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Abstract— We consider the Economic Dispatch Problem in
power systems in a smart-grid architecture friendly environ-
ment. The problem is tackled with the use of multiple decen-
tralized controllers that execute parallel distributed consensus
algorithms. The scenario takes into account the presence of
multiple time-varying communication delays.

I. INTRODUCTION

Modern Energy Supply is typically a structure of intercon-
nected power generation plants that independently produce
power to serve a load over a common distribution network
[16], [21], [17]. Since every power unit produces energy at
some cost, a fundamental power optimization problem is the
determination of the optimal combination of outputs of all
generating units to minimize the total cost, while satisfying
the load demand and operational constraints. This is the very
well-known Economic Dispatch Problem (EDP).

Over the past years, many optimization methods for the
EDP have been proposed in the literature. The conventional
ones include the lambda iteration algorithm, or gradient-
based search methods [16], [21], whereas modern heuristic
optimization techniques are based on operational research
and artificial intelligence concepts such as evolutionary algo-
rithms [7], [9], simulated annealing [1], [20] artificial neural
networks [2], [10], taboo search [8], [11] and particle swarm
optimization techniques [3], [5].

Although the performance and applicability of economic
dispatch has been improved by these optimization tech-
niques, it is still essential to maintain a single control center
that can access the state of the entire system. Indeed, all
the aforementioned algorithms require operations at a central
computing station that needs to have a priori knowledge
of the entire network parameters. This centrally controlled
framework may cause some performance limitations in the
future power grid.

Since 1990, many electric utilities including both
government- and private-owned electric utilities were lib-
erated. This has had profound effects on the operation of
electric systems where implemented, most of which is the
economic value to the network operator. The EDP is a
relevant procedure in the operation of a power system. The
deregulation of the electric utilities has, therefore, led to
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research on a decentralized model of control where utilities,
transmission system operators (TSO) and independent power
producers (IPP) cooperate and compete using market and
other mechanisms [21].

A. Smart-Grid Architecture
The next generation of power systems is expected to

satisfy high standards of efficiency, resilience and reliability
against cyber-attacks or natural disasters, improved integra-
tion of renewable energy resources and plug-in hybrid elec-
trical vehicles. Such electrical grids, known as Smart-Grid,
are designed to monitor, predict and intelligently respond to
the behavior of all electric power suppliers and consumers
connected to it in order to deliver such standards [4], [13].

Figure 1 is an abstract illustration of a Smart-Grid archi-
tecture. A necessary requirement towards this is the devel-
opment of advanced control and communication technology
both in the physical and the algorithmic layer. In a smart grid
environment, the communication and measurement requires
a multiagent systems (MAS) technology [13]. MAS are a
computational system in which several agents cooperate to
achieve a desired task. The performance of a MAS can be
decided by the interactions among various agents. Agents
cooperate to achieve more than if they act individually.
Increasingly, MAS are the preferential choice for developing
distributed systems such as the Smart-Grid [13]. The devel-
opment of monitoring and measurement in Smart Grid with
the use of MAS technology involves a combination of several
agents working without human intervention, in collaboration
pursuing assigned tasks to achieve the overall goal of the
system.

Fig. 1: A Smart-Grid electric network with multiple commu-
nication and control sensors.
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B. Consensus systems as computational mechanisms of dis-
tributed controllers.

A central algorithm in distributed systems is the so-called
agreement or consensus algorithm under which a collection
of autonomous agents engage in a dynamic convex averaging
of a state of interest so that in the long run, they all obtain the
same value. The history of consensus systems is very long
as they are considered to be the underlying mathematical
model for co-operative biological, social, robotic networks
[6], [12], [14], [15].

C. Motivation, Contribution & Related Literature

The successful and reliable implementation of complex
electrical networks such as the Smart-Grids, require ad-
vanced measurement and control methods that operate in a
distributed way. Recent results in consensus systems [18]
provide results that could be effectively applied to solve the
fundamental EDP of an electric network in such a manner.
The present work introduces and studies by theory and
simulation a distributed solution of the EDP using a variation
of lambda iteration algorithm [21], under the presence of
arbitrary signal propagation delays.

