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Social Networks over Wireless Networks
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Abstract— We consider the formation, operation and main-
tenance of dynamic social networks (among human users)
supported by technological communication networks such as
wireless networks, or hybrid wireline-wireless networks. The
technological (physical) networks of interest display dynamic
behavior in several dimensions, including variable connectivity,
variable congestion, variable link characteristics. As broad-
band wireless devices and networks are becoming ubiquitous
these human-machine systems, that combine the social aspects
and behavioral activities of humans with the technological
characteristics of the underlying physical networks, provide
several important challenges in efforts to model them, evaluate
their performance and dynamically control them so certain
performance requirements are met. These include combinations
of performance, trust, privacy, energy efficiency. In this paper
we develop novel models for these complex human-machine
systems that incorporate social network behavioral models
and wireless network models that are inspired from statistical
physics (hyperbolic graphs). We investigate the performance
of wireless network protocols that support and respond to the
constraints implied by the social network they support.

I. INnTRODUCTION AND RELATED WORK

Nowadays, an increasing number of people own their
personal smart phones, laptops or tablets and use them in ad
hoc mode, forming point-point communications supporting
different applications such as file exchange, online games,
GPS connections, etc [1], [2]. Moreover companies develop
social network applications for ad hoc networks [1], in
order to be used in large conferences, university libraries,
university campuses, etc. These social network applications
involve real time applications such as chatting and video.
However, real time applications over wireless multihop net-
works, demand routing/scheduling algorithms that achieve
desirable delay-throughput trade-offs, with high throughput
and low end-to-end delay. In this paper we focus on the
performance analysis (throughput, delay) of wireless network
protocols that support and respond to heterogeneous social
networks.

This interaction between social and wireless networks has
driven a recent research interest on the design of efficient
wireless topologies and algorithms that take into considera-
tion the social character of the applications they are about to
support. In [3], a utility network maximization algorithm for
resource allocation for social wireless networks is proposed,
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where the utility function is enhanced in order to include
the social distance between the source-destination pairs. In
[4] a topology modification framework, for the design of
social-friendly wireless networks, is developed. In a similar
spirit, the authors in [5] develop an algorithm for file sharing
for social wireless networks that takes into account the
acquaintances of the requesting nodes on the overlay social
network and improves the scaling performance of the file
dissemination. Last but not least, the authors in [6] study the
capacity of composite wireless and social networks.

As aforementioned, in this work, we are focusing on the
algorithms for scheduling and routing in a wireless network
with social traffic. The backpressure algorithm, introduced
in its original form in [7], has received much attention
by the research community in the past few years (i.e.
[81, [9]), as it satisfies the throughput optimal requirement.
The backpressure algorithm performs routing and scheduling
based on congestion gradients, by allowing transmission to
the links that maximize the differential backlog between
neighboring nodes (max-weight matching). However, by
deploying routing without using any information about the
position or distance to the destination, it explores all possible
source-destination paths leading to undesirable high delays
even in the case of light traffic. Several approaches have
been developed for reducing the delay imposed by the pure
backpressure scheduling/routing [9], [10], [11].

In this paper, we propose a social and delay aware
backpressure scheduling/routing algorithm which admits as
input a network embedded in hyperbolic space via the greedy
embedding of [12]. A greedy embedding in hyperbolic
space is a correspondence between nodes and hyperbolic
coordinates such that the greedy routing algorithm, employed
in hyperbolic coordinates, does not have local minima, i.e.
every node can find at least one neighbor closer than itself
to all possible destinations [12], [13]. In [12], a distributed
implementation of a greedy embedding is proposed, which
can assign hyperbolic coordinates to new nodes without re-
embedding the whole network. In this work, we impose
routing constraints on the backpressure algorithm, by de-
termining as next-hop neighbors for a specific destination
only “greedy” neighbors, i.e. those that strictly reduce the
hyperbolic distance to the destination. Simultaneously, we
consider an overlay social weighted graph which is also
involved in the scheduling and routing procedure through its
socially determined weights. We propose two algorithms, the
“Greedy” backpressure and the “Greediest” backpressure for
both static and dynamic networks. The first one performs
routing by choosing as next hop node one of the greedy
neighbors, while the Greediest backpressure chooses the
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greedy neighbor with the least hyperbolic distance to the des-
tination. Both algorithms perform backpressure scheduling
and as a result routing/scheduling is based on both congestion
and distance gradients.

