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Abstract— We present a framework for fast target detection
in real-world robotics applications. Considering that an in-
telligent agent attends to a task-specific object target during
execution, our goal is to detect the object efficiently. We
propose the concept of early recognition, which influences the
candidate proposal process to achieve fast and reliable detection
performance. To check the target constraints efficiently, we put
forward a novel policy which generates a sub-optimal checking
order, and we prove that it has bounded time cost compared
to the optimal checking sequence, which is not achievable in
polynomial time. Experiments on two different scenarios: 1)
rigid object and 2) non-rigid body part detection validate our
pipeline. To show that our method is widely applicable, we
further present a human-robot interaction system based on our
non-rigid body part detection.

I. INTRODUCTION

When robotics researcher address applications requiring

visual perception to allow for interaction with the envi-

ronment, they usually adopt Computer Vision techniques.

However, the state-of-the-art Computer Vision pipelines are

not well suited for autonomous robotics. Take as example

the object recognition pipeline. Most recent approaches rely

on a general object candidate proposal procedure to generate

regions (both RGB or RGB-D), which likely contain objects.

After this object proposal stage, pre-trained classifiers, such

as pre-trained Convolutional Neural Nets (CNN), evaluate

each candidate’s region and determine whether the region

contains one of the target objects [4], [9].

The above pipelines are considered effective and efficient

for Multimedia applications, such as image tagging and re-

trieval. However, they are not directly applicable for Robotics

applications. The reason is that during the execution of a task

or a particular phase of the task, the robot needs to localize

only the task-specific object in a fast and reliable fashion. For

example, for a humanoid robot to open a microwave, only

the microwave’s exact pose and handle location are critical

for successful execution, while other objects that happen to

be in the scene can either be ignored or simply represented

as generic geometric objects, such as boxes or cylinders, for

collision check.

Thus, the general object recognition pipeline based on ob-

ject candidate proposals becomes redundant for two reasons:

1) before executing a task, the robot is aware of what object

to focus on from the task description; 2) considering the
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general situation without specific task, will hurt the system’s

overall detection performance.

Here, we present a novel strategy to tackle the object

recognition problem in a robotic manipulation setting. We

propose to consider the constraints from the target object

early on during the candidate proposal process in order to

speed up the task-specific object detection during robotic

execution. However, the main technical difficulty of the new

pipeline is due to the large number of constraints for real

world objects. Let’s consider the underlying distribution of

the total real world target objects, each detection constraint

shall contribute differently to the target localization. In this

work, we formulate the problem as a filtering problem and

by achieving a sub-optimal order of constraints to check, our

system is able to reject the negative instances early and thus

significantly reduce the amount of time for target detection.

We summarize our contribution as follows:

1) We demonstrate the feasibility and benefits of intro-

ducing target descriptions early into the segmentation

and object candidate proposal procedure for robotic

applications.

2) The process of checking a target’s constraints is for-

mulated as a shared filter problem, and we prove

that a greedy strategy of organizing constraint filters

has a bounded performance with regard to the op-

timal checking sequence. The optimized order can

be interpreted intuitively as a task-specific attention

mechanism under the current working conditions.

3) We implement and apply the presented framework to

two different real world scenarios: the detection of

drawers with handles and the detection of a user’s

hands and arms. The experimental results show that:

1) the optimized constraints checking order is time-

efficient; 2) our detection framework is general enough

to deal with both rigid objects and deformable objects.

II. RELATED WORK

Object detection and recognition is a problem widely stud-

ied within the Computer Vision and Robotics communities.

Various object detection pipelines have been proposed for

different contexts and different applications.

Object candidate proposal followed by classification has

become a dominant procedure for object detection. First,

proto-objects or possible object areas are generated either

by segmentation [3], [19] or searching [18], [23] using low-

level visual cues. High-level knowledge such as context [6],

[14], [25] and bio-inspired attention [8] can be added to

help reduce the number of candidates and make the search
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more efficient. After pruning the search space, features [2]

and attributes [15] can be extracted and classified by one or

multiple statistical models [13], [24]. Recently, deep neural

network based approaches [4], [12] became popular due to

their performance and their way of handling features and

classification simultaneously. However, a general candidate

proposal approach is not suited well to deliver a target-

specific task for a robot. The traditional detection pipeline

would be computationally redundant, given the potentially

large number of object candidates.