1) Contribution: We consider a scenario of several power
generators and loads connected to a common transmission
network (see Figure 2). This is a grid enhanced with au-
tonomous sensors, each of which controls at most one power
generator and one power load. The sensors are connected
to a common communication network and share certain in-
formation. The central characteristic of the communications
is that they suffer from multiple time-varying delays. The
network topology among the sensor is assumed time varying
and complete, that is every agent communicates with each
other even via arbitrary delayed signals. The objective is the
solution of the EDP under the power generation constraints
that each unit must meet and the delayed communication
regime between the sensors. In particular every sensor will
be designed to receive, process and transmit back information
and will act both as a follower and as a leader in multiple
computational levels so that the EDP is to be solved in a de-
centralized manner. The theoretical results will be supported
with an illustrative example.

2) Related Works: The distributed solution of the EDP for
power systems has been recently introduced in the literature
[22], [23] where the use of averaging consensus schemes for
solving the EDP problem are proposed with and without the
presence of communication delays.

Our work differs on a number of points. At first, the
model in the aforementioned works is primarily discrete and
follows simplified average consensus schemes introduced in
the early work of [15] both in ordinary and delay form. Those
systems are “too symmetric”, hence unrealistic, both in the
communication rate and the imposed delays. In particular, the
delayed case is treated in too much uniformity: each sensor
receives the information from its neighbors under the same
delay while it averages all the information with a delayed
version of its own information. The working hypothesis is
that the system dynamics evolve under both propagation and

processing constant delays of identical magnitudes; a fairly
unrealistic scenario. Moreover, the proposed algorithms solve
the distributed EDP only in part. A leader sensor needs to
be chosen so as to control the overall power mismatch and
dynamically adjust the incremental cost value.

The present paper proposes a decentralized version of the
lambda iteration algorithm. Each sensor controls a part of the
electric grid, sends and receives information and executes
multiple, simultaneous dynamic consensus iterations. This
way it learns all the information needed to concur with
the optimal operation point values that solve the EDP. In
our scenario every sensor serves both as a leader and a
follower in the network and in its utmost generality it
needs to know the static parameters of the network, i.e.
the connectivity weights and the delays each sensor operates
under. However this is a knowledge on the communication
level, no information on the transmission network is needed
as the sensors, through the consensus scheme, learn the
information (loads and generator powers) dynamically. The
rate at which the agents learn depends on the communication
parameters and of course it plays a vital role in the stability
of the system.

II. CONSENSUS DYNAMICS OF LINEAR SYSTEMS WITH
DELAYS

In this section, we will review recent results on the dynam-
ics of linear consensus networks with delays. The discussion
is drawn from [18]. Consider a set of N < ∞ autonomous
agents each of which possess a value of interest, say xi
for i = 1, . . . , N that shares and updates it dynamically so
that x(t) =

(
x1(t), . . . , xN (t)

)
satisfies the following initial

value problem

ẋi(t) =
∑
j 6=i

aij(t)
(
xj(t− τij(t))− xi(t)

)
(1)

i = 1, . . . , N , xi(t) = φi(t), t ∈ [t0 − τ(t0), t0] as initial
data. Define the set

Wt0(φ) := [min
i

min
s∈[t0−τ,t0]

φi(s)−min
i

max
s∈[t0−τ,t0]

φi(s)]

and take |Wt0(φ)| to be its length. Set also the matrix A =
[aij(t)] with aii ≡ 0 is the, well-known from Graph Theory,
adjacency matrix. Another important matrix is the degree
matrix defined as D(t) = Diag[

∑
j aij(t)]. For the communi-

cation network we assume that it is fully connected and static
but with time varying weights, i.e. ∀i 6= j, aij(t)⇒ aij(t) ∈
[α, ᾱ]. Then for every B > 0 and t ≥ t0,

∫ t+B
t

A(s) ds has
every non-diagonal strictly positive and the matrix P (t) =

e−mBI +
∫ t+B
t

e−m(t−s)(mI −D(s) +A(s)) ds is stochas-
tic such that ρ := inft≥t0 mini,j

∑
l min{pil(t), pjl(t)} >

N min
{
e−mB , 1−e−mB

m α
}
∈ (0, 1)

