Nj | = 1 (that is, node i

has only one neighbor, namely j and j has only one neighbor,
namely i). In this case∑
l∈Ni,l 
=j,m=j

pi,l=pi,j = 1 and
∑

m∈Nj ,m
=i,l=i

pj,m = pj,i = 1

and consequently∑
(l,m)

[W ](i,j)(l,m) = −(ξi + ξj) + ξi + ξj = 0.

But this case means that the nodes i and j are separated from
all other nodes in the graph G = (V,E) and contradicts the
connectivity Assumption 3.1. Therefore, there must exist at
least one row (i∗, j∗) so that∑

(l,m)

[W ](i∗,j∗)(l,m) < 0.

�
Consider now the matrix Q

Δ
=I+εW , where I is the identity

matrix and ε is a positive scalar satisfying the strict inequality

0 < ε <
1

2maxi{ξi}

where ξi and ξj were defined in (14).
The following Corollary follows from the previous Lemma

and describes the properties of the matrix Q.
Corollary 4.1: The matrix Q has the following properties:
(a) The directed graph (without self loops) corresponding to

matrix Q (that is, a link from (l,m) to (i, j) exists if
[Q](i,j),(l,m) > 0) is strongly connected.

(b) The matrix Q is a non-negative matrix with positive
diagonal elements.

(c) The rows of Q sum up to a positive value not larger than
one, that is∑

(l,m),l 
=m

[Q](i,j)(l,m) ≤ 1, ∀(i, j).

(d) There exists at least one row (i∗, j∗) of Q which sums up
to a positive value strictly smaller than one, that is∑

(l,m),l 
=m

[Q](i∗,j∗)(l,m) < 1.

Proof: Noting that the directed graph (without self loops)
corresponding to the matrix Q is identical to the one cor-
responding to the matrix W , part (a) follows. The diagonal
elements of Q are given by

[Q](i,j)(i,j) = 1− ε(ξi + ξj).

Using the fact that 0 < ε(ξi + ξj) < 1, and the obvious obser-
vation that the non-diagonal elements are non-negative, we ob-
tain part (b). The sum of the entries of the row (i, j) is given by∑

(l,m)

[Q](i,j)(l,m) = 1 + ε
∑
(l,m)

[W ](i,j)(l,m)

and using parts (b) and (c) of Lemma 4.1, parts (c) and (d) of
the current Corollary follow, respectively. �
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Remark 4.2: The above Corollary says that the matrix Q is
an irreducible, substochastic matrix, with at least one row sum
less than one. Therefore it’s spectral radius is smaller than 1,
ρ(Q) < 1 by standard results in the theory of Non-Negative
Matrices ([15, p. 685, problem 8.3.7]).

V. PROOF OF THE MAIN RESULTS

In this section we prove the main results presented in
Section III.

A. Proof of Part (a) of Theorem 3.1

We first show that the vector η(t) converges to zero in mean.
By Remark 4.2 we have that the spectral radius of Q is smaller
than one, that is

ρ(Q) < 1

where ρ(Q) = maxī |λī,Q|, with λī,Q, ī = 1, . . . , n̄ being the
eigenvalues of Q. This also means that

Re(λī,Q) < 1, ∀ī. (15)

But since W = (1/ε)(Q− I), it follows that the real part of
the eigenvalues of W are given by

Re(λī,W ) =
1

ε

(
Re(λī,Q)− 1

)
< 0, ∀ī

where the last inequality follows from (15). Therefore, the
solution of the linear dynamics

d

dt
E {η(t)} = WE {η(t)}

is asymptotically stable, and hence η(t) converges in mean
to zero. A standard result in probability theory tells us that
convergence to zero in mean implies (I) convergence to zero
in probability, as well. In addition, from Proposition 4.1, we
have that (II) ηi,j ≤ maxi,j ηi,j(0) with probability one, for all
t ≥ 0. Using a similar argument as in the proof of Theorem 4
[5, p. 310] formulated for a sequence of random variables, and
the properties (I) and (II), we can show that

lim
t→∞

E {ηi,j(t)r} = 0, ∀r ≥ 1.

Using (9) of Proposition 4.1, the result follows.