Another class of methods widely adopted in robotics

applications employs keypoints [1] and model matching [7].

Especially when depth is available, 3D descriptors [20],

[21] can encode the shape, and they perform well when

considering them in conjunction with color [10]. However,

though dealing with specific object instances, these methods

spend a significant amount of resources on finding the

key points. Also, by storing the complete 3D model and

comprehensive views, the detection process is redundant and

difficult to generalize.

Here, we propose the concept of early recognition, which

influences the candidate proposal process to achieve a fast

and reliable target detection. In our framework, the target

object is described as a graph, and visual cues like attributes

are treated as the constraints to be followed by the graph

elements. In image processing, graph related models like

Markov Random Fields have been used to recognize or

segment the target [26]. Previous approaches, however, focus

on the recognition accuracy and thereby require a full list of

attributes. In our framework, we present a novel way to speed

up the detection process by optimizing the order of the visual

constraints to check. Similar to algorithms in data mining

[11], [17], we adopt a greedy algorithm in ordering the visual

constraints. Moreover, we provide a theoretical foundation

for our approach by proving its submodular property [5].

III. OUR APPROACH

We illustrate the system’s workflow in Figure 1. Given an

input RGB-D image (Fig. 1(a)), the system first generates

a scene graph G = {V,E} by segmenting the image into

surfaces V (Fig. 1(b)). At first, E contains all the possible

connections, and G is a fully-connected graph. We then

represent the knowledge about the target object as a set

of template graphs GT, with constraint functions associated

with each vertex and edge. During the main detection proce-

dure, our system checks sequentially the constraints provided

by the description of the target object GT to remove negative

matches between the scene and the template graph (Fig.

1(c)). In the end, the system returns the subgraphs satisfying

all the target constraints, which provides the target object

candidates (Fig. 1(d)).

Since our system considers the constraints from the target

object early in the process, the procedure of finding candidate

proposals becomes target-specific, and the recognition phase

becomes a part of the constraints checking. Here, the task of

efficient target detection can be formulated as ”how to find

Fig. 1: Detection pipeline. (a) Input image; (b) Scene graph

after segmentation; (c) Intermediate result: a visualization

of scene graph nodes with more than 1 active match with

the template graph after constraints checking; (d) Detection

output after matching template graphs.

the target (a subgraph that matches the template graph) from

the segmented input image (scene graph) efficiently.”

IV. PROBLEM FORMULATION

The first stage of our pipeline segments the input image

and generates a scene graph G = {V,E}. Here, V is the

set of segmented surfaces, and E represents the relationship

between surfaces.

As mentioned before, we describe the target object as

a set of template graphs GT along with a set of con-

straint functions. GT = {Gi|i = 1, 2, ..., N} and Gi =
{Vi, F

Vi , Ei, F
Ei}, where Vi denotes the nodes (surfaces)

in i-th template graph, FVi = ∪v∈Vi
{F v} represents the set

of vertex constraints F v for each node v ∈ Vi. The result

of matching each constraint F with vertex v is a random

variable Fv with values of {false, true}. Here, value true
means a constraint is satisfied. If F is evaluated to be false,

the matching to the template vertex v will be rejected. In

our case, one constraint can be used to match with different

vertices from the template graphs, i.e. it is possible to have

F ∈ F v1 and the same F ∈ F v2, where v1 �= v2.

Ei is the set of edges in i-th template graph. FEi =
∪e∈Ei

{F e} are the edge constraints for all of them. It is

worth noting that the nodes in different template graphs have

the same index if both their nodes and edges constraints are

identical VT = ∪iVi and ET = ∪iEi denote all the nodes

and edge labels in the template graph. F = {∪v∈VT
F v)} ∪

{∪e∈ET
F e} represent all the constraints associated with

nodes and edges.

Given a scene graph of an input image, G = {V,E}, we

want to find all the subgraphs of G which match one of the

templates in GT efficiently. That is,

minimize cavg(I)

subject to I ∈ Permutation(1, 2, ..., |F|), (1)

where I denotes one of the constraint checking sequence.

cavg(I) denotes the expected cost of checking the constraints

following the order of I . Here the cost originates from the

temporal ordering, because the goal of our system is to detect

the target object as fast as possible.

A naive approach of searching template graphs in G is to

check all the constraints F in random order. The downside of
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such an approach is obvious. It neglects the cost for checking

the constraints.

