
On the Connectivity Assumption of
Non-Linear Flocking Models

Christoforos Somarakis
The Institute For Systems Research

Applied Mathematics Dept.
University of Maryland

College Park, Maryland 20742, USA
Email: csomarak@umd.edu

John S. Baras
The Institute For Systems Research

E.C.E. Dept.
University of Maryland

College Park, Maryland 20742, USA
Email: baras@umd.edu

Abstract— The problem of collective behavior of au-
tonomous agents is discussed. Based on state dependent
communication graphs we analyze a family of non-
linear flocking models by establishing sufficient initial
conditions so as connectivity and thus asymptotic flocking
is ensured. We discuss models with non-linear uniformly
bounded connection rates with and without delays.

I. INTRODUCTION

Collective self-driven motion of autonomous agents
such as flocking of birds , schooling of fishes, swarm-
ing of bacteria, appears in many contexts and has
been the center of attention of various scientific com-
munities for very long time. The study of flocking
mechanisms based on mathematical models was ini-
tiated with the seminal work of [15] and was given
a rigorous interpretation in [8], paving the way for
a broad research field on distributed consensus and
flocking algorithms, which is of great interest to both
the control and the applied mathematics communities
(see for example [14], [5], [7], [13] and references
therein).

The control community approach on collective be-
haviour emanating from distributed calculations out
of local interactions between autonomous agents, in-
troduces mathematical models known as consensus
algorithms where persistent convex averaging of the
agents proposed quantities among them, converges
asymptotically to a common value.

In the flocking approach, each agent is charac-
terized by its position and velocity vectors, second
order consensus algorithms (speed averaging) yield
under, certain assumptions, asymptotic flocking, i.e.
co-ordination of the speed of every agent and bounded
distance between each other so that the flock is overall
bounded when the number of agents is finite.

A. Related work and contribution

Motivated by non-linear flocking models [5], [7] and
recent results in opinion dynamics [4], in this work
we analyse the asymptotic behaviour of a non-smooth,
non-linear flocking model with bounded interactions

range. Similar intermediate results have very recently
appeared in the literature. In [9] the authors study
first order non-linear consensus systems using integral
equations and establish similar asymptotic results. In
this work, we discuss a second order problem, with
different approach (differential inclusions) and aim to
answer different questions.

Our major contribution is that we eliminate the
assumption of connectivity and we establish initial
condition requirements for it, so that asymptotic flock-
ing can occur. Our results extend to the case where
there is delay in the communications between agents.

The paper is organized as follows: In section 2,
notations, preliminary definitions, background theory
and the general model is introduced. In section 3 we
establish asymptotic results in the case of no delay in
communication and we focus on the initial conditions
which guarantee asymptotic flocking with only one
flock. In section 4 we derive similar results in case of
a uniform constant delay. The discussion of the results
is discussed in section 6.

II. THEORETICAL FRAMEWORK

In this section, we introduce the background theory
used throughout this work.

A. Notations

Consider N < ∞ autonomous agents in a d-
dimensional Euclidean space. Each agent is character-
ized by its position and velocity vectors xi, vi ∈ Rd.
We write x = (x1, . . . , xN )′ , v = (v1, . . . , vN )′.
Also denote [N ] := [1, . . . , N ]. Define the diagonal
subspace of (Rd)N

∆ := {v ∈ (Rd)N |v1 = v2 = · · · = vN}

and its orthogonal complement ∆⊥. Then any element
v can be uniquely written as v = v∆ + v∆⊥ . This
remark will be of essence in the analysis to follow.

Our space is equipped with the inner product
〈x,y〉 =

∑N
i=1 x

T
i yi where xTi yi =

∑d
j=1 x

(j)
i y

(j)
i .

Also the norms to be used are the d-dimensional
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|xi| :=
√∑d

j=1(x
(j)
i )2, generalized in the (Rd)N

space ||x|| =
√
〈x,x〉 =

√∑N
i=1 |xi|2 and also

the infinity norm ||x||∞ = maxi{|xi|}. For any two
non-empty subsets S1, S2 of [N ] define the distance
d(S1, S2) := mini∈S1,j∈S2

|xi − xj |. Finally any time
derivative is taken to be the upper right Dini derivative.

