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Performance Evaluation of Multi-Agent
Distributed Collaborative Optimization
under Random Communication Topologies

lon Matei and John S. Baras

Abstract— We investigate collaborative optimization in a the performance of the consensus-based multi-agent subgra-
multi-agent setting, when the agents execute in a distributed dient method proposed in [7], for the case of a constant
manner using local information, while the communication stepsize, as measured by two metrics: rate of convergence

topology used to exchange messages and information is modeled . ; .
by a graph-valued random process, independent of other and guaranteed region of convergence, evaluated via their

time instances. Specifically, we study the performance of the €Xpected values. Random graphs are suitable models for
consensus-based multi-agent subgradient method, for the case networks that change with time due to link failures, packet
of a constant stepsize, as measured by two metrics: rate of drops, node failures, etc. An analysis of the multi-agent
convergence and guaranteed region of convergence, evaluatedsubgradient method under random communication topology

via their expected values. Under a strong convexity type of . .
assumption, we provide upper bounds on the performance IS addressed in [8]. The authors assume that the consensus

metrics, which explicitly depend on the probability distribution ~ Weights are lower bounded by some positive scalar and give
of the random graph and on the agents’ estimates of the optimal upper bounds on the performance metrics as functions of this
solution. This provides a guide for tuning the parameters of scalar and other parameters of the problems. More precisely,
the communication protocol such' that good performance of the the authors give upper bounds on the distance between
multi-agent subgradient method is ensured. . . . . .
the cost function and the optimal solution (in expectation),
I. INTRODUCTION where the cost is expressed as a function of the (weighted)

Multi-agent distributed optimization problems appear natiMé average of the optimal decision vector's estimate.
is paper, our main goal is the provide upper bounds on

urally in many distributed processing problems (such a
y y P ap ( e performance metrics, which explicitly depend on the

network resource allocation), where the optimization co L ; .
is a convex function which is not necessarily separable. Rmbab'“ty distribution of the random graple first derive

distributed subgradient method for multi-agent optimizatior‘"iln upper _bound on how close _the cost f_unct|on, evaluated
of a sum of convex functions was proposed in [7], wherét the estlmat_e, gets to the opt|_mal solution. Next, under a
each agent has only local knowledge of the optimizatio trong convexity type of assumption, we focus on the squared
cost, i.e. knows only one term of the sum. The agents e listance between the estimate of the optimal decision and
change information according to a communication topologﬁome minimizer. We provide an upper bound for th,'s metric,
modeled as an undirected, time varying graph, which defin@émh will give us the rate of convergence of the estimate to a
the communication neighborhoods of the agents. The age/daranteed neighborhood of the optimum. The performance
maintainestimatesof the optimal decision vector, which are Metrics are evaluated via their expected values. The explicit
updated in two stages. The first stage consists of a Consengggendence on the graph S pro‘?"?‘b"",y dllstrl_but|on allows us
step among the estimate of an agent and its neighbors. In figedetermine the optimal probability distributions that v_vould .
second stage, the result of the consensus step is update(fri’ﬁu:]e the tl)est guarantee_d IlIJpperrf)our}dsl on the metlr(lcs. This
the direction of a subgradient of the local knowledge of théjﬁa ash relevance especially |n|t N V‘r’]'re ess ne;wor S case,
optimization cost. Another multi-agent subgradient methoy €' the communication topology has a random nature

was proposed in [5], where the communication topology ig\nth a probability distribution (partially) determined by the

assumed time invariant and where the order of the two Stag%gmmunlcatlon protocol parameters. As example of possible

mentioned above is inverted applications of our results, in [10] we address two simple

In this note we investigate the collaborative optimizatioﬁCenarlos where the goal is to tune the communlcanon
problem in a multi-agent setting, when the agents execuPéOtOCOI parameters such tr_lat_ the performance _of the muly-
in a distributed manner using local information, while the?9ent subgradient method is improved. In the first scenario
communication topology used to exchange messages N8 consider that the agents use a randomize scheme for

information is modeled by a graph-valued random procesgpabling packet transmissions, where the agents decide to

independent of other time instances. Specifically, we stu t like a tr_a_nsm_ltter or a receiver with some probability.
his probability will play the role of the protocol parameter.

