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Abstract— In this paper, we consider a two-players stochas-
tic linear quadratic game framework. The game is partially
observed and each player has their own private observation.
The challenge is that none of the players has access to the
continuum observations, rather they can access their respective
observations at discrete time instances by operating a switch
unanimously. The operation of the switch is costly and hence the
gathering of the observations are costly. Each player is equipped
with finite memory and she can only use the latest observation
to construct the control strategy. The private observations
of the players lead to a source of asymmetry in this game.
Moreover, the players have different costs for operating the
switch, which is another source of asymmetry. We study the
structural properties of the Nash equilibrium for this particular
class of problems and then we finally show that the switching
problem simplifies to a bi-objective optimization problem.

I. INTRODUCTION

Game theory has been viewed as one of the major topics
of interest for control theorist since last few decades; see-
[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]. Many useful
results of stochastic control, robust control have been derived
by studying differential games; [8], [10]. Among the various
class of game problems, linear-quadratic (LQ) differential
games has been studied extensively since a closed form solu-
tion for these games can be computed [10]. A subclass of LQ
differential games deals with partially observed system where
the strategies of the players depend on the corresponding
observations. The general two-player LQ game consists of a
linear dynamics and linear observations as presented below:

dx =Axdt+Budt+ Cvdt+GdWt. (1)
x(0) =x0.

The observation equations are given by (2).

y1(t) = H1x(t) +R1W 1
t , (2)

y2(t) = H2x(t) +R2W 2
t ,

where Wt, {W i
t }i=1,2 are standard mutually independent

Wiener processes of dimensions r and {ri}i=1,2 respectively.
The above dynamics should be treated in the sense of It̂o
where x(t) ∈ Rn, u(t) ∈ Rm1 , v(t) ∈ Rm2 , yi(t) ∈ Rpi . For
the sake of simplicity, the model parameters A,B,C,G,Hi,
and Ri are kept time invariant, however a similar analysis
could be carried out with time varying parameters.
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Fig. 1. The game dynamics is controlled by two independent controllers C1,
C2 operated by the players. The players receive their respective observations
yi whenever the switch S is closed. The players unanimously decide the
switching strategy for S. ZOH is the zero-order hold circuit.

The game is equipped with a quadratic cost criterion for
the players. In this paper, we consider the following cost
criterion:

J(u, v) = E

[∫ T

0

(‖x‖2L + ‖u‖2R − ‖v‖2S)dt

]
(3)

where ‖p‖2Q = p′Qp for any two matrices p and Q of proper
dimensions. The game under consideration will be a zero-
sum game. The cost function has to be minimized by player-1
(P1) who selects the action u, while player-2 (P2) aims to
maximize the cost by selecting the action v. Therefore, for
such a game there is notion of saddle-point that is represented
by:

J(u∗, v) ≤ J(u∗, v∗) ≤ J(u, v∗) (4)

The pair of strategies (u∗, v∗) is known as the Nash
strategy for this game. The existance and uniqueness of such
strategies have been presented in [3], [5], [6], and others.

In recent years of network-control and multi-agent sys-
tems, game theory has proven to be a very effective tool to
study the interaction of the sub-systems to achieve global
system optimality as presented in [12] and the references
therein. However, often times in a large system the ob-
servations are not accessible continuously due to limitated
communication, sensing or computing resources [13]. Some
recent studies in control literature are oriented towards
the variations of sampling based control which are known
in many names such as event-based, event-triggered, self
triggered, periodic control, Lebesgue sampling [14], [15],
[16], [17] etc. These control strategies do not require the
state information x(t) (or observation y(t)) for all time
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t, rather they sample x(t) intermittently depending on the
systems’ performance criterion [18], [19]. Therefore, there
is a need for a framework of game theoretic study where
the continuous observations are not available and the Nash
strategies will rely only on the intermittent available ob-
servations. This work aims to study LQ games with only
discrete measurements that are accessed through a switch.
The schematic of the game is presented in Figure 1. As
shown in Figure 1, the players are equipped with a switch
S which closes momentarily and opens immediately after
closing. Therefore, the players can have finite number of
measurements {yi(τk)}Nk=1 over a finite interval of [0, T ].
In this game we consider the switching has a finite cost i.e.
to get a measurement yi(τk), player-i has to pay λi > 0.
Moreover, we assume that the players have a limited memory
and hence they only remembers the most resent observation
at any time t. This work is an extension of the work done
in [20] where the game was studied with full observation.