Theorem 2.1: [18] Consider the system (1) and its solu-
tion x = x(t, t0,φ), t ≥ t0. If

1) supt≥0 maxi,j τij(t) = τ <∞
2) for every B > 0 and all t ≥ t0, the matrix∫ t+B

t
A(s)ds has every non-diagonal element strictly

positive,
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then ∃ x∞ ∈Wt0(φ) such that

max
i
|xi(t)− x∞| ≤

|Wt0(φ)|
1− ρe−(N−1)ᾱτ

e−γ(t−t0) (2)

where γ = − ln(1−ρe−(N−1)āτ )
B+2τ > 0.

A leader in a consensus network is an agent that affects
the rest of the group, but it cannot be affected by it. In the
presence of a leader, say agent 0 with state z0 to satisfy a
generic differential equation ż0(t) = g

(
t, z0(t)

)
modeling

possibly internal dynamics under the hypothesis

|z0(t)− z∞| ≤ Ze−ζ(t−t0) (3)

for some constants Z, ζ > 0. The “leader-follower” system
can be written as for t ≥ t0

ż0(t) = g
(
t, z0(t)

)
żi(t) =

∑
j 6=i,i 6=0 aij(t)

(
zj(t− τij(t))− zi(t)

)
+

+ai0(t)
(
z0(t− τi0(t))− zi(t)

) (4)

where i = 1, . . . , N and initial data
Theorem 2.2: [18] Consider the system (4) and its solu-

tion z = z(t, t0,φ). Let the assumptions of Theorem 2.1
hold. Under (3) it holds that

|zi(t)− z∞| ≤ K1e
−γ(t−t0) +K2

e−ζ(t−t0) − e−γ(t−t0)

ζ − γ

for all i = 1, . . . , N and K1 =
|Wt0

(φ)|
1−ρe−(N−1)ᾱτ , K2 =

2Zᾱeζτ

1−ρe−(N−1)ᾱτ .
Remark 2.3: The aforementioned results hold also for

simple (recurrent) connectivity regimes, as well. In this case
the rate estimates change for the worse and they are beyond
the scopes of our work. For more we refer to [18].

The presence of a leader does not alternate the qualitative
behavior of the system other than the consensus point. This
is the limit point of the leader. It is important to understand
that the network eventually synchronizes to a constant value
only when the leader converges to this value. Otherwise the
followers, although never stop following the leader, they will
not synchronize with it.

III. THE ELEMENTARY ECONOMIC DISPATCH PROBLEM

A system of N power generating units, connected to a
single bus bar serves a received electrical load Pload (Figure,
2). The input to each unit, shown as Fi represents the cost
rate of the unit. The output of each unit Pi is the electrical
power generated by that particular unit. The total cost rate of
this system is the sum of the costs of each of the individual
units. The essential constraint on the operation of this system
is that the sum of the output powers must equal the load
demand.

FT =

N∑
i=1

Fi(Pi) s.t. φ = 0 = Pload −
N∑
i=1

Pi

This is a constrained optimization problem that may be
attacked formally using advanced calculus methods that
involve the Lagrange function:

L = FT + λφ (5)

The necessary conditions for an extreme value of the objec-
tive function result when we take the first derivative of L with
respect to each independent variables and set the derivatives
equal to 0:

∂L
∂Pi

=
dFi(Pi)

dPi
− λ = 0 (6)

Following [21] we will assume that the cost functions Fi(Pi)
are smooth and quadratic:

Fi(Pi) =
1

2
χiP

2
i + ψiPi + ωi (7)

for some strictly positive parameters χi, ψi, ωi assumed to
be known.

Together with (6) we must add the constraint that the sum
of the power outputs must be equal to the power demanded
by the load. All in all, we have the following systems of
equations that it is necessary be satisfied in the optimal
operation point:

i = 1, . . . , N :

{
dFi(Pi)
Pi

= λ∑
i Pi = Pload

(8)

1
F1 P1

2
F2 P2

....

N
FN PN

Pload

Fig. 2: N units committed to serve Pload. The schematics
follow [21].

