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This paper focuses on the logistics aspect of supply chain management. It proposes a ran-
domized flow management algorithm for a time-varying, random, supply chain network. A
constrained stochastic optimization problem that maximizes the profit function in terms of
the long-run, time-average of the flows in the supply chain is formulated. The algorithm is
distributed and based on queueing theory and stochastic Lyapunov analysis concepts. The
long-run, time averages of the flows generated by the algorithm can get arbitrarily close to
the solution of the aforementioned optimization problem. In support of the theoretical
results, numerical simulations are also presented.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Among many possible definitions, the supply chain can be defined as a network of interrelated activities of procurement,
production, distribution, vendition, and consumption of one of more products (Zhang et al., 2003). Manufacturing is often
outsourced around the world, with each component made in locations chosen for their expertise and low costs (Varkony,
2011). Consequently, today’s supply chains are increasingly complex and rely on critical infrastructures such as roads, rail-
ways, and airports to move goods (Skulte and Wikerson, 2011), and therefore they exhibit the co-existence of operational
optimization with operational vulnerability (Varkony, 2011). This was most recently and dramatically demonstrated in
the aftermath of several accidents and natural disasters. For example, a fire in the Phillips Semiconductor plant in
Albuquerque, New Mexico caused its major customer, Ericsson, to lose $400 million in potential revenues. Another example
concerns the impact of Hurricane Katrina. This storm halted 10–15% of the total U.S. gasoline production, raising both
domestic and overseas oil prices (Canadian Competition Bureau, 2006). More recently, the tragic earthquake of March 13,
2011, off the northeastern coast of Japan and the devastating tsunami that followed have shattered the nation, with immense
loss of life and property. In addition, it brought uncertainty of the future, not the least of which is the expected decades-long
impact of the nuclear reactors in Fukushima (Varkony, 2011).

As the world’s economies become increasingly interconnected into a global economy, supply chain networks face many
new types of risk, including natural disasters, political/social instability, cultural/communication inconsistency, exchange
rate fluctuation, and local legislations (Behdani, 2011). These risks forced the supply chains’ stakeholders to go beyond
the operational optimization and to recognize the operational vulnerabilities of the supply chains and to underline their
time-varying and random nature.
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This paper focuses on the logistics aspect of the supply chain management. Logistics plans, implements, and controls effi-
cient and effective product storage and flows (forward/reverse). Logistics starts from the point of origin to the point of con-
sumption, with the goal of meeting customer requirements (Blasgen, 2011). The paper addresses the flow management in a
supply chain that exhibits stochastic behavior in both links and demands, and in addition it responds to the need for decen-
tralized decisions as point out in (Chopra and Meindl, 2012). A randomized and decentralized algorithm for the management
of the flow of the product in a time-varying, random supply chain aimed at maximizing the profit of a firm is proposed. Due
to the random nature of the supply chain, the profit function is defined to be dependent on the (long-run, time) averages of
the flows, since the flows are random processes. Hence, the optimization problem becomes stochastic. The approach for solv-
ing the optimization problem is as follows. First, the satisfiability of the supply chain’ constraints is transformed into a sta-
bility condition on a set of queues associated with the supply chain’s components. Second, a Lyapunov drift analysis
technique is used to generate an algorithm that ensures the stability of the queues, and at the same time maximizes the
profit function. This approach avoids the need of a realization of the stochastic parameters, as it is the case in a stochastic
approximation approach. At each time instant, the algorithm produces decisions on the flows that are implementable (that
is, take into account the current state of the supply chain). More importantly, the resulting long-run, time averages of the
flows get arbitrarily close to the solution of the stochastic optimization problem. In addition, the algorithm does not require
knowledge of the probability distribution of the random process that drives the supply chain and deals with both supply
changes and demand variability. Furthermore, the actions taken by a specific decision maker are based only on a localized
view of the state of the supply chain. This localized view consists of the state of all the links that have at one end the decision
maker. In other words, the algorithm is distributed.
1.1. Related work

Supply chain networks face two types of uncertainties: (1) fluctuations in the demand side and (2) random disruptions in
the supply side of the chain. The goal of supply chain management is to mitigate risks due to such uncertainties and efforts in
the literature can consequently be classified according to the source(s) of uncertainty they consider.

For a long time, supply chain management research has focused on understanding and mitigating demand uncertainties,
which are due to fluctuations both in the amount as well as in the variety of goods needed by the end users (see Lee et al.,
1997; Gupta and Maranas, 2003; Hsu and Li, 2011 and the references therein). Fueled by numerous catastrophic events
(natural disasters and intentional or unintentional human actions), in the last decade academics and practitioners have
become increasingly interested in supply side disruptions (see Snyder et al., 2012, for a detailed literature review of supply
chain disruptions). In reality, demand fluctuations and supply side disruptions occur concurrently and there have been a
growing number of studies that attempt to simultaneously address both types of uncertainties (Baghalian et al., 2013).
The present paper belongs to this category: we consider random demand fluctuations as well as random failures of the net-
work’s transportation links.

The mathematical tools used to model and analyze supply chain problems are also diverse and range from linear, non-
linear or mixed-integer programming (Aikens, 1985; Vidala and Goetschalck, 2001) to game theory (Nagarajan and Sosic,
2006; Nagurney, 2010; Qiang and Nagurney, 2009; Zhang et al., 2003). Due to the random nature of disruptions in the chain,
stochastic models have been largely adopted in the literature (Lewis et al., 2013; Santoso et al., 2005; Lin, 2001; Chou et al.,
2003). In this paper, we use a stochastic optimization model and propose a randomized and decentralized algorithm which
can get arbitrary close to the optimal solution.

To optimize the supply chain, authors have also focused on different aspects of the chain. In inventory management,
which has received a lot of attention (see Pontrandolfo et al., 2002; Qi et al., 2009; Lewis et al., 2013; Snyder et al., 2012,
Sec. 6), the main goal ‘‘is to find optimal replenishment policy, which indicates when, from whom, and how much to order’’
(Snyder et al., 2012). Another considerable amount of work has been devoted to optimizing facility location (Baghalian et al.,
2013; Lim et al., 2013; Snyder et al., 2012, Sec. 7). The goal here is to address the issue of where inventory should be stored
and distributed. A third category, which has received much less attention, has focused on flow management (Hishamuddin
et al., 2013; Unnikrishnan and Figliozzi, 2011). Flow management deals not only with how products are routed, but also, on
how much product to send on each transport link. In this paper, we assume that the locations of the facilities are fixed and
we are mainly concerned with product storage and flows. We consider a firm that is involved in the production, storage and
distribution of a homogeneous products. Although our model may appear to be limited to only supply chains with a vertical
integration, our decentralized algorithm can be applied to chains with different business entities, as long as the entities fol-
low the strategies prescribed by the algorithm.