B. Algebraic Graph Theory

A weighted graph is a triple G = (V,E,A) where
V is a finite set of nodes and from now on V = [N ],
E is a subset of [N ] × [N ] and A a matrix taking
values in R+ with aij > 0 if and only if (i, j) ∈ E.
If the non-zero elements of A are set identically to 1,
then we say we have a topological graph and denote it
by Ḡ together with all its related quantities. A graph
is said to be connected if for any i, j ∈ [N ] there
exists a subset of E of non-disjoint elements of [N ],
with a pair containing i and a pair containing j. The
matrix representation of any graph G is achieved with
the adjacency matrix A, the diagonal matrix D :=
Diag[

∑
j aij ] and the combinatorial Laplacian, L :=

D −A (see [2]).
1) Spectral properties of A and L: In this work A

is symmetric with N real eigenvalues the maximum
of which is the spectral radius of the graph. The con-
nectivity of G is characterized by the Fiedler number,
φ, of A which is the second smallest eigenvalue of
L. It is a well known result that G is connected if
and only if φ > 0 whereas in general the algebraic
multiplicity of the zero eigenvalue of L equals the
number of connected components of G [2]. Another
important fact from the algebraic graph theory is that
ker(L) = ∆. The next proposition establishes a useful
connection between geometric and topological graphs.

Proposition 1 ([2], [10]): Given a connected graph
Ḡ with diameter ρ̄ let λ̄A and φ̄ be the largest
eigenvalue of A and the second smallest eigenvalue
of L. Then

λ̄A ≤
√

2|E|(N − 1)

N
≤ N − 1 (1a)

φ̄ ≥ 4

Nρ̄
≥ 4

N(N − 1)
(1b)

C. Model Description

The dynamical system in consideration is

ẋi = vi

v̇i =

N∑
j=1

a(|xi − xj |)(v̂j − vi)
, i = 1 . . . N (2)

where v̂j = vj(t − c) , and c is a fixed non-negative
number modeling a uniform time-invariant delay. Ini-
tially in section 3 we set c = 0 for all i and a non
zero delay will be considered in section 4.

Each agent is equipped with a communication rate
function with which it can exchange information with

any other agent located within distance R. That is
a(r) : R+ → [0,M ] is a non-negative, non-increasing
scalar valued function which models the communica-
tion rate between agents in the 2nd order consensus
algorithm (2). The function a models the effect agents
have with each other so that the further away two
agents lie from each other the weaker will be the
effect between one another. Furthermore, after a fixed
distance R < ∞ we assume no communication.
In this work we will consider uniform bounds of
connectivity: a is taken to be Lipschitz continuous
with bounded support i.e. a(z) = 0 if and only if
z ≥ R and min0≤z≤R a(z) =: aR > 0. This frame-
work is in agreement with the classical connectivity
assumption in distributed algorithms: If two agents are
connected the connection weight must be uniformly
lower bounded.

This setting does not yield smooth dynamics, hence
generalized notions of solutions to (2) need to be used.
Before we introduce these solutions we remark that the
connectivity graph depends on the rate functions and
consequently on the relative positions of agents in the
sense that i and j exchange information if and only if
|xi − xj | < R.

A commonly accepted definition of flocking with
one connected component is proposed in [7] and will
be considered in this work:

Definition 1: Consider N agents following the dy-
namics of (3). We say that the system exhibits asymp-
totic flocking if

lim
t
|vi(t)−vj(t)| = 0 , sup

0≤t<∞
|xi(t)−xj(t)| <∞

for all i, j ∈ [N ].
We derive initial conditions so that the flock will
remain connected for all times as it coordinates its
velocity, in agreement with the definition above.

D. Krasovskii’s solutions to ODEs

Consider the initial value problem

ẏ = f(y) , y(t0) = y0 (KRS)

where y : R → Rl, f : Rl → Rl and y0 ∈ Rl. A
Krasovkii solution to (KRS) on an interval I ⊂ R
containing t0 is a map s : I → RN such that: s is
absolutely continuous (a.c.) on I , s(t0) = y0, ṡ(t) ∈
Kf(s(t)) where

Kf(y) :=
⋂
δ>0

c̄o{f(u) : ||u− y|| < δ} (OP)

is the Krasovksii operator.
In view of the uniform bounds of a, the set E of

the connections in G plays a crucial role as it includes
the surfaces of discontinuity of (2). We write

E(x) = {(i, j) ∈ [N ]× [N ] : |xi − xj | < R}
∂E(x) = {(i, j) ∈ [N ]× [N ] : |xi − xj | = R}
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Since G is a state dependent graph, at least in the
sense of E, we may consider all the related quanti-
ties as functions of x. The augmented graph G :=
([N ], E(x)∪ ∂E(x),W ) defines the family of graphs
GH = ([N ], E(x) ∪H,W ) for any H ⊂ ∂E(x).