The rest of the paper is organized as follows. Section II
provides some insights on greedy embeddings and the hy-
perbolic space, while section III describes the system model.
Sections 1V, V, VI, VII, describe, analyze and extend the
proposed algorithms. Finally, in Section VIII the efficiency
of our algorithms is verified through simulations and Section
IX concludes the paper.

II. Greepy NETWORK EMBEDDING IN HYPERBOLIC SPACE

Greedy embeddings in other than Euclidean metric spaces,
have been proposed to improve greedy routing techniques.
In the simplest form of greedy routing, the sender forwards
the message to its directly (one-hop) connected neighbor
which reduces the most the distance to the destination. In
[12], a distributed implementation of a greedy embedding
in hyperbolic space is proposed, which can be also applied
in dynamic network conditions, by assigning hyperbolic
coordinates to new nodes without re-embedding the whole
network. Before describing the embedding algorithm of [12],
we briefly introduce some concepts of the two-dimensional
hyperbolic space that will be used in this paper.

The whole infinite hyperbolic plane can be represented
inside the finite unit disc D = {z € C||z| < 1} of the Euclidean
space; the Poincaré Disc model. The greedy embedding used
in this work is based on the Poincaré Disc model. The
hyperbolic distance function dy(z;,z;), for two points z;,z;,
in the Poincaré Disc model is given by [12], [14]:
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+
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The Euclidean circle dD = {z € C||z| = 1} is the boundary at
infinity for the Poincaré Disc model. In addition, in this
model, the shortest hyperbolic path between two nodes is
either a part of a diameter of D, or a part of a Euclidean
circle in D perpendicular to dD.

The greedy embedding is constructed by choosing a
spanning tree of the graph of the initial network and then
embedding the spanning tree into the hyperbolic space ac-
cording to the algorithm of [12]. Following this algorithm,
after having assigned hyperbolic coordinates to the root of
the tree inside a specific hyperbolic area, each node computes
its own coordinates using the ones of its parent, in such a
way that the hyperbolic bisector of the embedded spanning
tree edge between the node and its parent, does not intersect
any other embedded edge of the spanning tree. This property,
which holds only for the embedded edges of the spanning
tree (not for the non-spanning tree edges), is sufficient for
the embedding of the network in the hyperbolic space to be
greedy. As the computation of the virtual coordinates of a
node depends only on its parent’s coordinates, this algorithm
for greedy embedding can be deployed distributively by
a wireless ad hoc network which lacks any centralized
infrastructure. If a spanning tree of the graph admits a greedy
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embedding in hyperbolic space then the whole graph can
also be embedded [13]. Let us denote as “greedy” paths, the
paths consisting of nodes with strictly diminishing distances
to the destination. From definition, the greedy embedding
ensures the existence of at least one greedy path between
each source-destination pair in the case of static networks.
Every pair of nodes i, j is connected through a unique path,
let us denote it as i, iy, i2,... ix, j, lying on the spanning
tree which is embedded in the hyperbolic space. Due to the
particular embedding, i is at least one greedy neighbor of
i for j and i is a greedy neighbor of j for i. From now
on, we will use the notation “on the spanning tree” for
routing decisions that lie on the embedded spanning tree.
On the contrary, we denote as shortcuts, the links of the
graph that do not lie on the spanning tree. An example of
this embedding in the Poincaré Disc is depicted in Fig. 3(c).
It is important to mention that, by construction, the root of
the tree is closer in hyperbolic distance to the nodes of each
subtree than the nodes lying on other subtrees.

In this work, we consider a greedy embedding of the
network following [12] and we impose routing constraints
on the backpressure algorithm, by determining as possible
next-hop neighbors for a specific destination only “greedy”
neighbors i.e. those that strictly reduce the hyperbolic dis-
tance to the destination.

III. SysteEm MobEL AND CaPACITY REGION

In this section we describe the system model which
consists of a composition of a wireless ad hoc network
and an overlay social network. This is a complex network,
very likely to exist in places such as a shopping center, a
conference center or a university library. The wireless ad
hoc network serves the physical and network layer commu-
nications among the wireless nodes while the overlay social
network represents the social interactions developed among
the users and their characteristics. The graphs of the two
networks are not identical as the wireless network is limited
by spatial constraints whereas the social network graph is a
relational graph without physical boundaries.