Compared to existing literature, our approach is unique by (1) the sources of uncertainties it considers, (2) the adopted
model and the proposed solution method, and (3) the parameters of the chains it optimizes. Nevertheless, our approach
intersects and complements several previous studies, while remaining fundamentally different. For instance,
(Unnikrishnan and Figliozzi, 2011) proposes a stochastic optimization approach to study supply chain flow management
with consideration of disruptions in the transportation links. However, the paper only considers supply side disruptions,
while we are interested in both demand and supply side uncertainties. Furthermore, the proposed solution in
(Unnikrishnan and Figliozzi, 2011) needs a centralized unit that has full knowledge of the chain. Our algorithm is decentral-
ized and the actions taken by any decision maker depend only on its localized view of the state of the chain.
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Reference (Baghalian et al., 2013) is another study that considers both demand fluctuations and supply disruptions. It also
proposes a stochastic mathematical formulation for designing a network of multi-product supply chains. However, the paper
focuses on investigating the impact of strategic facility location decisions on the operational inventory of the chain. In our
study, we assume that facility locations are fixed and we are mostly concerned with product storage and flow.

In (Lin, 2001), the authors propose an algorithm for determining the system reliability with respect to the maximum flow
of a network achieving a given demand. Although the network studied by the authors have nodes that can fail randomly, the
demand is assumed deterministic and no cost/profit functions are considered in their analysis.

In (Chou et al., 2003), the goal is to determine how much of a particular product a plant should produce, given a (possible
random) demand and based on maximizing a utility function. The authors use a simplified model for a supply chain, formed
by plants and retailers only, the resulting network topology being a deterministic bipartite graph. The authors propose a
heuristic scheme for determining the assignment policy and focus most of their attention to a particular type of graph, called
expander graphs. Expanders graphs are interesting due to there spectral properties, that is, they do not degrade by increasing
the number of nodes. Compared to this work, although the profit function can be interpreted as a utility function, in the cur-
rent paper the graph is arbitrary and stochastic and the proposed algorithm is based on a rigorous, mathematical analysis.

Another example of supply chain analysis under random demands is introduced in (Dong et al., 2004). Similar to the cur-
rent paper, the authors focus on determining the flow on the supply chain links based on optimizing an objective function,
but the supply chain is assumed deterministic.

Another formulation for the analysis of a supply chain under a stochastic setup is presented in (Santoso et al., 2005),
where the authors consider the processing/transportation costs, demands, supplies, and capacities to be stochastic
parameters. The goal is to minimize the expectation of a cost function and the authors chose a stochastic approximation
strategy to solve the optimization problem. This approach consists of using a realization of the stochastic parameters to
approximate the expectation cost and then use deterministic optimization techniques to solve the resulting problem. The
main disadvantage of this approach is that the accuracy of the solution depends on the number on samples and the joint
probability distribution of the stochastic parameters must be known. In the current paper, the approach for solving the
stochastic optimization problem is not based on a approximation of the expected cost and there is no need for the proba-
bility distribution to be known.

The paper is organized as following. Section 2 introduces the model for the time-varying supply chain network consid-
ered in this paper. Section 3 introduces the notion of the capacity region of a supply chain and formulates a constrained
stochastic optimization problem, aimed at maximizing the profit function in terms of the long-run time-average of the
flows. Section 4 describes a randomized, dynamic flow control algorithm for solving the stochastic optimization problem,
using queuing theory concepts to model the constraints. Section 5 presents a performance analysis of the flow control
algorithm, which shows that the solution of the algorithm can get arbitrarily close to the solution of the optimization
problem described in Section 3. The paper ends with numerical simulations of the proposed algorithm (Section 6) and
some concluding remarks (Section 8).
2. Supply chain model

A firm involved in the production, storage and distribution of a homogeneous product is considered. The firm uses a set of
manufacturing facilities, a set of warehouses and serves a set of retail outlets/demand markets.

The supply chain model used in this paper is similar to the one used in (Nagurney, 2010), with the main difference that
the network is time-varying and random. An example of a supply chain network is given in Fig. 1, where node 1 represents the
firm, nodes f2;3;4g represent the set of manufacturing facilities, nodes fð5;50Þ; ð6;60Þg are the warehouses and nodes
f7;8;9g designate the retail outlets/demand markets.

A supply chain with only one firm is considered. The single-firm scenario is suitable for a dominant-firm model, where a
single firm controls a dominant share of the market (Samuelson and Marks, 2003). The sets of firms, manufacturers, ware-
houses and retailers are denoted by F ; M; W and R, respectively. In addition, let N be the set of all nodes in the network
(with a typical node denoted by i), i.e., N ¼ fF [M[W [Rg [ fi0ji 2 Wg, with cardinality N ¼ jN j. Note that similarly to
(Nagurney, 2010), a warehouse i is represented by two nodes in the network (by using i0 as well) in order to clearly empha-
size the flow of the product passing through the warehouse, i.e., through the link ði; i0Þ. The set of links of the supply chain is
denoted by L ¼ fði; jÞ; i – j 2 Ng, where products ‘‘flow’’ from node i to node j for each ði; jÞ 2 L and where the flow of the
product in the chain is driven by the demand at the retailers/markets. It is assumed that links of the form ði; i0Þ are also
included in L.

The supply chain operates in slotted time, with slots normalized to integral units so that slot times occur at times
t 2 f0;1;2; . . .g. The state of the supply chain at time t is denoted by SðtÞ. The state process SðtÞ incorporates the stochas-
tic/nondeterministic behavior of the supply chain, such as possible disruptions in manufacturing and transportation due
to natural disasters, power outages, technical and malfunctions. For example, the transport or manufacturing capacity can
be at full capacity or at zero capacity in case of uncontrollable events. For simplicity, throughout the rest of the paper, we
assume that the links of the supply chain can be either active or inactive, as described by SðtÞ. This means that a transporta-
tion link may become unavailable at some time slot. The following assumptions about the statistical properties of SðtÞ are
made.



Fig. 1. Example of supply chain network.
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Assumption 2.1. The process SðtÞ belongs to a finite set S and evolves according to an identically, independently distributed
random process, with stationary distribution given by p ¼ ðpsÞ, where
ps ¼ lim
t!1

1
t

Xt�1

s¼0

1fSðsÞ¼sg; 8s 2 S; ð1Þ
with 1fSðsÞ¼sg being the indicator function that takes value one whenever SðtÞ ¼ s, and zero otherwise.
The amount of product flowing through the link ði; jÞ during time slot t is denoted by li;jðtÞ. Without loss of generality it is

assumed that the flows are measured in (final) product units; to recover other units (raw materials for example) the flows
are multiplied by the process rate of the economic unit generating the flow. The random process diðtÞ for i 2 R represents the
demand at market i. It is reasonable to assume that the quantity of product flowing between different entities is upper-
bounded, and hence the following assumption is made.