E. Functional spaces

The objectives of this work induce the following
definitions. For −c ≤ t ≤ 0 we define the Banach
space C[−c,0] of continuous real functions in RNd with
the norm, ||v||C := supt∈[−c,0] ||v(t)||. Then let F be
a set valued map defined on [0,∞) ×R2Nd×C[−c,0]

that takes convex values. The associated Cauchy prob-
lem is, for the purposes of this paper, stated as follows

ẋ = v

v̇ ∈ F(x,v,vt) t ≥ 0

x(−c) ∈ RNd , v(t) ∈ C[−c,0] ∀ t ∈ [−c, 0]

where vt = v̂ = v(t − c). The existence of solutions
in these types of problems is addressed in [3] where
the assumptions on F coincide with the Krasovskii
operator (OP).

III. FLOCKING WITHOUT DELAYS

In this section, asymptotic results will be established
for (2) without delays. The case of delays will be
studied in section 4.

A. Preliminary results

Using the vectors x and v we rewrite (2) as

ẋ = v

v̇ = −Lxv
, x(0) = x0,v(0) = v0 (3)

where Lx is the expanded Laplacian which is a
mapping that acts on (Rd)N such that Lx = L ⊗ Id.
Consequently, all the properties of L are carried over
to Lx. The next proposition verifies the well-posedness
of solutions together with elementary properties.

Remark 1: In view of the discussion in section 2.1
flocking between any two agents is equivalent to vi−
vj → 0 and |xi − xj | < ∞. Since the kernel of Lx

is ∆ the analysis will be focused on x∆⊥ ,v∆⊥ which
due to the symmetry of a, obey the same dynamics as
(3).

Proposition 2: The following statements are true
for any Krasovskii solution (x(t),v(t)) of (3)

1) All solutions exist and are defined for all times
2) The solutions satisfy the differential inclusion

v̇(t) = −
∑

H⊂∂E(x(t))

αx
H(t)LH(x(t))v(t)

for any αH(t) ≥ 0,
∑
H αH(t) ≡ 1

3) vav(t) := 1
N

∑N
1 vi(t) ≡ vav(0).

Proof: (1) follows trivially from the fact that so-
lutions are bounded in v and have a sub-linear growth

in x. The result follows by standard arguments in [6].
(2) follows from (OP), the observation of the fact that
the discontinuity hyper-surfaces are of zero measure,
the finite number of agents and Caratheodory’s theo-
rem on convex hulls (see for example [12]). Finally
(3) is calculated as follows:

v̇ave =
1

N

N∑
i=1

v̇i

= − 1

N

∑
i

∑
H

αx
H(t)

∑
i∼j

a(|xi − xj |)(vi − vj)

= − 1

N

∑
H

αx
H(t)

∑
i

∑
i∼j

a(|xi − xj |)(vi − vj)

= 0

due to the symmetry of the weights and the fact that
i ∼ j ⇔ j ∼ i.

1) Convergence to multiple flocks: The limit set of
(3) will consist of connected components of (most
likely) different speed from one another that are at
least R away. Consider the subset

Ω =
{

(x,v) : vi 6= vj ⇒ |xi − xj | ≥ R
}

(4)

Theorem 1: All Krasovskii solutions (x(t),v(t)) of
(3) converge to a point (x̄, v̄) ∈ Ω.

Proof: The proof consists of the next three steps.
1) Ω is a closed (3)-weakly invariant set. The first

part follows trivially from the definition of Ω.
For the second part consider any point of Ω.
Then one can uniquely construct the communi-
cation graph with k connected components in
each of which the agents share a common value
in their velocity. It follows that for all agents in
the same connected component, their velocities
are identical for all times and consequently their
relative positions. Hence, all initial components
stay the same and solutions remain in Ω for all
times, in particular in the same element of Ω.