This material is based upon work supported by the US Air Foriz® In the second scenario, we assume that the transmissions
of Scientific Research MURI award FA9550-09-1-0538 __happen according to a pre-established order (TDMA based
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Engineering and Institute for Systems Research, University of Marylan(p,mtoco) ut they are te y.mt_er er?ncesl' n this case,
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role of protocol parameters. Both scenarios are applied onbg the union of graphs corresponding to the matriégs
small world type of communication topology. i=1...,m ie. U, Gj, whereG; is induced byA;.
Notations: Let X be a subset oR" and lety be a point
in R". Using an abuse of notation, kjy— X|| we understand
the distance from the point to the setX, i.e. |ly—X| =
Minyex |ly — X, where||-|| is the standard two norm. The task of theN agents consists in minimizing a convex
Let f : R" — R be a convex function. We denote By(x)  function f : R" — R. The functionf is expressed as a sum
the subdiferential of f at x, i.e. the set of all subgradients of N functions, i.e.
of f atx

N
Af(X)={deR"f(y) > f(x)+d'(y-x), YyeR"}. (1) f(x) = Z fi(x), 3
i=1

Let e > 0 be a nonnegative real number. We denotékiy(x)
thee-subdiferential off atx, i.e. the set of alk-subgradients where fj : R" — R are convex. Formally expressed, the
of f atx agents want to cooperatively solve the following optimization

9f() = (deRF(Y) = f(N+d(y=X)—&, VWeR"Y. (2) problem

B. Optimization model

N
We will denote by LEM and SLEM the largest and second Q&QZ fi(%). (4)
largest eigenvalue of a stochastic matrix, respectively. We i=1

will use MASM for multi-agent subgradient method and pm

n : f'I'he fundamental assumption is that each agelnas access
for probability mass function.

Paper structure Section Il contains the problem formula—Only o the functionf;. Let f* denote the optimal value of
P P f and let X* denote the set of optimizers df, i.e. X* =

tion. More precisely presents in details the commumcaﬂo&(e RMf(x) = ). Let x(k) € R" designate thestimate of

and optimization models assumed in this note. In Sectlothe optimal decision vectoof (4), maintained by agerit

lll, we introduce a set of preliminary results, which mainly__ . .
o L ..~ at timek. The agents exchange estimates among themselves
consist in providing upper bounds for a number a quantities . .2 ;
. o - . ._according to the communication topology described by the
of interest. By combining the preliminary results, in Section
. random graplG(K).

IV we give upper bounds for the expected values of two A din I71. th q hei . .
performance metrics: the distance between the cost function S proposedin [7], the agents up ate their estimates using
modified incremental subgradient method. Compared to

evaluated at the estimate and the optimal solution and t tandard subaradient method. the local estimale i
(squared) distance between the estimate and some minimiZ8F Standard subgradien method, the loca’ es 'm‘.ﬂe IS
placed by a convex combinationxk) with the estimates

Due to space limitation some of the proofs of our result§cP'2 dqf h ‘ahbors:
are omitted. The missing proofs can be found in referend&C€VEd Trom the neighbors:
[10].

N
Il. PROBLEM FORMULATION Xi(k+1)= Z aij (k)X (k) — a(k)di(K). ®)

=1
A. Communication model ]

Consider a network oN agents, indexed by=1,...,N. Wwhere &;(K) is the {,j)" entry of a stochastic random
The communication topology is time varying and is modele#natrix A(k) which corresponds to the communication graph
by a random grapts(k), whose edges correspond to commuSG(K). The matriceA (k) form an i.i.d random process taking
nication links among agents. Given a positive inteiferthe ~ values in a finite set of symmetric stochastic matrices with
graphG(K) takes values in a finite s@ = {G1,Gy,...,Gu}.  Positive diagonal entriest = {A}};, whereA is a stochastic
The underlying random process @(k) is assumed i.i.d. matrix corresponding to the gragh € G, fori=1....M.
with probability distribution Pr(G(k) = G;) = pi, Yk > 0, _The probability distribution ofA(K) is inherited fromG(k),
where ¥ M. pi = 1. Throughout this note, we will consider i-€. Pr(A(k) = A)) = Pr(G(k) = Gi) = pi. The real valued
only bidirectional communication topologies, i.6(k) is scalare(K) is the stepsize, while the vectak(k) € R" is
undirected. a subgradient of; at x;(k), i.e. di(k) € 9f;(xi(K)).