Assumption 2.2. The flows li;jðtÞ are non-negative for all time-slots t and there exist positive scalars lmax
i such that
X
b

li;bðtÞ 6 lmax
i ; 8i 2 N ; 8t; ð2Þ
where all pairs ði; bÞ belong to the set L.
The above inequalities limit the total flow of the product leaving any node, which can be thought of as production, trans-

portation or storage capabilities limitations.
The following definitions introduce the time averages of the product flows in the supply chain.

Definition 2.1. The time average flows of product in the supply chain are given by
�li;jðtÞ ¼
1
t

Xt�1

s¼0

Efli;jðsÞg; ð3Þ
and the long-run time averages of flow product are given by
�li;j ¼ lim
t!1

�li;jðtÞ; ð4Þ
for all ði; jÞ 2 L.
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Additionally, the market demands satisfy the following assumption.

Assumption 2.3. The random processes diðtÞ are independent and identically distributed, with mean given by
�di ¼ EfdiðtÞg; 8i 2 R: ð5Þ

The aggregate vectors of product flows and market demands are denoted by lðtÞ ¼ li;jðtÞ

� �
for ði; jÞ 2 L, and dðtÞ ¼ diðtÞð Þ

for i 2 R, respectively.

3. Formulation of the stochastic optimization problem

In this section, the optimization problem the firm needs to solve to maximize its profit is presented. The profit
function is defined as the difference between the revenue from selling the product and the cost for producing the pro-
duct. Since the supply chain is assumed random, the profit function is defined in terms of the long-run, time averages
of the product flows. The flows of the product must satisfy a set of constraints induced by the supply chain network.
These constraints define the capacity region of a supply chain, which tells how much demand the supply chain can
support.

Definition 3.1. The capacity region K of a supply chain is the closure of all vector of demands x ¼ ðxiÞ that can be supported
by the supply chain network, considering all possible strategies for choosing the flows of product, under the limitations
introduced by Assumption 2.2.

In the following, a more detailed characterization of the capacity region of a supply chain is given. To that end, let Ci;jðsÞ be
the set of flows on link ði; jÞ satisfying Assumption 2.2, when the supply network is in state s, and under all possible flow
control policies. Let CðsÞ be the set of all link sets, i.e., CðsÞ ¼ Ci;jðsÞ

� �
for ði; jÞ 2 L. Let cofCðsÞg denote the convex hull of the set

of all possible values of CðsÞ. Recalling that the state of the supply chain is an i.i.d. random process, the set of the average
convex hull of all possible flows on links, given all possible states can be defined. This average set can be formally written as a
family of graphs C, given by
C ,
X
s2S

pscofCðsÞg:
A matrix G ¼ ðGi;jÞ is said to belong to C if there exits a randomized flow control policy that depends on the state of the
network, such that
G ¼
X
s2S

psEflðtÞjSðtÞ ¼ sg;
where EflðtÞjSðtÞ ¼ sg is the expected flow matrix under the considered policy, given that the supply chain is in state s.
The following Theorem inspired by (Georgiadis et al., 2006) gives a mathematical characterization of the capacity region

of the supply chain.

Theorem 3.1. The capacity region of a supply chain is given by the set K of all demand vectors x ¼ ðxiÞ such that there exits a flow
matrix G ¼ ðGi;jÞ belonging to the closure of C, together with flow variables f i;j such that
f i;j P 0; 8ði; jÞ 2 L; f i;j ¼ 0; 8ði; jÞ R L; ð6ÞX
a2F

f a;i ¼
X
b2W

f i;b; 8i 2M; ð7Þ

X
a2M

f a;i ¼ f i;i0 ; 8i 2 W; ð8Þ

f i;i0 ¼
X
b2R

f i0 ;b; 8i 2 W; ð9Þ

X
a2W

f a0 ;i ¼ xi; 8i 2 R; ð10Þ

f i;j 6 Gi;j; 8ði; jÞ 2 L: ð11Þ
In the particular case where the process SðtÞ is i.i.d. (which in fact is the assumption throughout this paper), the next
Corollary presents a further characterization of the capacity region, where ClðAÞ is used to denote the closure of the set A.
Corollary 3.1 (adaptation of Corollary 3.9, Georgiadis et al., 2006). If C is a closed set and if the state process SðtÞ is i.i.d. from
slot to slot, the demand vector x is within the capacity region K if and only if there exists a stationary (randomized) policy that
chooses lðtÞ based only on the current topology state SðtÞ, such that
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E
X
a2F

la;iðtÞ
( )

¼ E
X
b2W

li;bðtÞ
( )

; 8i 2 M;

E
X
a2M

la;iðtÞ
( )

¼ E li;i0 ðtÞ
n o

; 8i 2 W;

E li;i0 ðtÞ
n o

¼ E
X
b2R

li0 ;bðtÞ
( )

; 8i 2 W;

E
X
a2W

la0 ;iðtÞ
( )

¼ xi; 8i 2 R;
where the expectation is taken with respect to the random process SðtÞ and the (potentially) random policy based on SðtÞ.
Note that if x 2 K, then any x� such that x� 6 x entrywise, also belongs to K. In addition, it can be shown that the set K is

convex, closed and bounded and it contains the vector of all zeros, (i.e., 0 2 K).
The previous Corollary gives the constraints induced by the supply chain network that the flows of product must satisfy.

Next, a stochastic optimization problem is formulated; problem that describes the objective of the firm under the network
constraints introduced above.

The goal of the firm is to maximize its profit, that is the difference between the revenue and the cost functions. The
revenue function of the firm depends on the quantity of products that reach the retailers/markets in the long-run. The
revenue function is denoted by
fð�lÞ ¼
X

i2W;j2R
f i0 ;jð�li0 ;jÞ;
where ði0; jÞ represent valid warehouse-retailer pairs, i.e., i 2 W; j 2 R and ði0; jÞ 2 L. Cost functions associated with each link
ði; jÞ 2 L are also considered, and are denoted by gi;jð�li;jÞ. These cost functions depend on the flow of the product on the links
and are generated by activities such as acquiring raw materials, manufacturing, transportation or warehouse usage. The total
cost function is given by
g �lð Þ ¼
X

i2F ;j2M
gi;j �li;j
� �

þ
X

i2M;j2W
gi;j �li;j
� �

þ
X
i2W

gi;i0 �li;i0
� �

þ
X

i2W;j2R
gi0 ;jð�li0 ;jÞ:
Assumption 3.1. The functions f i;j are non-negative, continuously differentiable and concave, while the functions gi;j are
non-negative, continuously differentiable and convex.

The profit function h is the difference between the revenue and the cost functions, i.e.,
hð�lÞ ¼ fð�lÞ � gð�lÞ:
The firm’s objective is to maximize the profit under the flow constraints induced by the (capacity region of the) supply
chain network. Let xi denote the long-run average flow of product arriving at market (retailer) i, that is,
xi ¼
X
a2W

�la;i; 8i 2 R:
The following stochastic optimization problem is considered:
max
�l;x

hð�lÞ; ð12Þ

subject to : x 2 K;

x 6 �d:
The first constraint introduced above ensures that the average product flows arriving at the markets (retailers) are within
the capacity region of the supply chain network, i.e., can be supported by the network. The second inequality ensures that
the long term flow of the product arriving at the markets are not larger than the demands at the markets.