We characterize this problem as elementary because im-
portant parameters are ignored. In the discussion session we
will explain interesting and more realistic generalizations
within the theoretical context that is to be developed in the
section to follow.

IV. DISTRIBUTED SOLUTION OF THE LOSS-LESS EDP

Assume that at each thermal unit we have a controller that
has full access to the parameters of its area of duty (load and
generator) but it has limited information for the parameters of
the other areas. The latter information is propagated through
the communication network and it suffers from delays. In
particular each controller i has

1) Instant information of the load in its section P
(i)
load

and transmission of it over the network. Here the ith

controller will be a leader of a consensus algorithm
responsible to communicate this information to the rest
of the controllers. We will adopt the notation p(i)

(load,j)
the state of the follower j 6= i on this algorithm. All
in all, the vector

p
(i)
load =

(
. . . , p

(i)
(load,i−1), p

(i)
(load,i+1), . . .

)
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symbolizes the states the sensor-followers, each of
which seeks to learn the load the ith controller trans-
mits. These are all dynamic variables that follow a
leader-follower consensus model. All in all we have
N such models with possible different communication
weights and delays of the type of Eq. (4) each of which
has a leader i with z0 ≡ P

(i)
load. We will assume that

all, but the leader’s, initial functions are set to zero.
The vital characteristics of such a model are the lower
and upper bounds of the communication weights and
the maximum imposed delay. These are denoted as
αi, ᾱi, τ̄i. The convergence of this model is guaranteed
under a simple connectivity assumption as Remark 2.3
suggests.

2) Instant information on the power the ith generator
produces, denoted by P

(i)
gen. This will be dynamically

updated and transmitted over the network satisfying
the equation

P (i)
gen(t) =

λi(t)− ψi
χi

. (9)

Here, the ith controller communicates over the network
the state P (i)

gen(t) with some delay.
3) Delayed received information of the signal P (j)

gen from
all over the network. The ith controller serves as a
receiver of the generated power of the rest of the
controllers with some delay.

A. The incremental cost algorithm

Each sensor chooses to update its state λi by averaging it
with the rest of the sensors, as follows:

λ̇i(t) =
∑
j

wij(t)
(
λj(t− τij(t))− λi(t)

)
+

+ wbi
(
P cload,i(t)− P cgen,i(t)

) (10)

were wbi is a coupling positive control parameter, P cload,i(t) is
the cumulative information of the load on the network, sensor
i has at time t and P cgen,i(t) is the cumulative information
on the produced generator, sensor i has at time t. Using the
notation above we deduce that

P cload,i(t) = P
(i)
load + 1Tp

(i)
load(t) (11)

P cgen,i(t) = P (i)
gen(t) +

∑
j 6=i

P (j)
gen(t− τij(t)) (12)

B. Analysis

The target of the sensors on a consensus value is λi(t) ≡
λ∞. From (7) we have the fixed point of Pgen,i

P∞gen,i =
λ∞ − ψi

ωi
.

Then the optimal operation point is

P∞gen =

N∑
l=1

P∞gen,l = Pload = λ∞

N∑
l=1

1

χl
−

N∑
l=1

ψl
χl

(13)

Then limit consensus point, the sensors try to reach is:

λ∞ =
Pload +

∑N
l=1

ψl
χl∑N

l=1
1
χl

(14)

λ̇i(t) =
∑
j 6=i

wij(t)
(
λj(t− τij(t))− λi(t)

)
+

+ wbi
(
Pload − P cgen,i(t)

)
+ wbi

(
P cload,i(t)− Pload

)
Now,(
Pload − P cgen,i(t)

)
=

=
λ∞ − λi(t)

χi
+
∑
j 6=i

(
P∞gen,j − P (i)

gen(t− τij)
)

=

(∑
j

1

χj

)(
λ∞ − λi(t)

)
+
∑
j

1

χj
(λi(t)− λj(t− τij))

so the consensus algorithm is written as

λ̇i(t) =
∑
j

(
wij −

wbi
χj

)(
λj(t− τij)− λi(t)

)
+

+

(∑
j

wbi
χj

)(
λ∞ − λi(t)

)
+ gi(t)

(15)

where gi(t) = wbi
(
P cload,i(t)− Pload

)
.