B. Proof of Part (b) of Theorem 3.1

In the following we show that η(t) converges to zero almost
surely. Equations (5) and (6) show that with probability one
ηi,j(t) is non-negative and that for any t2 ≤ t1, with prob-
ability one ηi,j(t2) belongs to the convex hull generated by
{ηl,m(t1)| for all pairs (l,m)}. But this also implies that with
probability one

max
i,j

ηi,j(t2) ≤ max
i,j

ηi,j(t1). (16)

Hence, for any sample path of the random process η(t), the
sequence {maxi,j ηi,j(t)}t≥0 is monotone non-increasing and
lower bounded. Using the monotone convergence theorem, we
have that for any sample path ω, there exists η̃(ω) so that

lim
t→∞

max
i,j

ηi,j(t, ω) = η̃(ω)

or similarly

Pr

(
lim
t→∞

max
i,j

ηi,j(t) = η̃

)
= 1.

Next, we show that η̃ must be zero with probability one. We
achieve this by showing that there exists a subsequence of
{maxi,j ηi,j(t)}t≥0 that converges to zero with probability one.
In Part (a) we proved that η(t) converges to zero in the rth
mean sense. Therefore, for any pair (i, j) and (l,m) we have
that E{ηi,j(t)ηl,m(t)} converges to zero. Moreover, since

E {ηi,j(t)ηl,m(t)} ≤ max
i,j

ηi,j(0)E {ηl,m(t)}

and since E{ηl,m(t)} converges to zero exponentially fast, we
have that E{ηi,j(t)ηl,m(t)} converges to zero exponentially
as well. Let {tk}k≥0 be a time sequence such that tk = kh,
for some h > 0. From above, it follows that E{‖η(tk)‖2}
converges to zero geometrically. But this is enough to show that
the sequence {η(tk)}k≥0 converges to zero with probability
one by using the Borel-Cantelli Lemma (Theorem 10 of [5, p.
320]). Therefore, η̃ must be zero. Using (9) of Proposition 4.1,
we conclude the proof of Part (b).

C. Proof of Part (C) of Theorem 3.1

We now focus on showing that not only the distances be-
tween the states of the agents converge to zero with probability
one, but in fact the states of the agents converge to some point in
X , with probability one. The essence of the proof is to show that
the convex hull of the states of the agents converge to one point,
for any sample path of the states processes. Let ω be a sample
path of the state process and let {tk}k≥0 be the time instants at
which the Poisson counters increase their values, corresponding
to this sample path. Additionally, let Ak be the set of the agents’
states at time tk, that is Ak = {xj(tk), j = 1 . . . n}. According
to Definition 2.5, Proposition 2.1 and (1) of the randomized
gossip algorithm, we have that

xi(tk+1) ∈ co(Ak), ∀i.

But this also implies the next convex hull’s inclusion

co(Ak+1) ⊆ co(Ak).

From the theory of limit of sequence of sets it follows that there
exists a set A∞ such that

lim sup co(Ak) = lim inf co(Ak) = lim co(Ak) = A∞

where A∞ =
⋂

k≥0 co(Ak).
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Denoting the diameter of the set Ak by

diam(Ak) = sup{d(x, y)| x, y ∈ Ak}

from Proposition 2 of [30], we have that

diam(Ak) = diam (co(Ak)) .

Additionally, in Part (b) we showed that

lim
t→∞

d (xi(t), xj(t)) = 0, ∀ (i, j)

with probability one and therefore, the same is true for the
sample path ω, that is

lim
k→∞

d (xi(tk), xj(tk)) = 0, ∀ (i, j).

But this means that

lim
k→∞

diam(Ak) = lim
k→∞

diam (co(Ak)) = 0

and therefore diam(A∞) = 0. Since the convex metric space
on which the randomized gossip algorithm operates satisfies
Property (C), and the sets Ak are bounded (they have bounded
diameter) and closed (by construction), it follows that the set
A∞ is non-empty. Consequently, there exists a point x∗, which
may depend on ω, so that A∞ = x∗, and the result follows.

VI. RATE OF CONVERGENCE OF THE GENERALIZED

GOSSIP CONSENSUS ALGORITHM UNDER COMPLETE

AND UNIFORM CONNECTIVITY

We note that under our general problem setup, it is difficult to
get explicit formulas for the rate of convergence to consensus,
in the first and second moments. We are able however to obtain
explicit results for the aforementioned rates of convergence
under specific assumptions on the topology of the graph, on the
parameters of the Poisson counters and on the convex structure.