By Corollary 3.1, the above stochastic optimization problem can be equivalently represented as
max
�l

hð�lÞ ð13Þ

subject to :
X
a2F

�la;i ¼
X
b2W

�li;b; 8i 2M;

X
a2M

�la;i ¼ �li;i0 ; 8i 2 W;

�li0 ;i ¼
X
b2R

�li0 ;b; 8i 2 W;
X
a2W

�la0 ;i 6
�di; 8i 2 R;



I. Matei et al. / Transportation Research Part E 77 (2015) 311–330 317
where �li;j ¼ Efli;jðtÞg for all ði; jÞ 2 L, with li;jðtÞ being chosen by some stationary, randomized control algorithm, based only
on the current state SðtÞ.

Assumption 3.2 (Interior point). There exist positive scalars e1 and e2 and two stationary randomized flow control policies
based on the current state SðtÞ, corresponding to e1 and e2, respectively, such that
Efle1
1;iðtÞg þ e1 ¼ E

X
b

le1
i;bðtÞ

( )
; 8i 2M;

X
a

E le1
a;iðtÞ

n o
þ e1 ¼ E le1

i;i0
ðtÞ

n o
; 8i 2 W;

E le1
i;i0
ðtÞ

n o
þ e1 ¼ E

X
b

le1
i0 ;b
ðtÞ

( )
; 8i 2 W;

E
X

a

le1
a0 ;iðtÞ

( )
þ e1 6

�di; 8i 2 R;
and
E
X

b

le2
i;bðtÞ

( )
þ e2 ¼ Efle2

1;iðtÞg; 8i 2M;

E le2
i;i0
ðtÞ

n o
þ e2 ¼

X
a

E le2
a;iðtÞ

n o
; 8i 2 W;

E
X

b

le2
i0 ;b
ðtÞ

( )
þ e2 ¼ E le2

i;i0
ðtÞ

n o
; 8i 2 W;

E
X

a

le2
a0 ;iðtÞ

( )
6

�di; 8i 2 R:
The above Assumption basically states that the optimal solution of (13) is not on the boundary of the capacity region. In
particular, e1 can be viewed as an additional flow on one of the links that arrives at a node and is produced by a source out-
side the supply chain, while e2 can be viewed as an additional flow leaving a node on one of the links but that fails to reach
the destination node.

From the numerical optimization point of view, it is more advantageous to work with inequality constraints rather than
equality constraints. As a consequence, each equality constraint in (13) is replaced by two inequality constraints, as shown in
the following:
max
�l

hð�lÞ ð14Þ

subject to :
X
a2F

�la;i 6
X
b2W

�li;b; 8i 2 M;

X
a2F

�la;i P
X
b2W

�li;b; 8i 2M;

X
a2M

�la;i 6 �li;i0 ; 8i 2 W;
X
a2M

�la;i P �li;i0 ; 8i 2 W;

�li0 ;i 6
X
b2R

�li0 ;b; 8i 2 W;

�li0 ;i P
X
b2R

�li0 ;b; 8i 2 W;
X
a2W

�la0 ;i 6
�di; 8i 2 R:
In the following sections a mathematical approach for solving the optimization problem (14) is introduced. This approach
is based on queueing theory and on drift analysis.

4. Flow control algorithm

In this section a flow control algorithm which ensures that the long-run, time-average flows in the supply chain get
arbitrarily close to the optimal solution of (13) is presented. The main idea behind the algorithm is to associate to each of
the inequality constraints a (virtual) queue. As shown in what follows, the inequality constraints are satisfied if the queues
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associated to them are stable, in some sense that is about to be defined. By taking advantage of this property, an algorithm
that stabilizes the queues and gets arbitrarily close to the optimal solution of (14) is proposed. The algorithm is derived as a
result of a drift analysis approach on the (virtual) queues. This approach is closely related to the stochastic Lyapunov theory
(Kushner, 1967) and avoids using a realization of the stochastic parameters for approximating the objective function.

4.1. Modeling inequality constraints using queues

This subsection shows why the feasibility of the inequality constraints defined in the optimization problem (14) can be
connected to the stability of a set of queues associated to them.

Consider a queue UðtÞ (Fig. 2) with (possibly random) input kðtÞ and output lðtÞ, whose dynamics is given by
Uðt þ 1Þ ¼maxfUðtÞ � lðtÞ;0g þ kðtÞ:
Definition 4.1. The queue UðtÞ is said to be strongly stable if
lim sup
t!1

1
t

Xt�1

s¼0

EfUðsÞg <1:
Let us now assume that there exists �k and �l such that.
�k ¼ lim
t!1

1
t

Xt�1

s¼0

E½kðsÞ�; and �l ¼ lim
t!1

1
t

Xt�1

s¼0

E½lðsÞ�:
Proposition 4.1 (Queue stability). A necessary condition for the strong stability of the queue UðtÞ is
�k 6 �l:

The necessary condition is quite intuitive. Indeed, if �k > �l, then the expected queue backlog grows to infinity, leading to

instability. Under additional assumptions on the processes kðtÞ and lðtÞ, it can be shown that �k < �l is also a sufficient con-
dition (see (Georgiadis et al., 2006) for more details).

As previously mentioned, a set of (virtual) queues are associated to the constraints of the optimization problem (14),
whose dynamics are given in the following.

In the case of a manufacturing unit, the dynamics of the queue levels are given by
U1
i ðt þ 1Þ ¼ max U1

i ðtÞ �
X

b

li;bðtÞ;0
( )

þ
X

a

la;iðtÞ; 8i 2M; ð15Þ

U2
i ðt þ 1Þ ¼ max U2

i ðtÞ �
X

a

la;iðtÞ;0
( )

þ
X

b

li;bðtÞ; 8i 2M: ð16Þ
The queues associated to the warehouses evolve in time according to
U1
i ðt þ 1Þ ¼ max U1

i ðtÞ � li;i0 ðtÞ; 0
n o

þ
X

a

la;iðtÞ; 8i 2 W; ð17Þ

U2
i ðt þ 1Þ ¼ max U2

i ðtÞ �
X

a

la;iðtÞ;0
( )

þ li;i0 ðtÞ; 8i 2 W: ð18Þ
Fig. 2. Queue schematics.
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and
U1
i0 ðt þ 1Þ ¼max U1

i0 ðtÞ �
X

b

li0 ;bðtÞ;0
( )

þ li;i0 ðtÞ; 8i 2 W; ð19Þ

U2
i0 ðt þ 1Þ ¼max U2

i0 ðtÞ � li;i0 ðtÞ; 0
n o

þ
X

b

li0 ;bðtÞ; 8i 2 W: ð20Þ
The dynamics of the queues corresponding to the retailers is given by
Uiðt þ 1Þ ¼max U1
i ðtÞ � diðtÞ;0

n o
þ
X

a

la;iðtÞ; 8i 2 R: ð21Þ
Remark 4.1. In the previous expressions,
P

bli;bðtÞ represents the summation over all active links carrying products from
node i, at time slot t, as per the state of the supply chain state SðtÞ. A similar interpretation can be given to the term

P
ala;iðtÞ:

From Proposition 4.1 it can be inferred that any flow control algorithm stabilizing the queues produces a solution that
satisfies the flow constraints defined in the optimization problem (13). Therefore, it makes sense to look for an algorithm that
stabilizes the queues defined above and in the same time maximizes the profit function.
4.2. Algorithm description

This section introduces a randomized flow control algorithm that can get arbitrarily close to the optimal solution of (13).
The algorithm stabilizes the (virtual) queues and therefore ensures that the inequality constraints are satisfied, but, most
importantly, it shows how the economic entities in the supply chain dynamically adapt their flows based on the changes
in the network.