The contribution of this work is to study the Nash strate-
gies for the partially observed LQ games with finite number
of intermittent observations where the players only remember
the latest observation.

II. PROBLEM FORMULATION

Each player has only limited and asymmetric (non-shared
observations yi) information about the state of the game and
they can ask for the current measurements by paying some
cost. Let us denote the number of times the measurement
information is requested by the players up to time t be n(t).
The cost associated with these information acquisitions are
λ1n(t) and λ2n(t) for P1 and P2 respectively. We include
these costs to the cost function J . Hence P1 should minimize:

J1(u, v) =E
[ ∫ T

0

(‖x‖2L + ‖u‖2R − ‖v‖2S)dt+ λ1n(T )
]
,

(5)

and P2 should maximize:

J2(u, v) =E
[ ∫ T

0

(‖x‖2L + ‖u‖2R − ‖v‖2S)dt− λ2n(T )
]
.

(6)

Though at this point we have two separate cost functions,
one for each player, both optimization problems boil down
to minimizing or maximizing (3) once the players finalize
the number of times their respective measurements will be
accessed. The objective of the players is to jointly deter-
mine the time instances {τk} to construct their respective
information sets Ii(t). Let τ(t) ≤ t be the latest time
when the players received the observations. Then, we define
I1(t) = {y1(τ(t))} and I2(t) = {y2(τ(t))} for all t.

P1 selects the control u, as an I1(t) measurable function,
to minimize J1(u, v). On the other hand, P2 constructs
the strategy v, at time t, with the knowledge of I2(t), to
maximize J2(u, v) given in (6). The switching instances are
ordered with probability 1 almost surely, i.e. τk < τk+1 and
non-anticipative i.e. for any t, τ(t) = τn(t) ≤ t.

There is another version of the same problem where
instead of having cost for switching, there is a bound on

total number of switching over the interval of [0, T ]. The
game under this scenario is presented as follows:

P1 should minimize:

J1(u, v) =E
[ ∫ T

0

(‖x‖2L + ‖u‖2R − ‖v‖2S)dt
]
, (7)

subject to n1(T ) < N

and P2 should maximize:

J2(u, v) =E
[ ∫ T

0

(‖x‖2L + ‖u‖2R − ‖v‖2S)dt
]
, (8)

subject to n2(T ) < N.

The objective functions (7) and (8) can be represented as
(5) and (6) using suitable Lagrange multipliers (λ1 and λ2).
Therefore, in this paper we will consider the problem posed
in unconstrained form (5) and (6).

III. STRATEGIES WITH ASYMMETRIC INFORMATION

In this section, we study the Nash control strategies for the
game under asymmetric information and asymmetric cost.
Some structural properties of this game can be found in
[10]. A recent work [20] has considered the similar game
structure with symmetric ( fully observed game) information.
Preliminary results on these types of LQ games with costly
full state information can be found in [20], [21]. The theorem
below serves as a starting point of our analysis by providing
an indication on the structure of the optimal control strategy
of the problem in consideration.

Theorem 3.1 ( [10], [20], [21]): The optimal strategies
for the players with cost-less full state observations are:

u∗(t) = −R−1B′Px (9)

v∗(t) = S−1C ′Px. (10)

The optimal cost is

J∗ =E[‖x(0)‖2P (0) +

∫ T

0

(
tr(PGG′)dt],

where

Ṗ +A′P +PA+L+P (CS−1C ′−BR−1B′)P = 0 (11)

P (T ) = 0
The previous theorem gives explicit formulae for the

optimal strategies of the players and those require the
knowledge of the state x(t) for all time t ∈ [0, T ]. From
this point onward, we will investigate how the strategies
change for both the players when they have measurement
information only at finite number of time instances. Before
considering this problem, we attempt to solve the problem
of finding the optimal strategies for both players for an
arbitrary interval (t0, t1] ⊆ [0, T ].The strategies may depend
on the measurement information at discrete time instances
and the strategies should not ask for any future measurement.
In calculating the strategies, we still do not consider the
measurement query cost at this point. In the subsequent
analyses, we will remove this assumption and comment on
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the original problem. Making this assumption for this section
makes our problem tractable for this initial step.