On the other hand, searching for the optimal order is com-

putationally expensive because of the potentially exponential

number of possible graph matches. The computational com-

plexity to exhaustively test each of the constraint checking

orders is non-polynomial. Thus, a computationally affordable

strategy for determining the constraints checking sequence is

desirable for efficient target search. In the following sections

we will introduce our take. Our system’s output is a sub-

optimal constraint checking order. The experimental results

show that our approach is able to significantly reduce the

time for target detection.

V. CONSTRAINTS ORDER SEARCHING POLICY

In this section, we first clarify the constraints’ checking

procedure, then put forward our constraints order searching

algorithm. Finally, we prove that the checking order deter-

mined by our policy holds theoretical performance guarantee

under a set of assumptions.

For the sake of clarity, we introduce U(s|F′) to be the

set of possible template graph node labels that a scene node

s matches, after checking the set of constraints in F
′ ⊆ F.

Intuitively, s could match with template graph node v if all

the node and edge constraints in F
′ associated with node v

are satisfied.

We present in Algorithm 1 the procedure of matching a

scene graph with template graphs. In a nutshell, the algorithm

checks all the template graph constraints in F for each

vertex or edge in the scene graph G. After filtering out the

negative matches between the scene and template graph, our

system returns all the subgraphs from the scene graph whose

corresponding matched nodes and edges form one of the

template graphs.

In our use case application, one legitimate assumption is

that the number of possible matches for each scene vertex,

after checking all the constraints in F, is limited. Thus, re-

turning the remaining subgraphs of scene graph that matches

one of the template graphs (Algorithm 1 line 16) is expected

to take a reasonable amount of time. Traditional graph

searching algorithms such as depth-first search and breath-

first search are also expected to deliver decent performance.

Here, we treat the constraints associated with the graph edges

like the node constraints, Thus a matching is determined by

whether the scene vertices pass through the filter (or satisfy

the constraints) of the template node.

It is not hard to notice that in Algorithm 1, the checking or-

der of constraints (line 2 - 15 in Algorithm 1 ) influences the

overall processing time, though it does not alter each node’s

final matching output U(s|F). Intuitively, if a constraint can

exclude a large portion of scene vertices from matching

template graph vertices using low temporal cost, then the

computational cost of the following constraints checking

(with higher computational cost) is expected to be reduced

significantly. In other words, the order of the constraints to

check matters.

Algorithm 1: The Procedure of Matching the Scene’s

Subgraphs to Template Graphs

Parameters:
A set of template graphs GT;

An ordered list of constraints to check: I
Input:

Scene graph G.

Output:
A set of subgraphs of G matching to one of the

template graphs.

1: Initialize the observation set Fob = ∅,

Every node can match to any template graph node at

the beginning: U(s|Fob) = VT ∀s ∈ V ,

2: for i = 1, 2, ..., |I| do
3: Denote R(FIi) = {v ∈ VT |FIi ∈ F v}
4: for all vr ∈ R(FIi) do
5: for all s ∈ G do
6: if vr ∈ U(s|Fob) then
7: Check constraint FIi on vertex s if FIi is a

node constraints. Or check on s’s edges if it

is an edge constraint.

8: if false then
9: Update U(s|Fob) = U(s|Fob)/ {vr}

10: end if
11: end if
12: end for
13: end for
14: Fob = Fob ∪ {FIi}
15: end for
16: Return all the subgraphs matching one of the template

graphs.

To formulate the ordering problem, let us denote cj as

the cost of checking constraint Fj on a scene vertex, and

P (FIt |I) as the probability that constraint FIt needs to be

checked following the checking order of I . Intuitively, we

aim to minimize the expected cost of checking a scene node

s following constraints checking order I:

minimize

|F|∑
t=1

cItP (FIt |I)

subject to I ∈ Permutation(1, 2, ..., |F|)
(2)

The optimization formulation can also be interpreted as

a dual problem: given a cost budget, minimize the possible

matches between the vertices of the scene and the template

graph. Here we assume that the cost of checking each

constraint is static and independent from other constraints.

First consider a special case, where there is only one

vertex in the template graph. Without loss of generality, let

us denote VT = {v}, and F = F v .

Lemma 5.1: Define a greedy constraint checking order
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IG:

IG(k) ∈ argmax
i∈{1,...,|F|}/{IG}{

P (Fi=false)
ci

if k = 1,
P (Fi=false|FIG1

=true,...,FIGk−1
=true)

ci
o.w.