To begin, let us define the wireless network topology. We
consider slotted time 7 and a wireless multi-hop network
with N(#) nodes at each time slot ¢. Each node communi-
cates directly with all other nodes that are located inside
its communication range and let N(i) to be the one-hop
neighborhood of node i. We consider the case where N(f)
is constant (static network) and the case of node churn
where existing nodes can leave and new nodes can join
the network. The number of packets that arrive in node
i for destination d at time ¢ is AY(r) with finite average
value E(Alfd(t)) = /l?. We suppose that each node i stores a
queue qf(t) for each destination d. We denote with y;;(f) the
communication traffic between neighboring nodes i, j at time
t. Also, we denote with /J?j(t) the limited communication
traffic on the link (i, j) only for destination d. Therefore,

>d ,u?j(t) < p;j(t). The arrival and service rates are considered

bounded i.e. at each time 7, we have that ;3 ; ,u?j(t) <pf

PN y?l.(t) < /'lZTmax and ZdAf(t) < Ajmax- We denote with
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disty(i,d) the hyperbolic distance between nodes i,d, as
defined in Eq. (1). Finally, we use the term Ig( to refer
to the set of service rates of all possible independent sets
of the graph, i.e. maximal sets of links that do not interfere
with each other. I5(; is a constant set for all 7 if the network
is static and the channel conditions do not change.
We adapt the capacity region of [15], so as to include the
routing constraints of the proposed algorithms. Therefore, the
capacity region should allow routing only through greedy
paths. The capacity region Ag is the set of all input rate
matrices (/l?) with /lf #0 if i #d and i,d is a source-
destination pair, such that there exists a rate matrix [u;;]
satisfying the following constraints:
« Efficiency constraints: uf; > 0, u =0, ﬂZj =0, Zau; <
Mij Y i, jd: i#d

« Flow constraints: /ll‘.1+ Zl,uﬁ < Zl,ufl,\v’ id: i+d

« Routing constraints for the Greedy backpressure: ,ufj =0
if i has at least one greedy neighbor for d and j is not
one of the s greedy neighbors;
and for Greediest backpressure: ,ul‘.l. =0 if / has at least
one greedy neighbor for d and j is not /s greedy neigh-
bor that reduces at most the distance to the destination.

At this point, we define the notion of strong stability of
the queues, which will be used in the proofs that follow.
According to Definition 3.1 of [15], a queue, qj’ is strongly
stable if limsup, .., 1 3_{ E(¢¢(1)) < 0. If all the queues
of the network are strongly stable, then the whole network
is strongly stable.

In the sequel we define the overlay social network which
contains information about the social interactions among the
network nodes and their characteristics. We suppose that the
social interactions are represented by a matrix Wy = wg (i, j)
where wg (i, j) = 0 if i is not a source of messages for j, i.e. if i
produces messages with destination j then wg (i, j) > 0. These
weights, wg (i, j), admit a large variety of interpretations in
social context, i.e. they may correspond to the necessity of
communication between i, j, or to the mutual trust value for
the i, j communication etc. In general, they express a measure
of social distance for each i, j pair as described in [3]. In
this paper, we translate the social weights wg (i, j) > 0 as the
priority or “necessity” of communication of the multi-hop
connected in physical layer pair 7, j. Therefore, the weights
on the social graph, determine a preference on how fast
each flow needs to be served. As an example, messages
sent through live messenger are of higher priority than
emails. Indeed, the priorities are given to the flows from
a specific range of values depending on the type of the flow.
These priorities will be used in the scheduling and routing
algorithms defined in the following sections.

IV. Static NETWORKS

In this section, we develop our algorithms in the case
of static wireless networks, i.e. the number of nodes and
their positions are fixed. As aforementioned, we propose
two algorithms, the Greedy backpressure and the Greediest
backpressure which both use greedy routing in hyperbolic
space and backpressure scheduling. However, the Greedy

backpressure defines as possible next-hop neighbors for a
specific destination, all those directly connected nodes that
strictly reduce the hyperbolic distance towards the particular
destination, while the Greediest backpressure picks the one
direct neighbor which is closest in hyperbolic distance to
the destination. Therefore, the Greedy backpressure performs
dynamic routing and exploits multi-path diversity, while the
Greediest backpressure fixes the paths followed by the flows.
The proposed algorithms differ from the classic backpressure
algorithm in the definition of the weight P;;(f) for each link
(i, J), due to their greedy routing constraints. Algorithm 1
describes how the pure backpressure algorithm is modified
to follow only greedy paths.