By following standard completion of squares and using
It̂o calculus, it can be shown [20] that:

J = E
[
‖x(0)‖2P (0) +

∫ T

0

(
‖u+R−1B′Px‖2R−

‖v − S−1C ′Px‖2S + tr(PGG′)
)
dt
]

(12)

Equation (12) separates the cost that depends on the
control strategy from the cost which remains invariant of
the control strategy. Let us divide the cost J in two parts JI ,
and Jd. JI , being independent on the actions of the players
and the other, Jd, depends on the choices of u and v. Thus,

JI =E
[
‖x(0)‖2P (0) +

∫ T

0

(
tr(PGG′)

)
dt
]
,

Jd(u, v) =E[

∫ T

0

(
‖u+R−1B′Px‖2R (13)

− ‖v − S−1C ′Px‖2S
)
dt].

Since the state (or observations yi) is not available for all
time t, the control strategies u and v will be different from
what is presented in Theorem 3.1. The following proposition
provides the structural properties of the strategies under
partial discrete observations.

Proposition 3.2: The optimal u and v that optimizes Jd:

Jd(u, v) =E[

∫ T

0

(
‖u+R−1B′Px‖2R− (14)

‖v − S−1C ′Px‖2S
)
dt].

will be of the form

u∗(t) = −R−1B′P (t)x̂1(t) (15)

v∗(t) = S−1C ′P (t)x̂2(t) (16)

for some x̂1 and x̂2 such that u∗(t) is I1(t) measurable and
v∗(t) is I2(t) measurable.

Proof: For a fixed t, R−1B′P (t) is a linear mapping
from Rn to Rm1 . For all t, let us denote

u(t) = u1(t) + u2(t)

such that u1(t) ∈ Range(R−1B′P (t)) and u2(t) ∈
Null(P (t)BR−1) where Range(·) and Null(·) are the
range space and null space of an operator respectively.
Therefore,

Jd(u, v) =E[

∫ T

0

(
‖u1 +R−1B′Px‖2R + ‖u2‖2R− (17)

‖v − S−1C ′Px‖2S
)
dt]

since, u2 ∈ Null(P (t)BR−1) andNull(ψ) = Range(ψ′)⊥
for linear operator ψ and its adjoint ψ′. From (17), it is
clear that the optimal choice is u2 ≡ 0. Hence u∗(t) =
u1(t) = R−1B′P (t)x̂1(t) for some optimal x̂1(t) ∈ Rn.
Similarly it can also be proved that v∗(t) = S−1C ′P (t)x̂2(t)
for some optimal x̂2(t) ∈ Rn. Since u∗(t) has to be I1(t)
measurable, this implies x̂1(t) needs to be I1(t) measurable.

Similar arguments show x̂2(t) has to be I2(t) measurable.

Let us denote R̃(t) = P (t)BR−1B′P (t) and S̃(t) =
P (t)CS−1C ′P (t), however the time argument will be sup-
pressed frequently to maintain brevity. By Proposition 3.2, let
the optimal controller for P1 be u = −R−1B′Px̂1 and that
for P2 be v = S−1C ′Px̂2 , where x̂i(t) = f(t, Ii(t)) is a
Ii(t) measurable function. Thus the objective is to determine
the optimal x̂i(t) which will minimize the cost Jd.

Substituting u and v in Jd, we obtain:

Jd(x̂1, x̂2) = E[

∫ T

0

(‖x− x̂1‖2R̃ − ‖x− x̂2‖
2
S̃

)dt]. (18)

With these strategies, the state of the game evolves as:

dx = (Ax− P−1R̃x̂1 + P−1S̃x̂2)dt+GdWt. (19)

From equation (19), we can write the solution to be:

x(t) =ΦA(t, t0)x(t0) +Kt,t0
1 [x̂1](t) (20)

+Kt,t0
2 [x̂2](t) +Kt,t0

3 [GW ](t)

for some t0 ≤ t, where ΦA is the state transition matrix for
the drift matrix A. Kt,t0

1 , Kt,t0
2 and Kt,t0

3 are linear operators
defined as follows:

Kt,t0
1 [f ](t) = −

∫ t

t0

ΦA(t, s)P−1R̃f(s)ds (21)

Kt,t0
2 [f ](t) =

∫ t

t0

ΦA(t, s)P−1S̃f(s)ds (22)

Kt,t0
3 [fW ](t) =

∫ t

t0

ΦA(t, s)f(s)dW (s). (23)