(3)

If the conditional filtering effect of each constraint in F v

is non-increasing, i.e. if index set A1 ⊆ A2 and ∀j �∈
A2, P (Fj = false|Fi = true, i ∈ A2) ≤ P (Fj =
false|Fi = true, i ∈ A1), then the expected cost of

checking if a scene graph vertex matches with v following

the checking order of IG is the minimum among all the

static sequences.

Proof: If a scene node can match a template node

v, then all the constraints in F are satisfied. Thereby all

possible permutations have the same checking cost:
∑

i∈F
ci,

because the algorithm checks each scene vertex with all the

constraints. So we want to find a sequence to minimize the

expected cost of rejecting matching a scene node to v.

Define an objective function g : 2|F| × 2|F| → R+ as

g(A,O(A)) =

{
1 if ∃i ∈ A,Fi = false,
0 o.w,

(4)

where O(A) is the constraints checking result of constraints

indexed by A. We assume that at least one of the constraints

in F returns false because we are dealing with a non-

matching case. Here, since we are considering a special

case of a single node in the template graph, our goal is to

minimize the expected cost of constraints checking when g
reaches value 1. We have:

(1) g is strong adaptive non-decreasing: ∀A ⊆ {1, 2, ...|F|}
and for all possible corresponding observations O(A),
g(A,O(A)) ≤ g(A ∪ {j}, O(A) ∪ {Fj = o}) ∀o ∈
{true, false}, ∀j �∈ A. It means that the objective function

value does not decrease with more observations coming in.

(2) g is adaptive submodular: ∀A1, A2, s.t. A1 ⊆ A2,

O(A1) ⊆ O(A2), ∀j �∈ A2,

E[g(A2 ∪ {j})|O(A2)]− g(A2|O(A2)) ≤
E[g(A1 ∪ {j})|O(A1)]− g(A1|O(A1))

(5)

Intuitively, this means that the marginal gain of the objective

function g is non-increasing.

Here is our proof. If one of the constraints in A2 returns

false, the left-hand side of Eq. (5) is 0 since the matching

has been rejected, while the right side of the inequality can

be 0 or 1. When none of the elements in A2 returns false,

based on the assumption in the lemma, that the conditional

filtering effect is non-increasing, (5) still holds.

(3) g is self-certifying: we know immediately once g
reaches value 1 based on the current observations. Because

we are dealing with the case that a scene node will be

rejected, our observation space does not contain non-zero

possibility events of passing all the constraints checking. So,

based on Proposition 9 in [5], function g is a self-certifying

instance.

Based on Theorem 11 in [5], when g reaches 1, the average

cost of greedy sequence IG is smaller than (1+ln(Qη )) times

the optimal time cost. However, in our case, we have value

Q = 1, and η = 1, so the cost of IG is equal to the optimal.

A theorem of adaptive strategy is adopted to prove Lemma

1 for our static sequence, because we are dealing with a

special case of single label matching (Q = 1). If the adaptive

strategy continues, it implies that all the observed constraints

return true. Under such a scenario, both static and adaptive

sequences are the same.

Theorem 5.2: Assume the constraint’s conditional filter-

ing effect for the same template vertex is non-increasing (as

defined in Lemma 5.1 ) and constraints belonging to different

template vertices are independent. i.e. for i �= j, if � ∃v ∈ VT ,

s.t. Fi ∈ F vandFj ∈ F v , then Fi |= Fj . Then the cost of a

greedy constraint checking order will be upper bounded by

μ times optimal cost, where μ is the maximum number of

template vertices that have the same constraint.

The proof is similar to the proof of Theorem 3.4 in [17].

The idea is that for any single template vertex, the expected

cost of the optimal sequence should be at least as large as the

one returned by a greedy policy, as proved in Lemma 5.1.

Since one constraint can appear at most μ times for different

template vertices, the cost of the greedy strategy can be at

most μ times that of the optimal strategy.

Furthermore, under an arbitrary distribution of constraint

responses, the cost of greedy sequence checking is still

bounded.

Theorem 5.3: For any distributions of constraints in F, the

average time cost of checking constraints with the greedy

sequence method is bounded by 4μ times optimal average

cost. μ is the maximum number of template vertices sharing

the same constraint.