Algorithm 1: Greedy (Greediest) backpressure algorithm
for static networks, performed every time ¢

1 for each directed link (i, j) do

2 for each destination d do
3 9%Greedy backpressure%
4 if disty(i,d) > disty(j,d) then
d (= Ay o401
s | Pl =4/~
6 (%O0R Greediest backpressure%
7 if disty(i,d) > disty(j,d) and disty(j,d) =
minleN(l-) disty(l,d) then
d 0y — Ay od(p)-
8 | Pl =q{O-q]0):)
9 else
10 | Pl = —oo;
11 %Define the weight P;j(t) as follows :
12 | Pij(r) = max(maxg ng(t),ox
13 L d*(lu/) :argmaXdPij(t);

14 Choose the rate matrix through the maximization :

15 [pij(D)] = argmaxyerg,, 2, j) HijPij (1)

16 for each directed link (i, j) do

17 if u;;(r) > 0 then

18 L the link (i, j) serves d*(i, j) with ,uflj (t) = pi(1);

19 For d +d* we set ,u?j(t) =0

It is important to mention that due to the greedy embed-
ding that ensures the existence of a greedy path for every
source-destination pair, the routing constraints of Algorithm
1 are well defined and there do not exist local minima
that can cause the packets to get stack at a specific node.
Therefore, with probability one the packets will be routed to
the destination under Algorithm 1.

In the sequel, we will use the flow priorities in order to
break ties in two cases. The first case takes place when an
equality in the difference of the queue backlogs for two or
more destinations exists on a link; in line 12 of Algorithm 1.
The second case refers to line 15 of Algorithm 1, that chooses
the independent set I(¢) € Is(,, that achieves the maximum
2. jerryMij(DP;j(r). For both cases, we suppose that each
link can serve only one packet, at a time slot ¢. For the first
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case, when comparing between two queue differences, we
break ties as follows:

if ¢ (=45 (1) = 4;*(0)=4>(1) for dy.dy then

if the weight of the first packet in qfil ) is

larger than the corresponding one in q;*(t) then
L d'=d;

if the weight of the first packet in q?l ) is

equal to the corresponding one in q?z(t) then
d* becomes equal to either
dy or dy with equal probability;,

else
L d =dy;

After, assigning a weight P;;(¢) at each link (7, j), we also
assign a priority weight to the link (7, j), w,(i, j, 1), which is
equal to the weight of the flow (packet) that is going to be
served. For the second case, when comparing between the
sums of line 15 for two independent sets in order to choose
the independent set /(f) that maximizes this sum, we break
ties as follows:

if 2 per, HijPij(D) = i jyer, 4ijPij(7) then
if 2 per, wp(s Js1) > 2 jyer, Wp(is ji 1) then
L I0=1;
if Z(i,j)e]l Wp(i,j, 1= Z(i,j)EIz Wp(i,j, t) then
1(t) becomes equal to either
Iy or I, with equal probability;
else
L I®=1I;

In the case that a link transmits more than one packet
at a time slot, the above algorithms can be modified by
considering the average weight or the highest weight or the
middle weight of the packets that are going to be transmitted.
In addition, by ignoring the flow priorities, we are led to
the standard Greedy and Greediest backpressure algorithms
which do not take into consideration the social weights.

The following theorem shows the throughput optimality
of Algorithm 1 for static wireless multi-hop networks.

Theorem 1: If we assume that the arrival rates /1[4 lie
inside the capacity region Ag, then the queues of the
network are strongly stable, under the Greedy (Greediest)
backpressure algorithm for static networks.

Proof: We define two indicator functions dependent
on the type of the backpressure algorithm (Greedy or
Greediest).

For the Greedy backpressure:

I = {distg(i,d) > distg(j,d) N(j € N(i))}, I = {distg(i,d) <
disty(j,d) \(i € N(H)},

while for the Greediest backpressure:

L = {disty(iod) > distu(id) N disty(od) =
minen) distg(l,d) \(j € N(0))}
L = (distyd) < disty(pd) N distg(iyd) =

mingenj) disty(L,d) A(i € N(j))}

where we observe that I, equals I; if we replace i,j with
J»i correspondingly.