2) Ω is globally asymptotically stable. This will be
proved with the use of the quadratic Lyapunov
function V (v) = 1

2 〈v,v〉. Then

V̇ = −
∑

H∈∂E(x)

αx
H(t)〈LH(x(t))v(t),v(t)〉

= −
∑

H∈∂E(x)

αx
H(t)

∑
i∼j

a(|xi − xj |)(vi − vj)2

≤ −
∑

H∈∂E(x)

αx
H(t)

aR
2

∑
i∼j∈VH

(vi − vj)2 ≤ 0

The equality holds if and only if (x,v) ∈ Ω.
The result follows from La-Salle’s invariance
principle for differential inclusions (see [1]) and
arbitrary initial conditions.

3) Convergence to a single equilibrium point in Ω.
Consider any element of the set of the Krasovskii
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solutions. These solutions create k, connected
components, Vk where 1 ≤ k ≤ N . Let t1, . . . tk
be the times of creation of each of these com-
ponents. Then for any agent i ∈ Vl(t), t ≥ tl
vi → 1

|Vl|
∑
l∈Vk

vl(tk) by Proposition 2 and
the fact that the system is autonomous. Since
different flock average speeds yield asymptoti-
cally unbounded position differences the result
follows.

Remark 2: Ω is weakly invariant in the sense that
there exist initial conditions in Ω that would allow
some Krasovksii solution to lie out of Ω (for more,
see [6]).

Remark 3: One can think of Ω as the “ω-limit set”
of (3) if it could be restricted to the variable v. It is
intuitive that the actual ω limit set is non-empty on
condition that x remains bounded, which can happen
only if all N agents are connected or under special
initial conditions, e.g. d = 1, N = 3 and |x1(0) −
x2(0)| > R and v1(0) = v2(0) = v3(0).

B. Initial conditions for global flocking

In this section we will focus on estimating the subset
of the phase space such that initial conditions from
this subset guarantee asymptotic flocking with one
connected component. In view of the metric function
introduced in section 2.1 we can easily derive the
following result (stated without proof).

Lemma 1: The flock of N agents consists of a
single connected component if and only if

max
S⊂[N ]

d(S, Sc) < R (5)

1) Bounds on connectivity: In this section, we
derive bounds on the connectivity of (3).The Fiedler
number intriduces in section 2.2 is defined as

φx := min
v 6=0,v∈∆⊥

〈Lxv,v〉
〈v,v〉

Proposition 3: For N ≥ 2, it holds that

φx ≥
4

N(N − 1)
aR

Proof: Using the symmetry and the monotonicity
of a(|xi − xj |) we have

〈Lxv,v〉
〈v,v〉

=
1

2

∑N
i,j=1 aij |vi − vj |2

〈v,v〉

≥ min
ij

+a(|xi − xj |)
1
2

∑N
i,j=1 |vi − vj |2

〈v,v〉

= aR
〈L̄xv,v〉
〈v,v〉

≥ aR min
v∈∆⊥,v 6=0

〈L̄xv,v〉
〈v,v〉

= aRφ̄

The result follows from Proposition 1 and the upper
bound ρ ≤ N − 1.

2) State equations for uniform a and conditions for
global flocking: We need to derive the state equations
in terms of the function

η(x(t)) : = max
S⊂[N ]

d(S, Sc)(t)

= max
S⊂[N ]

min
i∈S,j∈Sc

|xi(t)− xj(t)|
(6)

One can assume that throughout a solution of (3)
agents may enter or leave the radius range of each
other. This creates discontinuities in the dynamics
of velocities hence η is continuous and piecewise
differentiable. Assuming (5) initially holds, then by
continuity there exists τ > 0 such that the communi-
cation graph is connected for t ∈ [0, τ).

Then for almost all t in this interval
d

dt
η(x) =

d

dt
min
i

max
j
|xi − xj |

≤ min
i

max
j
| d
dt

(xi − xj)|

≤ 2 max
i
|vi| = 2||v||∞ ≤ 2||v||

(7)

by the equivalence of Euclidean norms. The step of
putting the time derivative inside the min, max oper-
ators is justified after picking the agents that satisfy
this extremum. If there are more than one solutions,
we pick the solution with the maximum difference of
velocities. If there are still more than one solutions,
then we pick any of them by chance and stick with it
until the time of a possible new solution.