Assumption 6.1: The Poisson counters have the same rate,
that is μi = μ for all i. Additionally, the parameters used by the
agents in the convex structure are equal, that is λi = λ, for all
i. In the update mode, each agent i picks one of the rest n−
1 agents uniformly, that is Ni = N − {i} and pi,j = 1/n− 1,
for all j ∈ Ni.

The following two Propositions give upper bounds on the rate
of convergence for the first and second moments of the distance
between agents, under Assumption 6.1.

Proposition 6.1: Under Assumptions 3.1, 3.2, and 6.1, and
under the generalized gossip algorithm, the first moment of
the distances between agents’ states converges exponentially to
zero, that is

E {d (xi(t), xj(t))} ≤ c1e
α1t, for all pairs (i, j)

where α1 = −2(1− λ)μ/(n− 1) and c1 is a positive scalar
depending of the initial conditions.

Proof: By Proposition 4.1, with probability one we have
that for any pair (i, j) d(xi(t), xj(t)) ≤ ηi,j(t) and there-
fore E{d(xi(t), xj(t))} ≤ E{ηi,j(t)}. But the convergence of
E{ηi,j(t)} is determined by (12) and in particular by the

eigenvalues of matrix W , which are studied in what follows.
From (13) it immediately follows that W is a symmetric matrix
and that every diagonal element is −2(1− λ)μ. Consider an
arbitrary node (i, j) and write the element of the corresponding
row in the following convenient form:

(1, 2), (1, 3), . . . , (1, n)

(2, 3), (2, 4), . . . , (2, n)

. . .

(i− 1, i), (i− 1, i+ 1), . . . , (i− 1, n)

(i, i+ 1), . . . , (i, n)

. . .

(j − 1, j), . . . , (j − 1, n)

(j, j + 1), . . . , (j, n)

(j + 1, j + 2), . . . , (n− 1, n)

where we split it with horizontal lines in 5 segments (num-
bered 1 through 5 from top to bottom). Following (13) ob-
serve that excluding the diagonal, the matrix has exactly
2i− 2 positive elements in segment 1, n− i− 1 positive
elements in segment 2, j − i− 1 positive elements in seg-
ment 3, n− j positive elements in segment 4 and 0 posi-
tive elements in segment 5. Therefore, the total number of
off-diagonal entries in a row is 2n− 4. Again, (13) dictates
that the value in any positive element is μ((1− λ)/(n− 1)).
As a consequence, we conclude that the sum of every row
is α1 = −2((1− λ)μ/(n− 1)), that is obviously the eigen-
value of the right eigenvector 1ln̄, that is the vector of all
ones. Noting that W is symmetric all eigenvalues are real
and by Gershgorin’s theorem (Theorem 7.2.1 of [4, p. 320])
they must lie in the circle (−2(1− λ)μ, r) where r = 2(1−
λ)μ((n− 2)/(n− 1)) is the sum of the non zero, off-diagonal
elements of the rows. Note that the eigenvalue α1 lies exactly on
the boundary of the circle, in the negative half plane. This leads
us to conclude that this is indeed the maximum one. Therefore,
there exists a positive scalar c1 which depends on the initial
conditions such that

E {ηi,j(t)} ≤ c1e
α1t, for all (i, j)

from where the result follows. �
Proposition 6.2: Under Assumptions 3.1, 3.2, and 6.1, and

under the generalized gossip algorithm, the second moment of
the distances between agents’ states converges exponentially to
zero, that is

E
{
d (xi(t), xj(t))

2
}
≤ c2e

α2t, for all pair (i, j)

where α2 = −(μ((2(1− λ2))/(n− 1)) and c2 is a positive
scalar depending of the initial distances between agents.

Proof: As before, by Proposition 4.1, with probabil-
ity one we have that for any pair (i, j)d(xi(t), xj(t)) ≤
ηi,j(t) and therefore E{d(xi(t), xj(t))

2} ≤ E{ηi,j(t)2}. But
E{ηi,j(t)2} ≤ E{‖η(t)‖2}, for any pair (i, j) and therefore is
sufficient to study the convergence properties of the right-hand
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side of the previous inequality. Using Ito’s rule, we can differ-
entiate the quantity ‖η(t)‖2 and obtain

d

dt
‖η(t)‖2=

∑
i,j

η(t)′
[
Φi,j (θi(t)) + Φi,j (θi(t))

′

+Φi,j(θi(t))
′ Φi,j (θi(t))