The queue dynamics in the case of Algorithm 1 are

g+ 1) = maxig!(n) = )" ul(),00+ > o +Af0). ()

Jih Ji2

We denote by Q(r) = (qf (1)), the vector of queues of the net-

work. We define the Lyapunov function L(Q(?)) = 3.; 4 qgl(t)2
and take the expected value of the difference
L(Q(t+1))— L(Q(1)) so as to compute the Lyapunov Drift:

D1 =) gla?
id

id

[Zp[dj(t)} +[Zu‘,’,-(t)+A7(t)) ‘Q(t)”

jily jiy
[Zu?,-(r) = > ko —A;’(z)] ‘Q(t) }— Dglo?,
id
[Zu?,(z) - Zujﬁ-(z)] ‘Q(r)}, @

i i
i i

E(L(Q(r+ 1)) - L(QM)IQ(N) = E

@.15)
Y {q? WP +E

id

- {2q;/(r)E
id

Q)

B

<B+2) gl -2 ¢!
id id

where yf‘(t) are the service rates computed by
Algorithm 1 and B > 0 is bound of

an upper
2 2
SiaE [(z i HED) + (140 + AL @) rQ(t)]-
If the /lf’ lie inside the capacity region, then from Corollary
3.9 in [15], there exist rates ,&f.(t) determined according to the
network topology and independently of the queue backlog
satisfying Af +e=E[ 3, I AOEDN a4 v id, e>0.

Ji
The Greedy (Greediest) backpressure  maximizes

S dlOF (S 150 - Sty 0) [0 50

S 0E| Y- Zujﬁ-(z)'Q(r)] >

M i
Zd] THOLI DWHORPW O

JMh Jih
Therefore the Lyapunov drift (Eq. (3)) becomes

: @

E[L(Q(t+1) - LQIQW] < B-2" )" gl(ve, 5)
d i

and from lemma 4.1 of [15], the network is strongly stable.
|

V. ImpacT ofF THE HYPERBOLIC EMBEDDING ON THE DELAY
PERFORMANCE OF THE GREEDY (GREEDIEST) BACKPRESSURE

In this section we study how the choice of the spanning
tree, used for the greedy hyperbolic embedding, can influence
the delay performance of the proposed algorithms. The delay
performance of a scheduling/routing algorithm for each flow,
is closely related to the sum of queues of the nodes lying
on the source-destination path. As stated in [10] the total
backlog of a path increases with the increase of its hop-
length. More precisely, according to [10], in the case of
the backpressure scheduling (with fixed routing), the queue
backlog at each node lying on the path of a flow increases
as we move from the destination node to the source node,
where the destination node has zero backlog. In addition to
this, Theorem 1 of [10], states that under the backpressure
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scheduling, the steady-state expected value of the sum of
queue lengths along the route of any flow f is bounded by
a quantity proportional to % where |F| is the number
of flows in the network, Ay is the input rate of flow f and
Kmax 1s the maximum number of hops of all the flows in
the network. In the sequel, we prove that in the case of
Greedy (Greediest) routing, Ky, can be upper-bounded, by
a quantity which depends on spanning tree parameters (depth
and number of subtrees), which suggests the intuition that the
delay performance can be spanning tree dependent.

We denote with L the set of leaves (nodes with degree
1) of the spanning tree and with |Lg|, its cardinality. Also,
we symbolize with D, the depth of the spanning tree.

Proposition 1: By using the greedy hyperbolic embedding
of [12] and under the Greedy (Greediest) routing for static
networks, Knax can be upper bounded by:

L-1
Kmax < (D—1) |Lf|—1+1Lf23(| f|2 ))+2D

where 1 is the indicator function.

Proof: A node willing to deliver a packet to a particular
destination according to the Greedy (Greediest) routing, has
two possible choices. The first one is to forward the packet
to its parent or one of its children on the spanning tree,
depending on which of them satisfies the Greedy (Greediest)
routing constraints (there is one of them satisfying the
Greedy routing constraints due to the greedy embedding).
The second choice is to follow a shortcut that satisfies the
Greedy (Greediest) routing constraints. For the Greediest
backpressure only one of these two choices will be viable
as the sender chooses the neighbor which reduces at most
the distance to the destination (supposing that the distances
are unique). The shortcuts can be divided in two categories:
the intra-subtree ones, which link nodes on the same subtree,
and the inter-subtree ones, which connect different subtrees.
The maximum number of inter-subtree shortcuts, can be
computed using the maximum number of subtrees. We need
to note here that a packet which reaches to the subtree of
the destination remains on it, otherwise it will increase its
hyperbolic distance to the destination violating the greedy
routing constraints (Section II). Therefore, the subtree of the
destination is like an absorbing state, i.e. there is no shortcut
directed from this subtree to any other subtree.