Proof: Similar to the proof of Theorem 5.2, we start

with the expected cost of a single template vertex case, then

extend it to the general case.

Based on Theorem 2.3 in [11], the average cost of check-

ing constraints following the greedy policy is at most 4 times

the optimal cost.

Thereby, when multiple template graph vertices exist and

at most μ nodes share the same constraint in F, the greedy

sequence checking order is at most 4μ times the optimal

expected cost.

Our constraints’ order determination policy is listed in Al-

gorithm 2, which has a time complexity of O(n2) where n
is the cardinality of F.

VI. EXPERIMENTS

We apply our target detection framework to two different

real-world robotic tasks to validate its generality and effec-

tiveness. The first scenario is to detect a drawer with a handle

as shown in Fig 1. Its shape is a cuboid with a handle on the

front surface. The second case is to detect a human hand in

a pointing gesture. Hand localization is of great interest in

the field of Human-Robot Interaction (HRI). In our scenario,
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Algorithm 2: Determine the Constraints Checking Order

Input:
The set of constraints: F.

The cost of checking constraint F ∈ F for one node

c(F )
The distribution of constraints checking results

Output:
The sequence of the constraints to check:

I ∈ Permutation(1, ..., |F|).
1: Initialize observed set of constraints: Fob = ∅,

ordered list I = empty queue.

2: while F is not empty do
3: for all F ∈ F do
4: Compute

h(F ) � P (F = false|∀F ′ ∈ F, F ′ = true)/c(F )
5: end for
6: Select F ∗ ∈ argmax(h(F )).
7: Fob = Fob ∪ {F ∗}.

8: I enqueue F ∗.

9: Remove F ∗ from set F.

10: end while

(a) System outlook (b) Illustration of coordinate system

Fig. 2: Robot and camera setup

we consider the hand together with the arm a single target

object. This makes the task difficult, because the hand and

the arm together no longer form a rigid object. Experimental

results show that our framework can still work as long as the

target object can be represented as a template graph.

In the phase of determining the constraint checking order,

we use nF

N to approximate h(F ) in Algorithm 2, where N
denotes the times of checking constraint F , and nF are the

rejected matches between scene and template nodes.

A. Experimental Setup

As shown in Figure 2 (a), we attach an ASUS Xtion

PRO camera to the left wrist of a Baxter humanoid robot.

Our system maintains and provides transforms between the

Baxter base frame and other joints. Since the camera’s pose is

fixed to the wrist, we calibrate the camera’s coordinate to the

“left gripper base” frame. By propagating the tf (transform)

tree, the system projects the point cloud data from the ASUS

camera into the robot base frame, which enforces the z-axis

to point upwards and x-axis to face forwards (Figure 2 (b)).

(a) Handle box (b) Hand with arm

Fig. 3: Illustration of template graphs

B. Segmentation

An input RGB-D image from the ASUS camera is over-

segmented into surfaces to generate a scene graph. In our

implementation, we apply the plane-fitting algorithm from

[19], which uses depth-adaptive normal calculations and

takes into account the noise from the depth measurements.

Since the adaptive operations are based on the assumption

that the z-axis value is the depth value, we calculate the

surface normal and fit a plane in the camera’s original frame

(“camera link”) before transforming the measurements to

Baxter’s base frame.

C. Handle Drawer Detection

As shown in Figure 1, a handle drawer has the shape

of a box with a horizontal handle on one of its surfaces.

Depending on the viewpoint, two (top, front) or three (top,

front, and side) surfaces of the box are visible. In our

implementation, while maintaining a high success rate, we

model the template graph of the drawer as two nodes. Figure

3 (a) shows the template graph. The constraints of the handle

drawer template graph are listed in Table I.

Template component Constraints
Node 1 Size(node1), Orientation(node1)
Node 2 Size(node2), Orientation(node2), Has handle

Edge (1, 2) Pairwise vertical, Convex box

TABLE I: Constraints for handle box detection

We check the size constraint by comparing the first two

principal components of the surfaces with target-specific

thresholds. For example, because node 1 of the handle

box is a rectangular surface, we restrict the first principal

component (length) to be within (0.3, 0.7) meters and the

second dimension (width) to be in the range (0.25, 0.6).
For the orientation constraint we check whether a surface’s

normal (third principal component) is along a particular

direction. Here, node 1 in the handle drawer graph is upward

while node 2’s direction aligns with the horizontal plane.