]
η(t)dNi(t)

+
∑
i,j

η(t)′
[
Ψi,j (θj(t)) + Ψi,j (θj(t))

′

+Ψi,j(θj(t))
′Ψi,j(θj(t))

]
η(t)dNj(t)

from where we get

d

dt
E
{
‖η(t)‖2

}
=

∑
i,j

E
{
η(t)′

[
Φi,j (θi(t)) + Φi,j (θi(t))

′

+Φi,j (θi(t))
′ Φi,j (θi(t))

]
η(t)

}
μi

+
∑
i,j

E
{
η(t)′

[
Ψi,j

(
θj(t)+Ψi,j (θj(t))

′)
+Ψi,j (θj(t))

′ Ψi,j (θj(t))
]
η(t)

}
μj .

Using the independence of the random process θi(t) and
Assumption 6.1, we can further write

d

dt
E
{
‖η(t)‖2

}
= μ

∑
i,j

E {η(t)′Hη(t)}

where

H=E
{
Φi,j(θi(t))+Φi,j (θi(t))

′+Φi,j (θi(t))
′ Φi,j (θi(t))+

+Ψi,j (θj(t))+Ψi,j (θj(t))
′+Ψi,j (θj(t))

′ Ψi,j (θj(t))
}
.

Using Assumption 6.1, we have

Φi,j (θi(t)) + Φi,j (θi(t))
′ =

(1− λ)

⎧⎪⎨
⎪⎩

−2 at entry (i, j)(i, j)
1l{θi(t)=l} at entries (i, j)(l, j) and

(l, j)(i, j) l ∈ Ni, l 
= j
0 at all other entries,

Φi,j (θi(t))
′ Φi,j (θi(t)) =

(1− λ)2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 at entry (i, j)(i, j)
−1l{θi(t)=l} at entries (i, j)(l, j) and

(l, j)(i, j) l ∈ Ni, l 
= j
1l{θi(t)=l} at entries (l, j)(l, j) l ∈ Ni, l 
= j
0 at all other entries,

Ψi,j (θj(t)) + Ψi,j (θj(t))
′ =

(1− λ)

⎧⎪⎨
⎪⎩

−2 at entry (i, j)(i, j)
1l{θj(t)=l} at entries (i, j)(i, l) and

(i, l)(i, j) l ∈ Nj , l 
= i
0 at all other entries,

Ψi,j (θj(t))
′ Ψi,j (θj(t)) =

(1− λ)2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 at entry (i, j)(i, j)
−1l{θj(t)=l} at entries (i, j)(i, l) and

(i, l)(i, j) l ∈ Nj , l 
= i
1l{θj(t)=l} at entries (i, l)(i, l) l ∈ Nj , l 
= i
0 at all other entries.

It follows that

E
{
Φi,j (θi(t)) + Φi,j (θi(t))

′} =

(1− λ)

⎧⎪⎨
⎪⎩

−2 at entry (i, j)(i, j)
1

n−1 at entries (i, j)(l, j) and
(l, j)(i, j) l ∈ Ni, l 
= j

0 at all other entries,
E
{
Φi,j (θi(t))

′ Φi,j (θi(t))
}
=

(1− λ)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 at entry (i, j)(i, j)
− 1

n−1 at entries
(i, j)(l, j) and (l, j)(i, j) l ∈ Ni, l 
= j

1
n−1 at entries (l, j)(l, j) l ∈ Ni, l 
= j
0 at all other entries,

E
{
Ψi,j (θj(t)) + Ψi,j (θj(t))

′} =

(1− λ)

⎧⎪⎨
⎪⎩

−2 at entry (i, j)(i, j)
1

n−1 at entries (i, j)(i, l) and
(i, l)(i, j) l ∈ Nj , l 
= i

0 at all other entries,
E
{
Ψi,j (θj(t))

′ Ψi,j (θj(t))
}
=

(1− λ)2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 at entry (i, j)(i, j)
− 1

n−1 at entries (i, j)(i, l) and
(i, l)(i, j) l ∈ Nj , l 
= i

1
n−1 at entries (i, l)(i, l) l ∈ Nj , l 
= i
0 at all other entries.

Summing up the above matrices, we obtain that H is a sym-
metric matrix that has as diagonal elements quantities of the
form [

−4(1− λ) + (1− λ)2
(
2 +

2n− 4

n− 1

)]
μ

and the off-diagonal, non-zero entries are given by

λ(1− λ)
2

n− 1
μ.