The maximum possible number of subtrees is equal to the
number of leaves of the spanning tree, i.e. |L¢|. Therefore the
maximum number of inter-subtree shortcuts, denoted as |S|,
is |S]=|Lg| -1 +1L/ 23(‘Lf2|_1), where the first two summands
correspond to the shortcuts of all other subtrees to the subtree
including the destination and the third summand corresponds
to the total number of shortcuts between any two subtrees
except the one of the destination. If |[L¢| < 3, only shortcuts on
the same subtree or towards the subtree of the destination are
allowed (both of which reduce the hop-length of the routing
path). In addition, after an inter-subtree shortcut, a packet
can move up to D—1 hops on the spanning tree (or by
following intra-subtree shortcuts) towards the root, before
being transferred by another inter-subtree shortcut. Finally,
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Fig. 1. Two different spanning trees chosen for the network topology.
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Fig. 2. Performance curves for the same network (Fig. 1(a)) with different
spanning trees used for the hyperbolic embedding (Fig. 1(b), 1(c)).

the greedy path lying on the spanning tree can be at most
2D hops in length. By computing |S|(D —1)+2D, we arrive
to the desirable result. [ ]

We have performed many MATLAB simulations which
show that a different choice of spanning tree for the hy-
perbolic embedding may lead to different throughput-delay
curves and different average delays experienced by the flows.
Fig.1 and Fig. 2 show representative ones.

VI. Dynamic NETWORKS

In dynamic conditions, the topology of the network (and
the capacity region) changes due to the addition and deletion
of nodes. We assume that the network remains always
connected and that nodes come and leave in a much slower
rate than the rate of the scheduling/routing process. In this
case, new nodes can be embedded in the hyperbolic space
according to the greedy embedding of [12]. In this section,
we suppose that new nodes can enter and existing nodes can
leave the network and that there is an upper bound on the
number of nodes, Npyax, possible to be simultaneously in the
network, which is realistic for wireless networks. Therefore
the number of nodes is finite at all times. As a result, the lines
4-5, 9—-10 of Algorithm 1 for the Greedy backpressure are
replaced with the following ones:
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if i has at least one greedy neighbor for a destination d
then
if disty(i,d) > disty(j,d) then
| PO =4{(0-q0;
else

| P =

if i has not greedy neighbor for a destination d then

| Plo=4l®O-4{0:

For the Greediest backpressure, the lines 7—-8, 9-10

change similarly as:
if i has at least one greedy neighbor for a destination d
then

if disty(i,d) > disty(j,d)

mingep ) disty(l,d) then
| Plo=ql®0-4(0:
else

| P =

and disty(j,d) =

if i has not greedy neighbor for a destination d then

| PO =4{(0-q50;

As in section IV, we can use the priority weights wg (i, j)
of the flows to break ties in the computation of the weights
P;j(t) of the links and the selection of the independent set
I(t) € Is(y) that is going to transmit.

The following theorem shows under certain assumptions
the throughput optimality of the Greedy (Greediest) back-
pressure for dynamic networks. In order to prove Theorem
2, we made three main assumptions. Firstly, we consider that
at each time instant only one node can be added or deleted.
Secondly, a new node does not change any pre-existing
connections in the network. Thirdly, there is a controller that
adapts the arrival rates to lie inside the capacity region, if
the network topology changes.

Theorem 2: Assuming that at each time interval T; with
constant number of nodes N(T;), the arrival rates, which
are dependent on T}, /ll‘.i(T,-), lie inside the capacity region
depending on T;, Ag(T}), then the queues are strongly stable.

Proof: We only provide the proof sketch due to space
limitations. Firstly, we prove that for each interval 7; with
constant number of nodes N(T;), if the arrival rates are
adapted through a controller to lie inside the capacity region
of this interval Ag(T;), the sum of queues is bounded (when
it is over a specific value the drift becomes negative so as to
reduce it). This proof is similar to the corresponding one
in Theorem 1. Next we check the Lyapunov drift at the
transitions between two intervals with different number of
nodes and since we have assumed that at each transition
only one node can be added or deleted, two consecutive
intervals differ only by one node. Omitting some further
tedious details we conclude the strong stability of the queues.

|

VII. INCORPORATING TRUST IN THE GREEDY BACKPRESSURE
ALGORITHM

In this section, we propose an extension of the Greedy
backpressure algorithm in order to take into consideration
possible weights on the links of the physical graph, in
addition to distance and congestion gradients. A weighted
network graph contains much more information for the
communicating node pairs, compared with the adjacency
matrix, such as the opinion that each node has for each one
of its neighbors, expressed as trust value, or the quality of
cooperation between two nodes expressed as mutual trust
value, or possible delay experienced due to the medium, etc.
This information determines the collaboration for commu-
nication among the selfish nodes of a social network. In
this work we focus on weights representing mutual trust
values between neighboring nodes, but it can be easily
translated to weights that represent cost of communication
or channel delays. Towards this direction, we assume that
the physical layer graph is weighted with values expressing
mutual trust between neighboring nodes, showing the quality
of the relationship between them.