Assumption 2.1{Connectivity assumption) The graph re- Assumption 2.2(Subgradient Boundedness and Constant
sulting from the union of graphs ig, i.e. Ui’\ilei, is Stepsize) The subgradients of functidnat any point are

connected. bounded, i.e. there exists a scajasuch that
Let G be a graph of ordeN and letAe RNN be a row _
stochastic matrix, with positive diagonal entries. We say that Idil < ¢,¥d € dfi(X), YxeR", i=1,...,N,

the matrixA, correspondgo the graphG or the graphG is

inducedby A if any non-zero entryifj) of A implies a link and the stepsize(k) is assumed constant and known by all
from j to i in G and vice-versa. Consider a matrix produc@gents, i.ea(k) =, Vk>0.

of stochastic matrices of length, [T, Ai. We say that the ~ Assumption 2.3{Existence of an Optimal Solution) The
graph induced by the aforementioned matrix product, is givesptimal solution seX* is nonempty.
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[ll. PrReLIMINARY REsuLTS Remark 3.1:The transition matrixd(k, s) of the stochastic

In this section we lay the ground for our main results ifineéar equation (10) can also be represented as
Section IV. The preliminary results introduced here revolve s
around the idea of providing upper-bounds on a number of Dk, 9) = (HA(k—i)]@l -J (12)
quantities of interest. The first quantity is represented by the i=1
distance between_ an estimate of the optlmql d¢C|S|on gnd fered = (%]1]1’ ®I. This comes from the fact that for any
average of all estimates. The second quantity is described V10

. . ,2,...,S—1} we have that

the distance between the average of the estimates and the se&

of optimizers. Ak-DNel-NAK-1-1)®1-J)=
We introduce theaverage vector of estimates of the =Ak-DAK-1-1)®1-J.
optimal decision vector, denoted k) and defined by Remark 3.2:(On the first and second moments of the
1N transition matrix®(k, s)) Let m be a positive integer and con-
X(K) £ = Z xi (K). (6) sider the transition matrisp(k+m k) = W(k+m-1)...W(K),
N i=1 generated by a sequence of lengilof random graphs, i.e.
The dynamic equation for the average vector can be derivé(K)---G(k+m—1), for somek > 0. The random matrix
from (5) and takes the form ®(k+ mk) takes values of the formW, W, --W, with
(k) ije{l2,...,M}andj=1,...,m The norm of a particular
X(k+ 1) = x(k) - —=h(k), (7) realization of®d(k+m,k) is given by the LEM of the matrix
N productW, Wi, --- W, or the SLEM ofA A, --- Ai,,, denoted
whereh(k) = 2{11 di(K). henceforth by, .. Let pi; _in = ]'[’j“:1 Pi; be the probability

We introduce also thdeviationof the local estimates (k)  of the sequence of graphs;,...Gj,, that appear during
from the average estimaigk), which is denoted by;(k) and the time interval k.k+ m]. Let I, be the set of sequences
defined by of indices of lengthm for which the union of the graphs
with the respective indices produces a connected graph, i.e.

2(K) = %K) = x(K), I=1.....N. ®) Im = {ili2~~~im|Urjn:16ij = connectefl Using the previous

Let us define theaggregatevectors of estimates, averagenotations, the first and second moments of the norm of
estimates, deviations and subgradients, respectively: ®(k+ m,k) can be expressed as

x(0)' £ [xa(K)’, (k). xn (k)] € RN, Efllok+m K] = n7m, (13)

X(0) £ [X()', XK, X(K)] € RN, E[llo(k+mK)I’] = om, (14)

2(k) £ [21(K), 22(K) ... Zn(K)'] € RN wherenm = Xy, Pidj + 1= Zjai, Pj @andpm = Tjei,, PjA% +
and 1- 3 el Pj- The integerj was used as an index for the

d(K) £ [ch(K), da(K), ..., dn(K)] € RN elements of the sdty.