Counting the off-diagonal entries on a row we obtain the same
result as in the case of the first moment. Namely, the number
of non-zero and off-diagonal elements on each row is 2(n− 2).
Also note that the diagonal elements are negative and that the
off-diagonal and non-zero elements are positive for any n ≥
2. Therefore, each row of H sums up to the same value and
consequently H has an eigenvalue

α2 =

[
−4(1− λ) + (1− λ)2

(
2 +

2n− 4

n− 1

)]
μ+

+2(n− 2)λ(1− λ)
2

n− 1
μ = −2(1− λ2)μ

n− 1

corresponding to eigenvector 1n̄, which is the n̄ dimensional
vector of all ones. Note that α2 is negative for 0 ≤ λ < 1
and n ≥ 2. In addition, by Gershgorin’s theorem, we have that
all eigenvalues belong to the circle centered at [−4(1− λ) +
(1− λ)2(2 + (2n− 4)/(n− 1))]μ with radius 2(n− 2)λ(1−
λ)(2/(n− 1))μ and therefore the eigenvalue α2 dominates
the rest of the eigenvalues; eigenvalues that are real due to
symmetry. Therefore, we have that

H � α2I
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and consequently

d

dt
E
{
‖η(t)‖2

}
≤ α2E

{
‖η(t)‖2

}
.

We can further write that

E
{
‖η(t)‖2

}
≤ eα2tE

{
‖η(t0)‖2

}
from where the result follows. �

Remark 6.1: As expected, the rate of convergence of the
upper bounds on the both moments increases with the rate
of the Poisson counters. Interestingly, the maximum rate of
convergence of the upper bounds on the both moments (that
is, the minimum values for α1 and α2) are attained for λ = 0,
meaning that an awaken agent should never pick its own value,
but the value of a neighbor.

Remark 6.2: The all-to-all communication is a connectivity
condition that allows for an explicit calculation of the quanti-
ties α1, α2 in terms of the parameters of the algorithm. Such
calculations are not easy to establish under milder connectivity
assumptions, such as simple connectivity. Note, however, that a
numerical estimates of α1 could be obtained from the spectral
properties of the matrix W defined in (13).

VII. THE GENERALIZED GOSSIP CONSENSUS ALGORITHM

FOR PARTICULAR CONVEX METRIC SPACES

In this section we present several instances of the gossip
algorithm for particular examples of convex metric spaces. We
consider three cases for X : the set of real numbers, the col-
lection of compact, convex sets and the set of discrete random
variables. We endow each of these sets with a metric d and a
convex structure ψ. We show the particular form the generalized
gossip algorithm takes for these convex metric spaces, and give
some numerical simulations of these algorithms.

A. The Set of Real Numbers

Let (X , d) be the standard Euclidean metric space (where
for simplicity we choose X = R). It can be easily verified
that ψ(x, y, λ) = λx+ (1− λ)y is a convex structure, and
therefore (X , d, ψ) is a convex metric space. In this case, the
generalized randomized consensus algorithm takes the form
shown in Algorithm 1.

Note that this algorithm is exactly the randomized gossip
algorithm for solving the consensus problem that was studied
in [2].

B. The Collection of Compact, Convex Sets

For the following example we draw inspiration from the
analysis of linear dynamics driven by compact, convex sets
studied in [23], [24]. Let X = ComConv(Rn) denote the col-
lection of convex, compact sets in R

n. Given two sets X ∈
R

n and Y ∈ R
n, the Minkowski sum between the two set is

defined as X ⊕ Y = {x+ y| x ∈ X, y ∈ Y }. We also define
the multiplication of a set X by a scalar by λX = {λx| x ∈
X}. It can be easily checked that if X,Y ∈ X then λX ⊕ (1−
λ)Y ∈ X , and that λX ⊕ (1− λ)X = X for all λ ∈ [0, 1]. It is
well-known that ComConv(Rn) endowed with the Hausdorff
distance is a complete metric space [28], where the Hausdorff
distance is defined as

H(L,X, Y ) = min
α

{α| X ⊆ Y ⊕ αL, Y ⊆ X ⊕ αL, α ≥ 0}
(17)

with L ⊂ X a symmetric, nonempty set containing the origin.
Let us now define the mapping Ψ(X,Y, λ) = λX ⊕ (1− λ)Y ,
where X,Y ∈ X and λ ∈ [0, 1]. Using the above observations
it should be clear that any set produced by the mapping Ψ
belongs to X . The following proposition shows that Ψ(X,Y, λ)
is indeed a convex structure.