Let us define a filtered variable x̄ as given below:

x̄(t) = ΦA(t, t0)x(t0) +Kt,t0
1 [x̂1](t) +Kt,t0

2 [x̂2](t). (24)

Therefore, we can represent x(t) as:

x(t) = x̄(t) +Kt,t0
3 [GW ](t) (25)

Thus, for (t0, t1] ⊆ [0, T ], Jd is found to be:

J t0,t1d (u, v) =E[

∫ t1

t0

(‖x̄− x̂1‖2R̃ − ‖x̄− x̂2‖
2
S̃

)dt]

+E[

∫ t1

t0

‖Kt,t0
3 [GW ](t)‖2

R̃−S̃dt] (26)

From the properties of Wiener process it can be shown that,

E[‖Kt,t0
3 GW‖2

R̃−S̃ ] =

∫ t

t0

tr(‖ΦA(t, s)G‖2
R̃(s)−S̃(s))ds

Thus,

J t0,t1d (u, v) = E[

∫ t1

t0

(‖x̄− x̂1‖2R̃ − ‖x̄− x̂2‖
2
S̃

)dt

+E[

∫ t1

t0

∫ t

t0

tr(‖ΦA(t, s)G‖2
R̃(s)−S̃(s))dsdt]
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Therefore, for any arbitrary interval (t0, t1) ⊆ [0, T ], it
suffices to optimize the first term in J t0,t1d . Let us define:

J =

E[

∫ t1

t0

(‖ΦA(t, t0)x(t0) +Kt,t0
1 [x̂1](t) +Kt,t0

2 [x̂2](t)− x̂1‖2R̃

− ‖ΦA(t, t0)x(t0) +Kt,t0
1 [x̂1](t) +Kt,t0

2 [x̂2](t)− x̂2‖2S̃)dt]

Here, we are looking for u and v (equivalently x̂1, x̂2)
that is a saddle point for J . We will find the optimal x̂i
(saddle points) by considering the first order and second
order Gâteaux differentials. The Gâteaux differentials of a
functional J is given by:

δJ [f1, f2](h1, h2) = lim
a→0

J (f1 + ah1, f2 + ah2)− J (f1, f2)

a

where the notation J [f1, f2](h1, h2) means the Gateaux
differential of J evaluated at the point (f1, f2) in the direc-
tion (h1, h2). Note that J [f1, f2](·, ·) is a linear functional
parameterized by f1 and f2. It can be shown that:

1

2
δJ [x̂1, x̂2](h1, h2) = E

[ ∫ t1

t0

(
〈x̄− x̂1,

Kt,t0
1 [h1](t) +Kt,t0

2 [h2](t)− h1)〉R̃ − 〈x̄− x̂1,

Kt,t0
1 [h1](t) +Kt,t0

2 [h2](t)− h2)〉S̃
)
dt
]

(27)

where 〈a, b〉D = a′Db denotes the inner product w.r.t. D. In
the following, we seek to find the extremal points (x̂1, x̂2)
where δJ [x̂1, x̂2](·, ·) is a zero functional.

Lemma 3.3:

δJ [x̂1, x̂2](h1, h2) = 0 ∀h1, h2
⇔ E[(x̄− x̂i)|Ij ] = 0, for i = 1, 2; j = 1, 2.

Proof: ⇐ direction: E[x̄− x̂i|Ij ] = 0⇒ E[x̄− x̂i] = 0
⇒ δJ [x̂1, x̂2](h1, h2) = 0 ∀h1, h2.
⇒ direction: It is straightforward to show that E[x̄ −

x̂i|Ii] = 0 due to the minimum mean square estimate
(MMSE) argument. Suppose E[x̄−x̂1|I2] 6= 0. Let us choose
h1 = 0.

1

2
δJ [x̂1, x̂2](h1, h2) =

E
[ ∫ t1

t0

(
〈E[(x̄− x̂1)|I2t ], Kt,t0

2 [h2](t)〉R̃
)
dt
]

(28)

If E[x̄ − x̂1|I2] 6= 0, ∃ h2, I2t measurable such that
δJ [x̂1, x̂2](0, h2) > 0. Hence contradiction.

Lemma 3.4: δJ [x̂1, x̂2](h1, h2) = 0 ∀ h1 , h2 only if
H1, H2 have rank n.

Proof: We restrict ourselves to the space of linear
estimates. Suppose at time t0, a measurement is received.

x̂1(t0) = E[x(t0)|y1(t0)] := Q1y1(t0).