The above formulas follow from results introduced in [4],
From (6) we note that the aggregate vector of averageemma 1, orin [15], Lemma 3.9, which state that for any se-
estimates can be expressed as quence of indices; ...im € 1M, the matrix produchy, --- A,
%09 = Ix(K) is ergodic, and therefor@; < 1, for j € M. Conversely,
’ if j¢1™, thena; =1. We also note thaf .;m pj is the
whereJ = %]1]1’®I, with | the identity matrix inR™" and probability of having a connected graph over a time interval
1 the vector of all ones ilRN. Consequently, the aggregateof length m. Due to Assumption 2.1, for siiciently large

vector of deviations can be written as values ofm, the setl™ is nonempty. In fact fom> M,

(M s always non-empty. In general for large valuesnof

2(K) = (1 = Ix(K). ©) may be dificult to compute all eigenvalug, j € 1M. We

The next Proposition characterize the dynamics of thean omit the necessity of computing the eigenvaliigsind
vectorz(k). this way decrease the computational burden, by using the

Proposition 3.1: The dynamic equation of the aggregategollowing upper bounds ofm, andpm
vector of deviations is given by

Mm < AmPm+ 1= P, (15)
z(k+ 1) = W(K)z(k) — a(K)(I — J)d(K), z(0) = zo, (10)
pm < Mg+ 1P, (16)
whereW(K) = (A(K) - £11’)®1, with solution _ .
whereim = maXe,, 4j and py, = ¥ e, Pj is the probability
k-1 to have a connected graph over a time interval of lemgth

z(k) = ©(k, 0)2(0)—20(5)‘D(k,5+ 1)d(s),  (11) For notational simplicity, in what follows we will omit the
s=0 indexm when referring to the scalarg, and pp.
where ®(k, s) is the transition matrix of (10) defined by Throughout this note we will use the symbats  and
Dk, s) = W(k—-1)W(k-2)---W(s), with O(k,k) =1. p in the sense defined within the Remark 3.2. Moreover,
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the value ofm is chosen such that™ is nonempty. The IV. M aIN Resurt - CONVERGENCE ANALYSIS

existence of such a value is guaranteed by Assumption 2.1.n the following we provide upper bounds for three perfor-
The next Proposition gives upper bounds on the expect@ghnce metrics of the MASM. First, we give an estimate on
value of the norm and the squared norm of the transitiofhe radius of a neighborhood around the optimal valfied
maitrix d(k, s). where the cost functioffi, evaluated at the estimasg(k), is
Proposition 3.2:Letr < s<k be three nonnegative Integefguaranteed to converge. Second, we focus on the (squared)
values. Letm be a positive integer, such that the 369 gistance between the estimagék) and the set of optimizers
is non-empty. Then, the following inequalities involving thex*. Under a strong convexity type of assumption, we give
transition matrix®(k, s) of (10), hold an estimate of the radius of a neighborhood around the zero
point, where this metric is guaranteed to converge. We also

k-s

Elllok, 9] < ’7L " J’ 17 provide an upper bound for the rate of convergence to the
s aforementioned neighborhood.

Ellotk 917 <pl7), (18) Corollary 4.1: Let Assumptions 2.1, 2.2 and 2.3 hold and
sl e let {xi(K)}k=0 be a sequence generated by the iteration (5),

Efllok. Nk 91 < pl T L 7], (19) i=1...N. Then
i ) 2
wheren andp are defined in Remark 3.2. |i|r(ninf E[f(x(K)] < f*+ ma¢21i(N+2)+ % (25)

The following lemma gives upper bounds on the first and
the second moments of the distance between the estimate
xi(K) and the average of the estimatet).~ fi(x(K) = fi(xi(K)) + di(K)" (X(K) - xi(K)) >

Lemma 3.1:Under Assumption 2.2, for the sequences > fi(xi(K) = [l (K)ll1z (K)II,
{(Xi(Kls0, I =1,..., N generated by (5) with a constantor
stepsizex, the following inequalities hold

Proof: Using the subgradient definition we have

fi(xi(K)) < fi(x(K) +¢llz(K)I, for alli=1,...,N.