Proposition 7.1: The mapping ψ is a convex structure on X
with respect to the Hausdorff distance.

Proof: All we have to show is that the following inequality
holds:

H(L,U,Ψ(X,Y, λ))≤λH(L,U,X)+(1−λ)H(L,U,X) (18)

for all U,X, Y ∈ X , and λ ∈ [0, 1]. To simplify the proof, we
use the fact that the Hausdorff distance can also be represented
in terms of the support function of a closed, convex set. Given
that the support function at a point z ∈ R

n is given by

s(X, z) = sup
x
{z′x| x ∈ X}

the Hausdorff distance between two closed and convex sets
X,Y can be equivalently expressed as

H(L,X, Y ) = ‖s(X, ·)− s(Y, ·)‖∞ (19)

where ‖ · ‖ is the uniform norm on the unit sphere, that is
‖f‖∞ = supz{f(z)| z′z ≤ 1}. Therefore, we have that

H (L,U,Ψ(X,Y, λ))=‖s(U, ·)−s (Ψ(X,Y, λ), ·)‖∞ . (20)

Observing that the support function of a set λX ⊕ (1− λ)Y
can be expressed as

s (λX ⊕ (1− λ)Y, z) = sup
x,y

{λz′x+ (1− λ)z′y | y, x

∈ X, y ∈ Y } =
=λs(X, z) + (1− λ)s(Y, z)

we have that (20) can be further written as

H (L,U,Ψ(X,Y, λ)) = ‖s (λU ⊕ (1− λ)U, ·)
− s (λX ⊕ (1− λ)Y, ·) ‖∞ =

= ‖λ [s(U, ·)− s(X, ·)]
+(1− λ) [s(U, ·)− s(y, ·)]‖∞ ≤

≤λ ‖s(U, ·)− s(X, ·)‖∞
+ (1− λ) ‖s(U, ·)− s(Y, ·)‖∞ =

=λH(L,U,X) + (1− λ)H(L,U, Y )
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where the last equality followed from (19), and the result
follows. �

For this convex metric space, the randomized gossip consen-
sus algorithm is shown in Algorithm 2.

C. The Set of Discrete Random Variables

Let S = {s1, s2, . . . , sm, . . .} be finite or countable set of
real numbers and let (Ω,F ,P) be a probability space. We
denote by X the space of discrete measurable functions (ran-
dom variable) on (Ω,F ,P) with values in S. We introduce the
operator d : X × X → R, defined as

d(X,Y ) = E [ρ(X,Y )]

where ρ : R× R → {0, 1} is the discrete metric, i.e.,

ρ(x, y) =

{
1 x 
= y
0 x = y

and the expectation is taken with respect to the measure P . It is
not difficult to note that the operator d can also be written as
d(X,Y ) = E[1l{X 
=Y }] = Pr(X 
= Y ), where 1l{X 
=Y } is the
indicator function of the event {X 
= Y }.

We note that for all X,Y, Z ∈ X , the operator d satisfies the
following properties

(a) d(X,Y ) = 0 if and only if X = Y with probability one,
(b) d(X,Z) + d(Y, Z) ≥ d(X,Y ) with probability one,
(c) d(X,Y ) = d(Y,X),
(d) d(X,Y ) ≥ 0,

and therefore is a metric on X . The set X together with the
operator d define themetric space (X , d).

Let γ ∈ {1, 2} be an independent random variable defined on
the probability space (Ω,F ,P), with probability mass function
Pr(γ = 1) = λ and Pr(γ = 2) = 1− λ, where λ ∈ [0, 1]. We
define the mapping Ψ : X × X × [0, 1] → X given by

Ψ(X1, X2,λ)=1l{γ=1}X1+1l{γ=2}X2, ∀X1, X2∈X ,λ∈ [0, 1].

The following propositions shows that indeed (X , d,Ψ) is a
convex metric space.

Proposition 7.2: The mapping Ψ is a convex structure on X .

Fig. 1. Communication network with n = 60 nodes.