The algorithm consists of actions taken by the entities involved in the economic activities of the firm, at each time slot t.
Let d be a positive scalar, that affects the performance of the algorithm. For simplicity, the set of firms F contains only one
firm, say node 1 in the network. In the following the flow control algorithm is described.

� Control of the raw material flow: At every time slot, the firm observes the current levels of the manufacturers’ queues, U1
bðtÞ

and U2
bðtÞ. Then, at each time t it chooses the amount l1;b of raw material sent to manufacturer b, where l1;b is the solution

of the following optimization problem:
min
l1;b

X
b2M

dg1;bðl1;bÞ þ U1
bðtÞ � U2

bðtÞ
h i

l1;b

� �
ð22Þ

subject to :
X
b2M

l1;b 6 lmax
1 ; l1;b P 0; 8b: ð23Þ
� Control of the flow of product from manufacturers to warehouses: At every time slot, each manufacturer i observes the cur-
rent level of its queues U1

i ðtÞ and U2
i ðtÞ and the current levels of the queues of the warehouse b to which product is pos-

sible to be sent to (as per the state of SðtÞ), i.e., U1
bðtÞ and U2

bðtÞ. The amount of product sent to each warehouse b at time
slot t is given by li;b, obtained as solution of the following optimization problem:
min
li;b

X
b

dgi;bðli;bÞ � U1
i ðtÞ � U1

bðtÞ
h i

þ U2
bðtÞ � U2

i ðtÞ
h i� �

li;b ð24Þ

subject to :
X
b2W

li;b 6 lmax
i ; li;b P 0; 8b; ð25Þ

for all i 2 M; b 2 W and ði; bÞ 2 L which are active at time t, as per the state of the supply chain given by SðtÞ.

� Control of the flow of product within the warehouses: At every time slot, each warehouse i observes the current level of its
queues U1

i ðtÞ; U1
i0 ðtÞ; U2

i ðtÞ and U2
i0 ðtÞ. The amount of product allowed in the warehouse at time slot t is given by li;i0 ,

obtained as solution of the following optimization problem:
min
l

dgi;i0 ðlÞ � U1
i ðtÞ � U1

i0 ðtÞ
h i

þ U2
i0 ðtÞ � U2

i ðtÞ
h i� �

l ð26Þ

subject to :0 6 l 6 lmax
i ð27Þ

for all i 2 W and ði; i0Þ 2 L which are active at time t, as per the state of the supply chain given by SðtÞ.

� Control of the flow of product from warehouses to retailers: At every time slot, each warehouse i observes the current level of
its queues backlog U1

i0 ðtÞ and U2
i0 ðtÞ and the current level of the queue of the retailer b to which the product is sent to, i.e.,

U1
bðtÞ. The amount of product sent to retailer b at time slot t is given by li0 ;b, where li0 ;b are obtained as solution of the

following optimization problem:
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min
li0 ;b

X
b2R

dgi0 ;bðli0 ;bÞ � df i0 ;bðli0 ;bÞ � U1
i0 ðtÞ � U1

bðtÞ
� �

� U2
i0 ðtÞ

h i
li0 ;b ð28Þ

subject to :
X
b2R

li0 ;b 6 lmax
i0 ; li0 ;b P 0; 8b; ð29Þ

for all i 2 W; b 2 R and ði0; bÞ 2 L which are active at time t, as per the state of the supply chain given by SðtÞ.

Note that the optimization problems (22)–(28) are convex constrained optimization problems, which can be solved
efficiently at each time slot. Also, note that each of the entities involved in the economic activities does not need to know
the entire state of the network, nor the probability distribution of SðtÞ. Indeed, in the case of the manufacturers, the raw mate-
rial flow is determined only by the level of the queues’ backlogs and the cost. When a manufacturer must decide the flow
of the product sent to warehouses, it looks at the current valid links, and it makes the decision based on the cost of uti-
lizing the respective links, and based on the difference between the queues’ levels of the manufacturer and warehouses. In
the case of the amount of product allowed in a warehouse, the decision is based on the cost of keeping the product in the
warehouse and on the difference between the levels of the (virtual) queues. Finally, the amount of product sent to retailers
from a warehouse is based on the current available links, on the (localized) profit obtained from sending products to a
specific retailer and on the difference between the queues’ levels of the warehouse and retailers. This limited need of infor-
mation for implementing the algorithm makes it advantageous for controlling the flow of product in increasingly complex and
globalized supply chains. Another important observation is that the manufacturers, warehouses and retailers do not need to
know the entire state of the network at a time slot, nor the statistics of the state process SðtÞ. They only need to observe
the state of links which connect them to their neighbors. In addition, the virtual queues U1

i ðtÞ can find an analogy in rea-
lity. Indeed, in the case of a manufacturer for example, the queue can be viewed as a deposit for the raw material waiting
to be processed.

5. Derivation of the algorithm and performance analysis

This section shows the considerations behind the development of the algorithm and analyzes its performance. The algo-
rithm is derived as a result of a tradeoff between maximizing the profit function and maintaining the stability of the queues
introduced above. Stability of the queues ensures that the constraints introduced by the supply chain are satisfied. By putting
more weight on maximizing the profit function, the flows generated by the algorithm get closer to the optimal solution.
However, the backlogs of the queues are increased as well.

5.1. Derivation of the algorithm

The algorithm is derived as a result of a tradeoff between a drift function and the profit function. The drift is a measure of
the increase in the queues’ backlogs.