E[I1xi (k) — X(K)I[] glgx/ﬁn[%J + m‘i"if (20) Summing over all, we get
f(xi (k) < f(x(K) + Nellz(K)Il.
Elix (k) - XK)I12] < Ng2ol ) + 207 (1+20) {2+ By the results of Lemma 3.1, the following inequality holds
+2Naﬂ¢m‘LZ[l imint Ef(x(K)] < liminf E[f ()] + N \/NWZ%].
(21) (26)

wheren, p andm are defined in Remark 3.2. Let x* € X* be an optimal point off. By (7), where we use
The following result allows us to interpret iteration (7) asy constant stepsize, we obtain

an e-subgradient (withe being a random process).

2 _ a 2 _
Lemma 3.2:The vectord;(k) is an e(k) -subdiférential of IIx(k + 1) = X[ = [1X(k) — X" = gh(x(K)II* =
~ X0 — X1~ 2 (Y (X0 — X°) + o
fi at x(k), i.e. di(k) € de(k) fi (X(K)) andz 10i(K) is anNe(k)-
subditerential of f at x(k), i.e. Zl 1d.(k) eaNE(k)f(ﬂk)) for and since, by Lemma 3.2(X(Kk)) is a Ne(k)-subdiferential
anyk=> 0, where of f at x(k), we have

k1 X(k+1)= |2 < 1K) = X117 = 2a(F (X(K)) — ) + 2e(K) +a%,
e(K) = 208 VN0 (k 0)l| + 2097 VN 3 [d(k, s+ 1) (22)

or

s=0
Under a strong convexity type of assumption arthe next [IX(k+ 1) = x*|12 < [IX(0) — X*|I2 - ZQZ‘;jé(f()T(s)) — )+
result gives an upper bound on the second moment of the +20 YKL e(9) + kaZs?.
distance between the average veckfk) and the set of
optimizers off. Since||x(k+1)- x| = 0
Lemma 3.3:Let {x(K)}x=0 be a sequence of vectors gener- k-1 k-1
ated by iteration (7). Also, assume that Assumptions 2.2 and ZQZ(f(Y(S)) f*) < IX(0) - X ||2+2&Ze(8)+ ka2
2.3 hold and that there exists a positive scalauch that s=0
or
F(X) = 7 > pllx— X" (23)

k-1 k-1
20 ) (E[F(R)] - 1) <IKO)- X7 +20 Y E[s(3)] +ka®e?
s=0 s=0

Then, the following inequality holds

EIX() - X7[12] < ”)?(0) X2k + 4wﬁ\/— [rﬁnj+ By Proposition 3.1 and Lemma 3.1, we obtain the following
AV (24) upper bound for the expected value«gs).
1 = ( +1)

s-1
Ele(9)] <268 VNE[|[(s,0)[] + 20% VN ) E[I0(s 1+ 1)]] <
r=0

wherey =1- % andn is defined in Remark 3.2.
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which in turn leads to

k-1
> Ele(9)] < 268 VN + k2ag? VN
Py 1-n 1-n
Using the fact that
k-1
Z(E[f(ﬂS))] - ) zk_min (E[f(X(9)]- ),
s=0

0...k-1
we get

0’902

liminf E[f (X(K)] - f* < 2a¢? VN 4+ 2~
k—c0 1-n 2

Inequality (25) follows by combining (26) and (27). =
The next result shows that under a strong convexity

(27)

By inequality (21) we have

k k
EflIx(K) - X(K)II?] < ago™ + agnm + &g,

wherea;, ap andag are some positive scalars derived from
the right-hand side of (21). By noting that> p, we can
further write
- ~ ko
E[lx(K) - X(K)[I%] < &anm + 2 (30)

whered; and&, are some positive scalars.
By inequality (24), we obtain

k
ELIIX(K) — X"|1%] < byy® + bonm + bg,

wherebs, by andbg are some positive scalars derived from
the right-hand side of (24). We can further write

E[IIX(K) — X*|[2] < bymaxty,nm}< + by, (31)

type of assumption, the convergence rate of the MASM, in . .

expectation sense, is linear for afficiently small constant whereb; andb, are some positive scalars. Using the nota-
stepsize. It also shows that only convergence (in expectatitinnsc; = maxas, b1} andc; = maxapy, by}, by (29), (30) and
sense) to a neighborhood can be guaranteed; a neighborhd@8d,), we obtain

however, that can be made arbitrarily small.