Let us denote with W = [w(i, j)], the symmetric matrix
containing the weights of the physical graph. The trust value
of a path p connecting a pair of nodes is given by the
product of the trust values of the links lying on the path,
ie. TV(,j,p) = Hypepw(l,k) = TV(j,i,p). The trust value
TV(i,j) of a pair of nodes i,j is the maximum TV(, j, p)
for all paths p. If we replace every weight on the graph
w(i,j) with —log(w(i, j)), we can transform the problem
of finding the most trusted path between two nodes to a
shortest path problem, where the new weights, —log(w(i, j)),
are considered as costs of communication. Also, we know
that given a weighted graph G on N vertices, one can get a
natural metric dg by setting, for every i, j € V(G), the distance
dg(i, j) to be the length of the shortest-path between vertices
iand jin G.

In the proposed Greedy backpressure algorithm we choose
a random spanning tree on the initial graph, embed it in the
hyperbolic space and we route packets only through greedy
paths. In the case where we want to enhance our algorithm
to take into consideration the quality of communication
between two nodes, we can simply choose the most trusted
greedy path. However, there is the risk of choosing only low
trusted paths for a pair of nodes i, j, due to the fact that the
trust values of the available greedy paths might be far less
than the trust value TV(i, j) of the most trusted path in the
network (which might not be greedy). Therefore, even if,
for the i, j communication, we choose the greedy path with
the highest trust value, this might be far less than TV(, j).
In order to improve the trustworthiness of the greedy paths,
we propose to use the algorithm of [16] for the spanning
tree construction, which will be used for the embedding.
This algorithm transforms a graph metric into a spanning
tree metric for weighted graphs. In the graph metric, the
shortest distance between two nodes is considered over all
the links of the network. In contrast, in the spanning tree
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metric there is a unique path on the tree connecting two
nodes which also corresponds to their shortest distance. In
order to transform a graph metric dg into a spanning tree
metric, we consider probabilistic embeddings into spanning
tree metrics. A probabilistic embedding into spanning trees
is a probability distribution over the spanning trees 7' of the
graph G. Let us denote with d; the shortest path between a
pair of nodes in the ¢ spanning tree graph. The quality of a
probabilistic embedding is given by the expected distortion.

dz(ij))
dg(ij)
We use the algorithm of [16] to construct one tree of
the distribution T with expected stretch on the length of
each edge (i,j) equal to 0(logn(loglog(n))2logloglogn). In
the sequel, we embed the constructed spanning tree on the
hyperbolic space using Crovella’s aglorithm [12].

Although by optimizing over all greedy paths to obtain the
one with the lower cost value, or higher trust value, ensures
a lower bound of the trust value of the communicating
path, it is computationally complex for a wireless ad hoc
network. We now propose a distributed implementation with
the same expected lower bound of achieved trust. Let us
denote with TV(i, j,sp) the trust value achieved between i, j
on the unique greedy path sp lying on the spanning tree and
with TV(i, j,py) the corresponding trust value of the path
through shortcut 4.

if i transmits to j then
Computes for all shortcuts,h, to j the value :

TV, jpn) =TV, h,(,h) +TV(h, j,sp);
Chooses max(max,(TV(i, j, pn), TV, j, sp));
Y% Forwards to the next hop neighbor,
according to the TV selected%
if TV(i,j,pn) for a h is selected then
| Forwards to this h through the shortcut (i,h);
else
Forwards to its unique greedy neighbor
for j on the spanning tree;

Expected Distortion = E ,GT( (6)

Therefore, the node i uses a shortcut only if it can
improve the trust value TV(i, j, sp). This algorithm achieves
the same lower bound of trust value of the chosen path as
the optimization method, which is equal to the trust value of
the greedy path lying on the spanning tree.