Eq. (15) is a perturbed consensus system with a virtual
leader of constant value λ∞. The weights of the new network
A = [aij ]i,j∈{0,N} with aii = a0j = 0, ai0 =

∑N
j=1

wbi (t)
χj

and aij = wij(t)− wbi (t)
χj

elsewhere. Then using Theorem 2.2
we deduce that λ converges to the optimal economic point
if there is an c > 0 such that

wij(t)−
wbi (t)

χj
≥ c > 0 ∀i 6= j (16)

the convergence of the algorithm occurs exponentially fast
and the spread of the vector λ, supt≥0(mini λi(t) −
maxi λi(t)), is upper bounded by the constants K1 and
K2 as they were defined in Theorem 2.2 as explicit func-
tions of the systems’ parameters. Also, Z is a constant
determined by Theorem 2.1 as it is the consensus system
under which each sensor communicates (learns) the load
of the network acting as a leader (follower). Consequently

|Z| ≤
∑N−1
i=1

P
(i)
load

1−ρ̄ie−(N−1)ᾱiτ̄i
as it was explained in the

beginning of this section.

V. A SIMULATION EXAMPLE

We will outline the previous analysis with an illustrative
example taken from [21] (page 65). Here a network of N = 3
units generates power to serve a cumulative load of

Pload = 850 MW

Each sensor is set to control part of this load and one
generator as follows

1) Sensor 1: 200 MW of load and generates P (1)
gen. The

fuel cost function is

F1(P (1)
gen) = 561 + 7.92P (1)

gen + 0.001562(P (1)
gen)2
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2) Sensor 2: 300 MW of load and generates P (2)
gen. The

fuel cost function is

F2(P (2)
gen) = 310 + 7.85P (2)

gen + 0.00194(P (2)
gen)2

3) Sensor 3: 350 MW of load and generates P (3)
gen. The

fuel cost function is

F3(P (3)
gen) = 78 + 7.97P (3)

gen + 0.00482(P (3)
gen)2

The units of Fi are in $/hr. Using Eq. (6) and the condition∑3
i=1 P

(i)
gen = 850 we derive the economic (consensus) point

λ∞ = 9.148$/MWhr

out of which the optimal generators
For the distributed solution of the above EDP we set t0 =

0 and we consider the primary time-varying communication
network

A =

 0 0.5 0.7+t2

t2+1

1 + cos2(1 + t2) 0 6(1 + e−t)
0.9 0.7+t

0.5+t
0


and the delays

T =
[
τij(t)

]
=

 0 1 1
0.23 0 0.23

0.8 cos(16πt) 0.8 cos(16πt) 0


The secondary network involves the dynamic process of
P

(i)
load from p

(i)
load. In particular:

Sensors 1 and 2 learn P 3
load with the state vector

(p
(3)
load,1, p

(3)
load,2) under the network{

d
dtp

(3)
load,1(t) = 1.2 sin2(t)

(
P

(3)
load − p

(3)
load,1(t)

)
d
dtp

(3)
load,2(t) = 0.02

(
p

(3)
load,1(t− 0.5)− p(3)

load,2(t)
)

Sensors 1 and 3 learn P 2
load with the state vector

(p
(2)
load,1, p

(2)
load,3) under the network{

d
dtp

(2)
load,1(t) = 0.8 sin2(2πt)

(
p

(2)
load,3(t− 0.23)− p(2)

load,1(t)
)

d
dtp

(2)
load,3(t) = 0.6 sin2(3πt)

(
P

(2)
load − p

(2)
load,3(t)

)
Sensors 2 and 3 learn P 1

load with the state vector
(p

(1)
load,2, p

(1)
load,3) under the network{

d
dtp

(1)
load,2(t) = 0.3

(
p

(2)
load,3(t− 0.5)− p(1)

load,2(t)
)

d
dtp

(1)
load,3(t) = 1.7

(
P

(1)
load − p

(1)
load,3(t)