Corollary 4.2: Let Assumptions 2.1, 2.2 and 2.3 hold and

let u be a positive scalar such that

f(X) = f* > plx= X*|I%, ¥xeR".

(28)

E[lIxi (K) — X*I17] < 4c1 maxty, pm ) + 4cy,

which shows thel R-linear convergence, with the R-factor
given by maxy,nm}. [ ]

Then, the sequencg(K)}k=0, generated by iteration (20) A. Discussion of the results

with the stepsizea < -

converges, in expectation, (at

We obtained upper bounds on three performance met-

least) R-linearly to a guaranteed nelghbortzood around SOEs relevant to the MASM: the distance between the cost

optimizer of f. The R-factor equals méx nm}, wherey =
1- % and the radius of the neighborhood equals

A+B+\/A_B,

where

2 2
_a% [4m\/ﬁ+1)’
1-y\ 1-9
2 2 2Zm\ m
B=Na«a "2 1+1— 1—
-n)L=p
Proof: By the triangle inequality we have

[1%i (K) = X711 < 11 (k) = X(K)II + 1X(K) = X[I,
or
11 (K) = X112 < 113 (K) = X(K)I2 + 211%¢K) — XK IIXTK) — X1+
+IX(K) - X712,
or
ELlIxi(K) — X*117] < E[IIxi (K) - X(K)[I?]+
+2E[]1%:(K) — X(QII11X(K) — X*[[] + E[lIX(k) — X*[|].

By the Cauchy-Schwarz inequality for the expectation oper-

ator, we get

E[IIxi(k) — X*11] < E[lI% (K) - X(KII2] + 2EI1%i(K) — X(K)I12] 2-
ELIIX(K) - X*[12] 2 + E[JIX(K) - X*[1%].

(29)

function evaluated at the estimate and the optimal solution
(Corollary 4.1), the distance between the estimate of the
decision vector and the set of optimizers and the rate of
convergence to some neighborhood around an optimizer of
f (Corollary 4.2). The three upper bounds are functions
of three quantities which depend on the scalaxsy and

o, i.e. % % and n%r, which show the dependence of
the performance metrics on the pmf &f(k) and on the
corresponding random matriA(k). The scalarsy and p
represent the first and second moments of the SLEM of
the random matrixA(k+ 1)...A(k+ m), corresponding to

a random graph formed over a time interval of length
respectively. We notice from our results that the performance
of the MASM is improved by makingl%], % and 77%‘ as
small as possible, i.e. by optimizing these quantities having
as decision variablem and the pmf ofG(k). Since the three
quantities are not necessarily optimized by the same values
of the decision variables, we have in fact a multi-criteria
optimization problem:

mmm,p| {rr'nn’ 1_30,’]%‘}
subject to: m>1 (32)
TMpi=1 p>0.

The scalarn% relates to the rate of convergence of the

The guaranteed radius of the neighborhood around sorflistance between the estimate of the decision vector and
optimizer of f follows by inequalities (21) and (24) and by the set of optimizers. Note that, unless it helps the other

" . 1
taking the limit ask goes to infinity of the above inequality. two quantltlesl%”,7 and 1—Tp, making nm too small, may
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not necessarily result in an improvement of the rate of
convergence since the latter is given by the max%}.

The solution to the above problem is a set of Pareto points,
i.e. solution points for which improvement in one objective
can only occur with the worsening of at least one other
objective.

We note that for each fixed value of the three quantities
are minimized if the scalarg and p are minimized as
functions of the pmf of the random graph. In fact, we can
focus only on minimizing;, since for every fixedn, n is an
upper bound om and in fact both quantities are minimized
by the same pmf. Therefore, in problem (32), we have to
find an appropriate value ah such that a Pareto solution is
obtained, which has a corresponding optimal pmf. Depending
on the communication model used, the pmf of the random
graph can be a quantity dependent on a set of parameters of
the communication protocol (transmission power, probability
of collisions, etc). Having amptimal pmf allow us to tune
these parameters such that the performance of the MASM is
improved.

In what follows we provide a simple example where we
show how the optimal probability distribution, 1qu andn%
evolve as functions ofin.