The checking of the surface’s handle constraint is done in

two steps. First, we extract points within a 3D bounding box

in front of the surface patch. Then we validate if there is a

connected component on that surface that has the shape of

a handle, i.e. satisfying the size constraint of a handle.

For the two edge constraints, the pairwise vertical con-

straint returns true if the two surfaces are adjacent to each

other, and their orientations are perpendicular to each other.
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The convex box constraint checking is done by checking if

two surfaces not spanning the same plane form a convex

shape, which means the two surfaces shall not segment each

other, and the shape they form must form a convex box

instead of a concave corner, as illustrated in Figure 4.

Fig. 4: (a) Illustration of a convex box. Three failure cases:

(b) top surface segments the bottom one; (c) not enough

shared boundary; (d) two surfaces form a corner (faces

towards)

D. Hand Pointing with Arm Detection

As second scenario we consider hand detection. Here we

show an application of detecting the hand together with part

of the arm visible in the scene. Figures 3 (b) and 7 show the

experimental setup. Note that the target object is no longer

rigid in this situation because the angle between the finger

and the wrist is flexible during pointing.

As shown in Figure 3 (b), we use one node to denote the

arm in the template graph and the other for the hand. The

constraints for checking template graphs are listed in Table

II.

Template component Constraints
Node 1 Size(node1), Location(node1)
Node 2 Location(node2), size(node2), Hand shape

Edge (1, 2) Hand arm relationship

TABLE II: Constraints for pointing hand detection.

The size constraint is handled in the same way as the

handle drawer detection except that the size thresholds need

to be set for surfaces that belong to the hand and the arm.

The location constraint returns true if the centroid of a scene

surface is in a given cuboid area. Since we have already

transformed the point cloud to the Baxter’s base frame, which

aligns well with human perception, it is not hard for people

to manually annotate a 3d range of possible locations of the

target. For example, because we do not expect to see the arm

or the hand on the ground or flying high around the ceiling

in this scenario, we can set the location threshold on the z-

axis to reject surfaces heights that are too large or too small.

The hand shape constraint checks if the contour of a surface

patch has the shape of a pointing hand.

The hand-arm relationship is encoded as edge relationship

between the hand and the arm. We check if there is a hand

node close to the arm node and enforce the constraint that

the hand is along the direction of the arm.

E. Optimization of the constraints checking order
As discussed in Section V, the order of checking the

constraints influences the time for target detection, and

we proved that the greedy constraint ordering algorithm

(algorithm 2) has a bounded computational cost w.r.t the

optimal computational cost.
To show the efficiency of the presented algorithm, we com-

pare the average computational time for constraint checking

(line 2-15 in algorithm 1) of four different checking order

policies: random checking order, best order among sampling

300 sequences, the greedy order proposed, and the optimal

order.
Random ordering does not need any training data and it

represents the most naive policy. The time cost of random or-

der is the mean of the running time of 300 random checking

sequences. The order determined by sampling has minimum

running time among 300 random checking sequences on the

training data. The optimal order is obtained by exhaustively

trying all possible sequences and then selecting the sequence

with minimal cost as the optimal one. The handle drawer

has 7! = 5040 possible sequences and the hand detection

has 6! = 720. Note that an exhaustive search for the optimal

sequences is not feasible because the number of permuta-

tions grows exponentially when the number of constraints

increases.
For both, handle box and hand detection, we collected 50

point clouds each for training and testing. Also, another 100
background point clouds were collected to serve as negative

samples with one half used in training and the other half in

testing. The result is shown in Table III.

time (ms) Random Sampling Algorithm 2 Optimal
Handle box 382.6 28.0 24.6 19.3

Pointing hand 43.2 8.1 8.8 8.1

TABLE III: Running time of four constraint checking order

on testing data.

The machine used in the experiments has an Intel i7-6700

CPU of 3.4GHZ and the memory is 16 GB. We did not use

GPU or parallel computing.
From the result, we can see that a random ordering without

any optimization would take the longest time to execute.

Our proposed greedy algorithm is close to the optimal order.

When the total number of possible sequences is not large,

a sampling method would perform better than our method

as is shown by the case of the pointing hand. But when

the possible number of sequences is large so that sampling

cannot cover a reasonable portion, our algorithm works better

as is shown for the case of the handle box. Also note that to

determine a checking order, algorithm 2 is much faster than

the sampling method because algorithm 2 only needs 28 and

21 sequence checking runs while sampling needs 300 in our

experiment.