Proof: For any U,X1, X2 ∈ X and λ ∈ [0, 1], we have

d (U,Ψ(X1, X2, λ)) =E [ρ (U,Ψ(X1, X2, λ))]
=E[E[ρ(U,Ψ(X1, X2,λ))|U,X1, X2]]=

=E
[
E
[
ρ(U, 1l{γ=1}X1

+1l{γ=2}X2)
]
|U,X1, X2

]
=E [λρ(U,X1) + (1− λ)ρ(U,X2)]
=λd(U,X1) + (1− λ)d(U,X2).

�
For this particular convex metric space, the randomized consen-
sus algorithm is summarized in what follows.

D. Numerical Simulations

In this subsection, we present numerical simulations of the
generalized gossip algorithm in the case of the three convex
metric spaces previously mentioned. We consider two networks
of n = 60 nodes; one fully connected and one simply connected
shown in Fig. 1. The Poisson counter rates were chosen to
be uniformly distributed in the interval [1, 1.5]. The convex
structure parameters were chosen to be uniformly distributed in
the interval [0.1, 0.3]. In the connected case, when the agent i
wakes up, it picks one of its neighbor with probability (1/|Ni|).
In the fully connected case it picks an agent with probability
1/(n− 1).

For each of the three convex metric spaces, we present three
figures: the first and second figures show the values of the states
for the fully connected and simply connected communication
topologies, while the third figure depicts an upper bound on
the normalized value of the maximum of the distances between
the agents’ states, that is the quantities ηi,j(t). Our focus is on
showing that the vector of distances converge to zero and that
the states converge to the same value.
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Fig. 2. Randomized Gossip Algorithm on R: (a) the values of the states in the
fully connected topology; (b) the values of the states in the simply connected
topology; (c) (upper bounds on the) maximum of the distances between the
states of the agents.

The Fig. 2(a)–(c) present numerical simulations of the gossip
algorithm in the case of real numbers. The initial conditions
are uniformly distributed in [−5, 5]. Fig. 3(a)–(c) show the be-
havior of the generalized randomized gossip algorithm applied
on the collection of compact, convex sets. The initial values of
the states are polytope approximations of circles with radiuses
uniformly chosen from the interval [0.8, 4.8] and number of

Fig. 3. Randomized Gossip Algorithm on Compact, Convex Sets: (a) the
values of the states in the fully connected topology; (b) the values of the states
in the simply connected topology; (c) (upper bounds on the) maximum of the
distances between the states of the agents.

edges uniformly picked from the set {3, . . . , 7}. Simulation
results of the randomized gossip algorithm applied on a discrete
set of numbers are depicted in Fig. 4(a)–(c), in which the initial
conditions are uniformly chosen from the set {0, 1, . . . , 10}.
Note that since the distance on this space is defined as an
expectation, the convergence speed of the distances between
agents is actual lower than the converge speed of a realization
of the algorithm shown in Fig. 4(a)–(b).

As expected, in all three examples the agents converge to
the same value and the distances between the states of the
agents converge to zero, as well. In addition, since in the fully
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Fig. 4. Randomized Gossip Algorithm on Discrete Finite Sets: (a) the values
of the states in the fully connected topology; (b) the values of the states in
the simply connected topology; (c) (upper bounds on the) maximum of the
distances between the states of the agents.

connected case the agents have the chance to interact with
many more other agents, the convergence rate is higher. For
executing the numerical simulation of the gossip algorithm on
compact, convex sets, we used the Multi-Parametric toolbox
[7] that provides efficient numerical algorithms for computing
Minkowski sums of convex sets.

VIII. CONCLUSIONS

In this paper, we analyzed the convergence properties of
a generalized randomized gossip algorithm acting on convex
metric spaces. We gave convergence results in the almost sure
and the rth mean sense for the distances between the states of
the agents. Under specific assumptions on the communication
topology, we computed estimates of the rate of convergence
for the first and second moments of the distances between the
agents, explicitly. Additionally, we introduced instances of the
generalized gossip algorithm for three particular convex metric
spaces and presented numerical simulations of the algorithm.
These examples show how seemingly unrelated algorithms
can be put under a single umbrella: they are all instances of
a generalized consensus algorithm defined on convex metric
spaces. Since consensus algorithms are used as underlying tools
for many distributed computation problems, this generalized
framework may help with solving such problems, when they
are formulated on topological structures that go beyond the
standard Euclidean vector spaces.
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