Example 4.1:Let G(k) be random graph taking values in
the setg = {G1, Gy}, with probabilityp and 1- p, respectively.
The graphs; andG; are shown in Figure 1. Also, I&(K)

be a (stochastic) random matrix , correspondingGik),
taking value in the sefl = {A1, Ay}, with

11 00 10 0 O
A i % fol |02 00
1= s N2 = 2 1
0 37 320 0035 3
0 0 0 1 00 % %
1] «—mm 1 2
4 3 4 3
Gl GZ

Fig. 1. The sample space of the random gr&ik)

Figure 2(a) shows the optimal probability’ that min-
imizes n for different values oim. Figure 2(b) shows the
optimizedn (computed atp*) as a function ofm. Figures
2(c) and 2(d) show the evolution of tmptimized%] and

1 . .
nm as functions ofm, from where we notice that a Pareto
solution is obtained fom=5 andp* = 0.582.

In order to obtain the solution of problem (32), we need
to compute the probability of all possible sequences of
length m produced byG(k), together with the SLEM of

0.2
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nw 09t
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naist

091
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(d)

their corresponding stochastic matrices. ThIS task, for _Iarg’_t_? 2. (a) Optimalp as a function of; (b) Optimizedy as a function of
values ofm andM maY pr(_)ve to be ”“me“‘?a"y expensive. (c) Optimized {- as a function ofm; (d) Optimizednniw as a function
We can somewhat simplify the computational burden by m 7

using instead the bounds op and p introduced in (15)

and (16), respectively. Note that every result concerning
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the performance metrics still holds. In this case, for each
value of m, the upper bound omn is minimized, whenp,,

is maximized, which can be interpreted as having to choose
a pmf that maximizes the probability of connectivity of a
random graph obtained over a time interval of lengthin

our example, the probability that the unionrafconsecutive
graphs produced by(k) results in a connected graph is
Pm=1-p"-(1-p)™. We note thaip,; =0, since no single
graph inG is connected. For every fixed value wf p,, is
maximized forp = % Given thatA(k) takes valuesA; and

Ao with uniform distribution, the bounds on the curves of

the quantitiesy, 77"% and %7 are given in Figure 3. We note

that form= 3, both bounds omnlw and %7 are minimized.
Even in the case where we try to minimize the bound
on n, it may be very dficult to compute the expression for
P, for large values ofm (the setg may allow for a large
number of possible unions of graphs producing connected
graphs). Another way to simplify even more our problem, is
to (intelligently) fix a value form and to try to maximize
pm having as decision variable the pmf. We note that
should be chosen such that, within a time interval of length
m, a connected graph can be obtained. Also, a very large
value form should be avoided, sincg{"—,7 is lower bounded
by m. Although in general the uniform distribution is not
necessarily minimizing;, it becomes the optimizer under
some particular assumptions, stated in what follows. &et
be such that a connected graph is possible to be obtained
only over a time interval of lengtiM (i.e. in order to form
a connected graph, all graphs ¢ must appear within a
sequence of lengtM). ChooseM as value fom. It follows
that p,, can be expressed as:

M
Pm=ml I_I pi.
i=1

We can immediately observe thg{, is maximized for the
uniform distribution, i.e.p; = n% fori=1,...,M.

V. CONCLUSIONS

In this note we studied a multi-agent subgradient method
under random communication topology. Under an i.i.d. as-
sumption on the random process governing the evolution of
the topology we derived upper bounds on three performance
metrics related to the MASM. The first metric is given by
the radius of the neighborhood around the optimal solution
where the cost function evaluated at an estimate converges.
The second and the third metrics are represented by the
radius of a neighborhood around the zero point where the
distance between an estimate and the set of optimizers is
guaranteed to converge and the rate of convergence to this
neighborhood, respectively. All the aforementioned perfor-
mance measures were expressed in terms of the probability
distribution of the random communication topology. This
is particulary useful when the distributed optimization is_

. . . . Fig. 3.
performed over wireless networks, since the communicatio” ; function ofm : (c) Optimized bound on™ as a function of; (d)
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(a) Optimalp as a function ofm; (b) Optimized bound om

protocol parameters, which determine the probability dlstr|(—)ptimizeoI bound oy as a function ofn

bution of the random graph, can be tailored to improve the
performance of the MASM.
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