VII. A LIVE HRI APPLICATION

In this section we describe an application of human-

robot interaction that is built on the pointing hand detection
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discussed in section VI.

Our system allows humans to interact with real world

objects through pointing gestures, and it then generates a

command for the robot accordingly. For instance, let us

suppose that a user intends to heat an object using the

microwave or put an object into the refrigerator. As shown in

Figure 7, using our system, a user can select the target object

using a pointing gesture. After the selection is confirmed, the

target object can be virtually dragged to its target location

through human guidance.

After applying the constraint checking order optimization,

our hand detection works faster (than a naive approach),

thence our system provides a smoother interaction user

experience. To complete the whole scenario, we introduce

other components of the interaction system aside from hand

detection in the following sections. We provide a video show-

ing the interaction process in the supplementary material.

Fig. 5: Visualization of the fingertip and its pointing location.

A. Surrounding objects recognition

Large surrounding objects, such as a fridge, a table and

the shelf holding the microwave can be detected at the

beginning of the process and are kept in a stored world

model since they will be static for a long time. The table

top objects can be detected and recognized online by a

tabletop point cloud reconstruction, segmentation [3] and

recognition. The recognition outputs are stored in the same

world model describing the real world configurations. It is

worth mentioning that our pipeline is applicable for both

the tabletop objects and detection of other objects. For

example, the microwave in Figure 7 is detected using the

same pipeline.

B. Obtaining the object that the hand is pointing at and its
location

We use a straight line to represent the pointing direction

after detecting the pointing hand and arm. The direction of

the line is the detected arm’s direction, which is calculated

by taking the eigenvector corresponding to the first principal

component of the point cloud belonging to the arm. The

fingertips are at the starting point of the straight line. We

detect the fingertips by searching the 3D points on the hand

that are furthest along the pointing direction. Figure 5 shows

a visualization of a fingertip point.

During the object selection phase, we simply treat the

object closest to the pointing line as the target object of the

Fig. 6: An illustration of the state machine for human-robot

interaction. State 1: initial state; state 2,3: state for object

pointing confirmation; state 4: object virtual moving state;

state 5:ending state after parsing the command successfully.

user. Also a threshold is used to limit the distance between

the object and the pointing ray.

After an object is confirmed, the user can start moving

it around by pointing to other locations in our virtual

environment. At this time, we treat the intersection point

between the pointing ray and a plane spanning table top as

the target location (Figure 5). Thence, the selected object’s

position can be updated as the new location.

C. Robot feedback interface

A proper way to display the current configuration of the

world model and the status of pointing is necessary for a

smooth and accurate interaction between human and robot.

In our system, we directly show the current status of the

system through the Baxter robot’s screen. Specifically, we

visualize the virtual world using the PCL visualizer [22].

D. Interaction flow finite state machine

The underlying logic flow is implemented as a finite state

machine as shown in Figure 6.

At the beginning, the system is in state 1 waiting for the

human’s command (Figure 7 (a)). The system will advance

to the object selection state 2 once a pointing to the object

happens for more than 1 second and the selected object will

turn red (Figure 7 (b)). After two more seconds of consistent

pointing, the object is confirmed to be chosen and the system

reaches state 4 (7 (d)). Then the object can be virtually

moved around. Finally, when the object reaches a certain

area of the target location for more than 1 second, the system

gets a command that it was successful and enters the final

state 5 (Figure 7(e)).

VIII. FUTURE WORK

As shown by experiments and an HRI application, our

framework is able to detect target objects in robotic appli-

cations in a reliable and effective way. In future work, we

plan to improve the learning pipeline by generating template

graphs automatically. Additionally, with the number of types

of constraints increasing, how to select a reasonable subset

is another problem that deserves further investigation.

In the application scenario outlined we make a first step to

teaching the robot via pointing to the target area. Using this

approach of teaching the robot with bare hands, trajectory

learning and adaptation [16] could become more friendly.
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Fig. 7: Sending a command: <heat the mug> via HRI system. The top row shows the human operation; the bottom row

shows the status of the interaction process. (a) Initial stage with objects detected in the scene; (b)(c) target object selection

by pointing and object confirmation; (d) the selected object is virtually dragged to another functional place, i.e. microwave;

(e) the system receives the command.
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