Let UðtÞ ¼ U j
i ðtÞ; i 2 M;U j

i ðtÞ;U
j
i0
ðtÞ; i 2 W; j 2 f1;2g;UiðtÞ; i 2 R

� �
be the vector of queues. Using the quadratic Lyapunov

function
VðUðtÞÞ , 1
2

X
j2 1;2f g

X
i2M

U j
i ðtÞ

2 þ
X
i2W

U j
i ðtÞ

2 þ U j
i0
ðtÞ2

� �" #
þ 1

2

X
i2R

UiðtÞ2;
the queues’ drift is given by:
DðUðtÞÞ , E½VðUðt þ 1ÞÞ � VðUðtÞÞjUðtÞ�;
The flow control algorithm for the supply chain results from minimizing an upper bound of the following quantity
DðUðtÞÞ � dE hðlðtÞÞjUðtÞf g; ð30Þ
for each time slot t. Note that minimizing the previous expression means a trade-off between the stability of the queues
through the Lyapunov drift DðUðtÞÞ and the firm’s profit through the profit function h, where d is a weighing factor. In fact,
making d large enough implies focusing on maximizing the profit (and getting arbitrarily close to the optimal solution), but
at a cost in terms of an increased product congestion in the queues.

Let Y ; U; l; A be non-negative reals so that
Y 6 maxfU � l;0g þ A:
It is not difficult to show that the following inequality holds:
Y2
6 U2 þ l2 þ A2 � 2Uðl� AÞ: ð31Þ
Using the previous inequality, an upper-bound for (30) is as follows:
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DðUðtÞÞ�dE hðlðtÞÞjUðtÞf g6BN�E
X
i2M

U1
i ðtÞ

X
b

li;bðtÞ�l1;iðtÞ
 !

jUðtÞ
( )

�E
X
i2M

U2
i ðtÞ �

X
b

li;bðtÞþl1;iðtÞ
 !

jUðtÞ
( )

�E
X
i2W

U1
i ðtÞ li;i0 ðtÞ�

X
a

la;iðtÞ
 !

jUðtÞ
( )

�E
X
i2W

U2
i ðtÞ �li;i0 ðtÞþ

X
a

la;iðtÞ
 !

jUðtÞ
( )

�E
X
i2W

U1
i0 ðtÞ

X
b

li;b tð Þ�li;i0 tð Þ
 !

jUðtÞ
( )

�E
X
i2W

U2
i0 ðtÞ �

X
b

li;bðtÞþli;i0 ðtÞ
 !

jUðtÞ
( )

�E
X
i2R

UiðtÞ diðtÞ�
X

a

la0 ;iðtÞ
 !

jUðtÞ
( )

�dE
X
ði0 ;jÞ

f i0 ;jðli0 ;jðtÞÞjUðtÞ

8<
:

9=
;

þdE
X
i2M

giðriðtÞÞjUðtÞ
( )

þdE
X
ði;jÞ

gi;jðli;jðtÞÞjUðtÞ
( )

þdE
X
ði;i0 Þ

gi;i0 ðli;i0 ðtÞÞjUðtÞ

8<
:

9=
;

þdE
X
ði0 ;jÞ

gi0 ;jðli0 ;jðtÞÞjUðtÞ

8<
:

9=
;;
where
B ,
1
N

X
i2N

2 lmax
i

� �2
;

and where N is the number of all queues.
A rearrangement of the sums in the previous inequality further produces
DðUðtÞÞ � dE hðlðtÞÞjUðtÞf g 6 BN þ E
X
i2R

UiðtÞdiðtÞjUðtÞ
( )

þ E
X
i2M

dg1;iðl1;iðtÞÞ þ U1
i ðtÞ � U2

i ðtÞ
h i

l1;iðtÞjUðtÞ
( )

þ E
X

ði;bÞ;i2M;b2W
dgi;bðli;bðtÞÞ � U1

i ðtÞ � U1
bðtÞ

h i
þ U2

bðtÞ � U2
i ðtÞ

h i� �
li;bðtÞjUðtÞ

8<
:

9=
;

þ E
X
ði2W

dgi;i0 ðli;i0 ðtÞÞ � U1
i ðtÞ � U1

i0 ðtÞ
h i

þ U2
i0 ðtÞ � U2

i ðtÞ
h i� �

li;i0 ðtÞjUðtÞ
( )

þ E
X

ði0 ;bÞ;i2W;b2R

dgi0 ;bðli0 ;bðtÞÞ � df i0 ;bðli0 ;bðtÞÞ � U1
i0 ðtÞ � UbðtÞ

� �
� U2

i0 ðtÞ
h i

li0 ;bðtÞjUðtÞ

8<
:

9=
;:
ð32Þ
From the above inequality, the derivation of the algorithm is evident. Given queue levels UðtÞ, the flow control algorithm
follows from greedily minimizing the right-hand side of the inequality (32), in terms of the control variables lðtÞ over all
possible flow options satisfying the constraints introduced in Assumption 2.2.

5.2. Performance analysis

This subsection shows that the dynamic flow control algorithm introduced above gets arbitrarily close to the optimal
solution of (14). The next theorem proves to be useful in the analysis of the algorithm.

Theorem 5.1. Let Assumptions 2.1, 2.2, 2.3, 3.1, 3.2 hold and assume that there exist positive constants d; e and B such that for all
timeslots t and all backlog queue levels UðtÞ, the Lyapunov drift satisfies:
DðUðtÞÞ � dEfhðlðtÞÞjUðtÞg 6 B� e
XN

i¼1

UiðtÞ � dh�; ð33Þ
where h� is the optimal cost function of the stochastic optimization problem (13). Then the following inequalities are
satisfied
lim sup
t!1

1
t

Xt�1

s¼0

X2

j¼1

X
i2W

EfU j
i ðsÞg þ

X
i2M

EfU j
i ðsÞ þ U j

i0
ðsÞg þ

X
i2R

EfUiðsÞg
 !" #

6
Bþ dð�h� h�Þ

e
ð34Þ

lim inf
t!1

hð�lðtÞÞP h� � B
d
; ð35Þ
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where �lðtÞ was defined in (3) and �h is given by
�h , lim sup
t!1

1
t

Xt�1

s¼0

EfhðlðsÞÞg:
The previous Theorem is a slight modification of Theorem 5.4 in (Georgiadis et al., 2006) and for brevity the proof is
omitted.
Remark 5.1. Note that since the flows li;jðtÞ are upper bounded by lmax
i and the function h is continuous, there exists hmax so

that �h� h� 6 hmax. In addition, let lmax ,minflmax
i g:

The next Theorem describes the performance of the flow control algorithm.

Theorem 5.2. Let Assumptions 2.1, 2.2, 2.3, 3.1, 3.2 hold. For any positive parameter d the flow control algorithm stabilizes the
(virtual) queues associated with the constraints of the optimization problem (14) and gives the following upper bounds:
lim sup
t!1

1
t

Xt�1

s¼0

X2

j¼1

X
i2W

EfU j
i ðsÞg þ

X
i2M

E U j
i ðsÞ þ U j

i0
ðsÞ

n o
þ
X
i2R

EfUiðsÞg
 !

6
NBþ dhmax

lmax
ð36Þ

lim inf
t!1

hð�lðtÞÞP hðl�Þ � BN
d
; ð37Þ
where l� is the solution of (13) and where �lðtÞ satisfies (3).

Let e1 be a small quantity of product flow added to the inputs of queues U1
i ðtÞ for all i 2M[W and queues UiðtÞ, for i 2 R.