VIII. SmmuLatioN REsuLTS

In this section, we evaluate the performance of our algo-
rithms through MATLAB simulations. The physical network
consists of a 4x4 grid topology, as shown in Fig. 3(a), where
each node at each time slot generates traffic for a random
destination, with probability equal for all node pairs ranging
from A =0.025 to A =0.5 with step increase 0.025. Therefore,
the social network is the complete 16—node graph. The
priority weights of the social flows take two discrete values
{1,2}, i.e. we consider flows of two different priorities in the
social overlay network. The flows of priority 2 prefer to be
served faster, therefore, they are selected to break ties, as
described in Section IV. Fig. 3(b) depicts the shortest path

spanning tree rooted at the node with ID 1, used for the
greedy embedding of the graph in the hyperbolic space. In
Fig. 3(c), the hyperbolic embedding of the tree in Fig. 3(b) is
illustrated. The non-tree (not embedded edges) are not shown
in Fig. 3(b), 3(c).

(a) Grid Network Topology. (b) Shortest path spanning tree

routed at node 1.

(c) Hyperbolic Embedding of the spanning
tree.

Fig. 3. Topology and Spanning Tree.

For each probability 4 we run the algorithms for 5000
slots. Each link can transmit one packet at a time slot. The
one-hop interference model determines the independent sets
of the graph i.e. the links that are directly connected through
a common neighbor cannot transmit simultaneously. In Fig.
4, throughput is expressed as the percentage of packets
that reach their destination divided by those sent from the
source for each flow and both throughput and delay are
expressed as averages for all flows (source-destination pairs).
The static network embedded in the hyperbolic space runs the
Greedy, Greediest and the original backpressure algorithms
correspondingly. The bullets on the curves represent different
values of A. The simulation results demonstrate the Pareto
dominance of our algorithms over the pure backpressure
algorithm, concerning the throughput-delay trade-off. The
proposed algorithms, achieve lower delays for the same
values of throughput compared with the backpressure algo-
rithm. The Greediest backpressure achieves the best delay-
throughput trade-off for the corresponding communication
traffic pattern and static physical topology.
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Fig. 4. Static Networks: Evaluation of Throughput-Delay Performance of
the proposed algorithms. Throughput and Delay averaged per flow.

In order to study the performance of the proposed algo-
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rithms under dynamic network conditions, we formulated the
following scenario. The physical and social layer network
graphs remain the same as in the case of the static networks
above. For each A we run the algorithms for 5000 slots. Every
1000 time slots we delete one node from the topology online
with the below order, we first delete the node with ID 6 and
then the nodes with IDs 8,10,15. Due to these deletions
the greedy property is locally lost and the network runs the
dynamic version of Greedy (Greediest) backpressure. The
simulation results are shown in Fig. 5 where the notations
are similar as in Fig. 4 for static networks. We observe that
for all A, the Greedy and Greediest backpressure algorithms
achieve a better throughput delay trade-off than the classic
backpressure algorithm, as for the same values of throughput
they lead to lower delays.
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Fig. 5. Dynamic Networks: Evaluation of Throughput-Delay Performance
of the proposed algorithms. Throughput and Delay averaged per flow.

In order to check how the prioritized break ties achieves
a better delay of the highest priority flows, we present
the average delay of the flows with priority 1, 2 and the
average delay over all flows in the case of the Greedy
backpressure algorithm. Similar results were obtained for the
other algorithms.
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—e—Priority 1
—=— Average Delay for all flows|
200} —v—Priority 2
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=]

Average per flow Delay

——

0.05 . 0.15 0.2 0.25
Probability of producing a packet for the chosen destination (load)

Fig. 6. Comparison of the delay for flows with different priorities.

We observe that the flows with higher priority weight
(equal to 2) achieve delays lower than the total average delay
value and lower than the delays experienced by flows of
lower priority (priority weight equal to 1), especially for
lower and average input traffic rates. However we do not
expect very large differences as the prioritization of the flows
is limited only in the case when we have to break ties.

IX. CONCLUSIONS

In this paper, we proposed, analyzed and evaluated al-
gorithms for social-wireless networks based on hyperbolic
embedding, greedy routing and backpressure scheduling.
We proved their throughput optimality and showed through
simulations their dominance over the pure backpressure

algorithm concerning the throughput-delay trade-off. Also,
the proposed algorithms are social-aware and use informa-
tion from the social layer graph to break ties. Finally, we
studied the impact of the spanning tree selection for the
delay performance and extended the proposed algorithms
in the case of weighted physical layer graphs. In future
work, we are planning to compare the Greedy (Greediest)
backpressure algorithm with other algorithms existing in
related work for improving the pure backpressure algorithm.
However, the proposed algorithms in this work use both
congestion gradients as the classic backpressure and distance
gradients, through a distributed implementation with only
local information and without additional complexity.
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