This is a sufficient, although rough, estimate for the
evolution of η. The solution of v satisfies the form of
Proposition 2 and for t ∈ [0, τ) we can establish:

d

dt
||v||2 = −2

∑
H⊂∂E(x(t))

αx
H(t)〈LH(x)v,v〉

≤ −2
∑

H⊂∂E(x(t))

αx
H(t)φ̄(x)aR||v||2 ⇒

d

dt
||v|| ≤ −

∑
H⊂∂E(x(t))

αx
H(t)φ̄(x)aR||v||

≤ − 4

N(N − 1)
aR||v||

(8)

The system (7), (8) of the differential inequalities is
defined in the subset of R+,R

Nd ×RNd

W = {(t,x,v) : η(t) ≤ R}

Since any solution can be continued to the boundary of
W the goal is to show that there exist initial conditions
such that this boundary will be the one with respect
to t.

3) Convergence: Following [7] we consider the
Lyapunov-like functionals

V (||v||,x, y) = ||v|| ± 2

N(N − 1)
aR[η(x)− y] (9)

4
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Lemma 2: Given any solution of (3), V (t) as de-
fined in (9) are absolutely continuous functions in the
interval of the existence of solution.

Proof: Note that v(t) is a.c. with bounded
derivative by Proposition 2. Then v(t) satisfies a
Lipschitz condition in [0, τ) and so does ||v(t)||
(triangular inequality) which in turn makes ||v(t)||
absolutely continuous. The result follows the fact that
the sum/difference of a.c. functions is a.c. (see the
discussion at page 107 of [11] ).
We calculate

V̇ (||v(t)||,x(t), η0) =
d

dt
||v|| ± 2

N(N − 1)
aR

d

dt
η(x)

≤ 0

In view of Lemma 2, (7),(8) and the fact that V̇ is
simply the set-valued derivative of V with respect to
the differential inclusion, it follows that V (t)−V (0) ≤
0 for every t ∈ [0, τ) or

||v(t)||− ||v(0)|| ≤ − 2aR
N(N − 1)

∣∣η(x(t))− η0

∣∣ (10)

Theorem 2: Assume that initial conditions satisfy

||v(0)|| < 2aR
N(N − 1)

(R− η0) (11)

Then there exists τ > 0 and y < R such that

η(x(t)) ≤ y < R , ||v(t)|| ≤ ||v(0)||e−
4

N(N−1)
aRt

(12)
for t ∈ [0, τ). Moreover τ = ∞ so that asymptotic
flocking occurs.

Proof: From (11) the communication network
is initially connected, as η0 < R. Set τ := inf{t∗ :
η(x(t∗)) = R}. Then obviously η(x(t)) < R through-
out [0, τ). There exists a unique z < R such that

||v(0)|| = 2aR
N(N − 1)

(z − η0)

Consider the two cases:

• η(x(t)) < η0 < R and the first result follows.
• η(x(t)) ≥ η0 then for t ∈ [0, τ)

2aR
N(N − 1)

(z − η0) = ||v(0)||

≥ 2aR
N(N − 1)

(η(x(t))− η0)

so η(x(t)) ≤ z < R

So by taking y = max{z, η0} we get ∀t ∈ [0, τ),
η(t) < R. It follows that τ can become arbitrarily
large (see Thm 2, p. 78 [6]). The second assertion of
the theorem is a direct result of (8).

a) Example.: Consider N = 2, d = 1, R = 1,
a(z) ≡ 1, z ∈ [0, 1), for b 6= 0,−1 < g < 1 consider
the initial data x1(0) = 0 v1(0) = b and x2(0) =
g, v2(0) = −b. Then for some τ > 0

d

dt

(
v1(t)
v2(t)

)
=

(
−1 1
1 −1

)(
v1(t)
v2(t)

)
for t ∈ [0, τ). Note that η(t) = |x1(t) − x2(t)| with
η0 = |g|. After elementary calculations

η(t) = |x1(t)− x2(t)| ≤ |g|+
∫ t

0

|v1(s)− v2(s)|ds

< |g|+ |b| < 1

The last step holds precisely when (11) holds.