)
Finally, the balance vector(

wb1, w
b
2, w

b
3

)T
is set to a common control constant wbi ≡ w. It is easy
to see that the primary consensus system corresponds to
a fully connected communication graph and the secondary
consensus systems correspond to a simple connected graph.
Also, all the delays are bounded. Then Theorems 2.1, 2.2
with Remark 2.3 apply and the aforementioned analysis
holds with numerically calculated parameters ζ < 0.02,
Z ≤ 855 α = 0.35, ᾱ = 6 and the largest delay is τ = 1
and it is only a simple calculation to K1 and K2. The most

important criterion however is Eq. (16). This imposes the
smallness condition

w < w∗ = 0.00194

Simulations are provided in Figure 3 for control values below
and beyond w∗. We observe that whenever w is above this
critical value the algorithm slows down or does not converge.

t
0 1 2 3 4 5 6 7 8 9 10

λ
i (

t)

-5

0

5

10
w=0.00096

(a)

t
0 1 2 3 4 5 6 7 8 9 10

λ
i(t

)

-6

-4

-2

0

2

4

6

8

10

12

14
w=0.02

(b)

t
0 1 2 3 4 5 6 7 8 9 10

λ
i (

t)

-30

-20

-10

0

10

20

30
w=0.4

(c)

Fig. 3: Simulations run in MATLAB with the ddesd routine.
The distributed incremental cost solutions λi(t) is the con-
sensus variable which appears to converge very fast for small
w. (b) As w increases beyond w∗ we still see oscillatory and
slower convergence. (c) For w large the algorithm does not
converge and for even larger values it diverges.

VI. DISCUSSION

The solution of the EDP problem in a distributed manner
is very important for the modern smart grid architectures.
In this paper, we introduced a consensus based optimization
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algorithm that improves the existing ones [22], [23]. The the-
ory develops a decentralized version of the lambda iteration
algorithm with emphasizing on the communication network
that controls the process. The optimal economic point is
dynamically achieved via a communication network that
suffers from multiple and complex delays. The present work
is but a small step towards merging two very interesting fields
of networked control systems: this of agreement dynamics
and this of the modern electric power networks in the smart
grid environment. Several things are yet to be addressed.

The elementary EDP basically we analyzed, neglects the
fact that every power generator operates within limits. For
the classical EDP one must substitute (8) with

i = 1, . . . , N :


dFi
Pi

= λ

Pi,min ≤ Pi ≤ Pi,max∑
i Pi = Pload

Within the developed setup, this issue can be tackled in
two steps. The first is to recall that theory predicts explicit
bounds on the difference of mini λi −maxi λi. Since P (i)

gen

can be expressed as a linear function of λi we are half way
far from explicit bounds on the generated power P (i)

gen. Indeed
every sensor needs information on all the cost parameters
αj , βj . Unless one is willing to set these parameters within
universal standard bounds, these are information a sensor
needs to learn from the network. Note that an important point
is that for the EDP to have a solution, λ∞ to be within the
operation region of the generators. This is not always the
case. Therefore a first extension is to develop algorithms
that will, or attempt, to solve the EDP with given operating
constraints.

A second problem with our approach is that we require
an all-to-all connectivity even with arbitrary delays. It is
very important to decentralize the architecture even further.
It is not clear, however, how this could be achieved without
critically destabilizing the algorithm. Even in the toy example
of Section V, this complete communication regime could not
suffice to stabilize solutions of the algorithm. This reveals the
sensitivity of the consensus algorithm on perturbations and
delays. Future research along this line would require a study
on the connectivity regimes and how these affect the rate
estimates and the stability bounds.

Another simplification assumption followed here, is that
the power network is loss-less. If the energy network has
energy losses, the EDP derives a slightly more complex Lan-
grangian with an extra incremental cost value. Incorporating
this factor on the dynamic algorithm is also a necessary step
for designing more realistic theoretical algorithms. Given
both Fi(Pi) and the cost function of the transmission lines
Floss(Pi) in quadratic form we conjecture that our theory
could be adequately extended.

All the above observations unavoidably point to the final
remark of our work: The form of the cost functions and the
quadratic assumption. All the aforementioned questions can
(and should) be repeated for more general cost functions.
This is a fairly challenging issue even for the conventional

methods [21].
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