It follows that the dynamics of the aforementioned queues become
U1
i ðt þ 1Þ ¼max U1

i ðtÞ �
X

b

li;bðtÞ;0
( )

þ l1;iðtÞ þ e1; 8i 2 M;

U1
i ðt þ 1Þ ¼max U1

i ðtÞ � li;i0 ðtÞ;0
n o

þ
X

a

la;iðtÞ þ e1; 8i 2 W;

U1
i0 ðt þ 1Þ ¼max U1

i0 ðtÞ �
X

b

li0 ;bðtÞ; 0
( )

þ li;i0 ðtÞ þ e1; 8i 2 W;

Uiðt þ 1Þ ¼max UiðtÞ � diðtÞ; 0f g þ
X

a

la0 ;iðtÞ þ e1; 8i 2 R;
and let Ke1 denote the capacity region of the supply chain under the additional flow e1, and �l�ðe1Þ denote the solution of (13),
when K is replaced by Ke1 . Then, by Corollary 3.1 applied to the capacity region Ke1 , we have that there exists a stationary
randomized flow control algorithm, that chooses the flows based on the current state of the supply chain, and gives
Efl�1;iðe1Þg þ e1 ¼ E
X

b

l�i;bðe1Þ
( )

; 8i 2M;

X
a

E l�a;iðe1Þ
n o

þ e1 ¼ E l�i;i0 ðe1Þ
n o

; 8i 2 W;

E l�i;i0 ðe1Þ
n o

þ e1 ¼ E
X

b

l�i0 ;bðe1Þ
( )

; 8i 2 W;

E
X

a

l�a0 ;iðe1Þ
( )

þ e1 6
�di; 8i 2 R;
where �l�i;jðe1Þ ¼ E l�i;jðe1Þ
n o

.

Similarly, assuming that a small flow e2 is added to the inputs of queues UiðtÞ2, their dynamics become
U2
i ðt þ 1Þ ¼max U2

i ðtÞ � l1;iðtÞ;0
n o

þ
X

b

li;bðtÞ þ e2; 8i 2M;

U2
i ðt þ 1Þ ¼max U2

i ðtÞ �
X

a

la;iðtÞ;0
( )

þ li;i0 ðtÞ þ e2; 8i 2 W;

U2
i0 ðt þ 1Þ ¼max U2

i0 ðtÞ � li;i0 ðtÞ;0
n o

þ
X

b

li0 ;bðtÞ þ e2; 8i 2 W:
Denoting by Ke2 the capacity region under the additional flow e2; �l�ðe2Þ represents the solution of (13) when K is
replaced by Ke2 .
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As before, by Corollary 3.1 applied to the capacity region Ke2 , there exists a stationary randomized flow control algorithm,
that chooses the flows based on the current state of the supply chain, and gives
E
X

b

l�i;bðe2Þ
( )

þ e2 ¼ Efl�1;iðe2Þg; 8i 2M;

E l�i;i0 ðe2Þ
n o

þ e2 ¼
X

a

E l�a;iðe2Þ
n o

; 8i 2 W;

E
X

b

l�i0 ;bðe2Þ
( )

þ e2 ¼ E l�i;i0 ðe2Þ
n o

; 8i 2 W;
where �l�i;jðe2Þ ¼ E l�i;jðe2Þ
n o

. Note that by Assumption 3.2, such e1 and e2 do exist.

The flow control algorithm described in the previous section minimizes the right-hand side of inequality (32) for all pos-
sible policies based on the current state of the supply chain. In particular, it does this against the previously mentioned sta-
tionary policies, generated by adding the additional flows e1 and e2. Consequently, under the flow control algorithm, it
follows that
DðUðtÞÞ � dE hðlðtÞÞjUðtÞf g 6 BN �
X
i2M

U1
i ðtÞ

X
b

�l�i;bðe1Þ � �l�1;iðe1Þ
 !

�
X
i2M

U2
i ðtÞ �

X
b

�l�i;bðe2Þ þ �l�1;iðe2Þ
 !

�
X
i2W

U1
i ðtÞ �l�i;i0 ðe1Þ �

X
a

�l�a;iðe1Þ
 !

�
X
i2W

U2
i ðtÞ ��l�i;i0 ðe2Þ þ

X
a

�l�a;iðe2Þ
 !

�
X
i2W

U1
i0 ðtÞ

X
b

�l�i;bðe1Þ � �l�i;i0 ðe1Þ
 !

�
X
i2W

U2
i0 ðtÞ �

X
b

�l�i;bðe2Þ þ �l�i;i0 ðe2Þ
 !

�
X
i2R

UiðtÞ EfdiðtÞg �
X

a

�l�a0 ;iðe1Þ
 !

� d
X
ði0 ;jÞ

f i0 ;jð�l�i0 ;jðe1ÞÞ þ d
X
i2M

g1;ið�l�1;iðe1ÞÞ

þ d
X
ði;jÞ

gi;jð�li;j
�ðe1ÞÞ þ d

X
ði;i0Þ

gi;i0 ð�l�i;i0 ðe1ÞÞ þ d
X
ði0 ;jÞ

gi0 ;jð�l�i0 ;jðe1ÞÞ:
Denoting e ¼ minfe1; e2g, the above inequality becomes
DðUðtÞÞ � dE hðlðtÞÞjUðtÞf g 6 BN � e
X2

j¼1

X
i2M

U j
i ðtÞ � e

X2

j¼1

X
i2W

U j
i ðtÞ þ U j

i0
ðtÞ

h i
� e
X
i2R

UiðtÞ � dhð�l�ðe1ÞÞ:
By Theorem 5.1 it follows that
lim sup
t!1

1
t

Xt�1

s¼0

X2

j¼1

X
i2W

EfU j
i ðsÞg þ

X
i2M

EfU j
i ðsÞ þ U j

i0
ðsÞg þ

X
i2R

EfUiðsÞg
 !" #

6

BN þ dð�h� hðl�ðe1ÞÞÞ
e

6
BN þ dhmax

e
ð38Þ
and
lim inf
t!1

hð�lðtÞÞP hðl�ðe1ÞÞÞ �
BN
d
: ð39Þ
The performance bounds in (38) and (39) hold for any values of ei such that 0 < ei 6 lmax, for i ¼ 1, 2. However, the par-
ticular values of ei only affect the values of the bounds and not the control algorithm. Therefore, the bounds can be optimized
separately over all possible values of ei; i ¼ 1; 2. Obviously, the bound (38) is minimized when e approaches lmax. It can be
shown that the optimal solution of (13) when the capacity region is replaced by Ke1 , is continuous in e1. Consequently, as e1

approaches zero, the capacity region Ke1 approaches K and l�ðe1Þ approaches l�. Therefore, the bound (39) is minimized
when e1 goes to zero, and the result follows.