IV. FLOCKING WITH DELAYS

The results of the previous section can be gen-
eralized to the case where there are delays in the
communications between agents. From (2) one notes
that there is delay only in the second order information,
i.e. in the velocity of the jth node as this is received
from the ith node when i, j are within range R.

The general convergence results will be omitted due
to space limitation. We only note what the intuition
suggests, i.e. the limit sets coincide with (4). The pres-
ence of delay makes the Laplacian approach followed
in the previous section obsolete and there is need to
establish different bounds. The second part of which
(3) is written as follows

v̇ = −Dxv +Axv̂

Then assuming that (5) is fulfilled in the initial data

d

dt
||v|| ≤ −aR||v||+Mλ̄A||v̂||

where M = maxr a(r) The last step is justified
as follows. Considering the symmetry and the non-
negativity of A

||Axv̂|| ≤ ||Ax||||v̂|| =
√
λmax(ATxAx)||v̂||

= |λmax(Ax)|||v̂||
≤M |λ̄A|||v̂|| ≤M(N − 1)||v̂||

using Proposition 1 and basic inequalities from graph
theory. The functionals in this case are

V (||v||,x, y) = d1||v|| ± d2(η(x)− y)

+ d3

∫ t

t−c
||v(s)||ds

(13)

for some constants di > 0 to be determined. Through-
out any Krasovskii solution

d

dt
V ≤ −d1aR||v||+ d1Mλ̄A||v̂||±

± 2d2||v||+ d3||v|| − d3||v̂|| ≤ 0
(14)

5
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which in both cases hold if

Mλ̄AaR > 1 (15)

which is true if MaR > 1
N−1 by Proposition 1, and

also if

d1

d3
< Mλ̄A ,

d2

d3
<
Mλ̄AaR − 1

2
(16)

Eq. (15) is a necessary condition that the system’s
parameters need to fulfil so that the approach discussed
here is valid. Using the same approach as in Theorem
2 we derive

Theorem 3: If the initial conditions satisfy

||v(0)|| < d2

d1

(
R− d3

d2

∫ 0

−c
||v(s)||ds− η0

)
(17)

then (2) guarantees asymptotic flocking.
Proof: The proof follows exactly the one as in

Theorem 2 and will be omitted.
As it should be intuitively clear the sole validity of (5)
is not sufficient in presence of delays. The latter result
asserts that global asymptotic flocking is guaranteed
under certain initial conditions both of the positions
and the velocities of the agents in [−c, 0]. The problem
is answered with condition (17) which bridges the gap
between the admissible initial data and the systems
parameters.

It is noted that (17) holds for arbitrary values of
bounded c and thus for these values where convergence
in a single point of Ω is possible.

V. CONCLUDING REMARKS

The collective behaviour of self-driven autonomous
agents was discussed. Unlike the vast majority of
works in the literature, here we did not assume a
priori connectivity of any kind. The goal was to derive
an estimation of the set of initial data such that the
agents would co-ordinate their velocities so as to form
a unified flocking body. The analysis includes models
without and with delay. The assumptions taken into
consideration lie on the symmetry of communication
weights so that useful algebraic graph theory results
are utilized. Moreover, the weight function was as-
sumed non-increasing in order to model the effect
of two agents within distance at most R. However
a simply continuous, of bounded support function a
would suffice. Another crucial assumption was the
uniform bound aR which causes the discontinuities in
the dynamics.

A. Future Work

The future work includes three different directions.
The first direction, is towards establishing an efficient
approximation algorithm for computing η0 in case of
large N . The cost of the connectivity assumption is
a very difficult initial computation, in case the initial

setting is arbitrary. We believe that there are broad
classes of initial graph topologies which favor efficient
computations. The second is studying the same model
in the presence of uncertainties, e.g. potential functions
which typically model collision avoidance standards,
[13]. The third, and most challenging, is the case of
non-uniform weights. It should be noted that there is
yet to be found a Lyapunov functional to study the con-
vergence of non-linear flocking models (in the sense
of Cucker-Smale , [5]) with delays. The Lyapunov-
Krasovskii functional defined in (13) is not applicable
when the connectivity weights are not bounded from
below.
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