Remark 5.2. Note that inequality (36) shows that under the flow control algorithm, the queues remain stable, i.e., the long-
run flows are feasible. In addition, inequality (37) shows that the solution provided by the flow control algorithm can get
arbitrarily close to the optimal solution, by making d arbitrarily large.
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6. Numerical example

The flow control algorithm described in the previous sections was implemented and tested on the supply chain network
shown in Fig. 1. The cost function corresponding to each link ði; jÞ of the network has the form gi;jðli;jÞ ¼ ai;jl2

i;j þ bi;jli;j, while

the revenue function is given by f ðlÞ ¼ cl
1
p

i;j þ d, where ai;j ¼ 0:1; bi;j ¼ 0:3; c ¼ 3; d ¼ 2; p ¼ 1:8. The maximum output rate
at node i is assumed to be equal to lmax ¼ 6� Li, where Li is the number of links going out of i. This sets an ‘‘average’’ maxi-
mum rate of 6 for each link. A link has two states, ON and OFF. and the links ON–OFF processes are assumed to be i.i.d. with
an ’ON’ probability of 0.9. The demand processes are taken to be independent and uniformly distributed between 0 and 3 at
each time, with an average of 1.5. In addition, two values for the parameter d are considered, 0.1 and 0.9, respectively, to
show its influence on the queues’ backlog.

The queues’ backlog over time as well as the running averages of the queues (Fig. 5) for the two considered values of d are

plotted. Both the plots for the forward Uð1Þi and backward Uð2Þi queues are shown. Recall that these queues are virtual queues
introduced as a consequence of modeling the inequality constraints as queues. However, the forward queues can be inter-
preted as real queues at nodes of the network. Also, notice that there is no backward queue defined for the queue at a retai-
ler. The queues’ backlogs of each branch are shown in a 4-by-2 panel where the left column corresponds to the froward
queues (from top to bottom nodes) and the right column corresponds to the backward queues.

Plots of the flow rates on the different links and their running averages (Fig. 6) are also depicted. The link flow rates are
shown in a 2-column panel. The left column shows links (originating) in the left branch and the right column displays the
rates of links (originating) in the right branch. In Fig. 5, the left column shows (from top to bottom) the rates in links
L1; L3; L5; L7 of the topology on Fig. 3; the right column shows the rate at links L2; L4; L6; L8. The cross-branch links are
shown in the bottom subplots (the rates at links L9; L11 are shown in the bottom of the left column and links L10; L12’s rates
in the bottom of the right column). Finally, to emphasize on the convergence of the average rates, a zoom-in of the rate plots
is presented to focus only on the ½0;1:8�-range of the y-axis (i.e., the rates). This is shown in Fig. 7.
6.1. Discussion: Queues’ backlog

The queues’ backlogs are shown in Figs. 4–7. It can be observed that the queues are oscillating but are not growing
unbounded. This is exactly the stability of queues predicted by the theory. In fact, the average rates also satisfies the stability
condition of Proposition 4.1, as well. The theory however, does not predict anything about the convergence of the average
queues’ backlog. Yet, it can be observed that the average backlog seems to converge for all (forward and backward) queues.
An interesting follow up of this study is to prove/disprove convergence of average queue and to determine under which con-
ditions convergence is guaranteed.
Fig. 3. Example of network topology: 2 branches, 2 retailers, up and downstream crossings.



Fig. 4. Queues levels; Branch 1 for d = 0.1.

Fig. 5. Queues levels; Branch 2 for d = 0.1.
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From the figures, it can be noticed that in general, the forward queues at the manufacturers and at the first (upper) ware-
houses are in average more loaded than the queues at the second (lower) warehouses and at the retailers. This is a conse-
quence of the back-pressure algorithm, which forces upstream nodes to reduce their rate and consequently build up their
queues when downstream nodes are congested. Hence, in general, queues close to the destination tend to have a smaller
backlog. It can be also observed that the cross links serve to balance the load to reduce the variations in each queue.



Fig. 6. Queues levels; Branch 1 for d = 0.9.

Fig. 7. Queues levels; Branch 2 for d = 0.9.
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Finally, it can be noticed that the queue fluctuations increase for higher values of the parameter d (Fig. 4). Recall that setting d
large implies focusing on maximizing the profit (and getting arbitrarily close to the optimal solution), but at the cost of
increased product congestion in the queues.



Fig. 8. Links rates for d = 0.1.

Fig. 9. Links rates for d = 0.9.
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Fig. 10. Links rates for d = 0.1 (zooming).

Fig. 11. Links rates for d = 0.9 (zooming).
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6.2. Discussion: link rates

The rates at the different links are shown in Figs. 8 and 9, with zoomed-in versions shown in Figs. 10 and 11. A certain
number of observations can be made from these figures.

First, the rates are random due to the randomized control algorithm. However, for all runs of the simulation, the average
rate converges for each link. Furthermore, at each retailer, the value to which the average aggregate rate converges is less
than 1.5, the average demand at each market. This is a necessary condition for the stability of the queues as was stated
in Proposition 4.1. The average rate at the other links are such that the conservation of flow principle is satisfied at each node
(which is what was expected).

When there are two links departing from a node, traffic can either be split (when both links are up), or entirely sent over
one link (especially when the other link is down). To see which choice will be made at a given node, one can analyze the cost
function gi;jðli;jÞ ¼ al2

i;j þ bli;j. Assume that at a branching node, traffic is split such that a rate of l is sent over one link and

12� l over the other link 0 6 l 6 12. The (local) total cost of such routing is al2 þ blþ að12� lÞ2 þ bð12� lÞ ¼
að2l2 � 24lÞ þ 12bþ 144a. Analyzing this cost as a function of l, it can be observed that it is minimized when l ¼ 12,
implying that at a branching node, when both links are up, the entire traffic should be sent over one of the links. This is what
is observed at nodes 2, 3, 6 and 7 for network in Fig. 3, where the traffic on the links departing from such nodes is (almost all
the time) either 0 or equal to the maximum rate of 12.
7. Conclusions

In this paper the management of flow product in a supply chain was addressed. Generally speaking, the main contribution
of the paper to the literature consists of the introduction of a distributed algorithm for the flow management in a random and
time-varying supply chain, that is not based on stochastic approximation. In more detail, the contributions are as following.
Motivated by recent events, a random and time-varying model for a supply chain was proposed which induced a stochastic
nature of the flows. A stochastic optimization problem aimed at maximizing the profit function of a firm in terms of the time-
averages of the flows and subject to constraints induced by the supply chain was formulated. A distributed, dynamic algo-
rithm for solving the aforementioned optimization problem was proposed. Under this algorithm, at each time instant deci-
sions are based only on the current state of the supply chain. In addition, decisions do not need information on the
probability distribution of the supply chain. It was shown that the long-run, time-averages of the flows generated by the
algorithm can get arbitrarily close to the optimal solution of the stochastic optimization problem.

Another, indirect contribution of the paper is that it exposes the reader to new techniques for solving stochastic optimiza-
tion problems. This is beneficial to the operational research literature based in part on optimization theory.
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