From Lemma 3.3,

x̂2(t0) = E[x̂1(t0)|y2(t0)]

= E[Q1y1(t0)|y2(t0)]

= Q1E[H1x(t0) +R1W 1(t0)|y2(t0)]

= Q1H1x̂2(t0)

Therefore, we must have

Q1H1 = I (29)

Similarly Q2H2 = I . Since Hi ∈ Rpi×n and QiHi =
I , it is required that Hi has rank n. Therefore, Qi =
((Hi)THi)−1(Hi)T .

Therefore, in order to make δJ [x̂1, x̂2](h1, h2) ≡ 0, we
need E[x̄(t) − x̂i(t)|Ij ] = 0 for all t ∈ (t0, t1] and for all
i, j = 1, 2. The estimation x̂i(t0) = Qiyi(t0) makes E[x̄(t)−
x̂i(t)|Ij ] = 0 at time t0.

Thus, differentiating E[x̄(t)− x̂i(t)|Ij ] w.r.t. t and equat-
ing to zero will be necessary and sufficient to ensure E[x̄(t)−
x̂i(t)|Ij ] = 0 for all t ∈ (t0, t1]. Therefore, we must have

˙̂x1 =Ax̂1 − P−1R̃x̂1 + P−1S̃E[x̂2|I1]

=(A− P−1R̃+ P−1S̃)x̂1, (30)
˙̂x2 =(A− P−1R̃+ P−1S̃)x̂2 (31)

with x̂i(t0) = Qiyi(t0).
Now, let us consider the second Gateaux differential

δ2J(x̂1, x̂2)(h1, h2). It can be shown that

1

2
δJ2[x̂1, x̂2](h1, h2) =

E[

∫ t1

t0

(
‖Kt,t0

1 [h1](t) +Kt,t0
2 [h2](t)− h1‖2R̃

− ‖Kt,t0
1 [h1](t) +Kt,t0

2 [h2](t)− h2‖2S̃
)
dt].

Let h1(t) = a ∈ Rn ∀ t ∈ (t0, t1). Let ÃS = A + P−1S
and also let,

h2(t) = −
∫ t

t0

ΦÃS (t, s)P−1R̃ a ds.

This implies,

Kt,t0
2 [h2](t)

= −
∫ t

t0

ΦA(t, s)P−1S̃

∫ s

t0

ΦÃS (s, σ)P−1R̃ a dσds

= −
∫ t

t0

[∫ t

σ

ΦA(t, s)P−1S̃ΦÃS (s, σ)ds

]
P−1R̃ a dσ

= −
∫ t

t0

[∫ t

σ

d

ds
ΦA(t, s)ΦÃS (s, σ)ds

]
P−1R̃ a dσ

= h2 −
∫ t

t0

ΦA(t, s)(−P−1R̃ a )ds

= h2 −Kt,t0
1 [h1](t).

⇒ Kt,t0
1 [h1](t) +Kt,t0

2 [h2](t)− h2 = 0,

and Kt,t0
1 [h1](t) +Kt,t0

2 [h2](t)− h1 = h2 − h1.

Thus,

δ2J(x̂1, x̂2)(h1, h2) = E[

∫ t1

t0

‖h2 − h1‖2R̃dt]

h2 − h1 =

∫ t

t0

ΦÃS (t, σ)P−1R̃ a dσds− a 6= 0
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for some a 6= 0. Thus δ2J(x̂1, x̂2)(h1, h2) > 0. Similarly
by choosing, h2 = b and h1(t) =

∫ t
t0

ΦÃR(t, s)P−1S̃ b ds,
where ÃR = A−P−1R, we can show δ2J(x̂1, x̂2)(h1, h2) <
0. Hence x̂1, x̂2 achieve the Nash equilibrium and the optimal
strategies are given by :

u∗(t) = −R−1B′P (t)x̂1(t),

v∗(t) = S−1C ′P (t)x̂2(t).

where x̂i(t) satisfies the differential equations (30), (31).

IV. OPTIMAL SWITCHING STRATEGY

With this optimal strategy, the cost incurred is:

E
[∫ t1

t0

(‖x− x̂1‖2R̃ − ‖x− x̂2‖
2
S̃

) dt

]
=

E
[∫ t1

t0

‖Kt,t0
3 [GW ](t)‖2

R̃−S̃dt

]
+ Γ

where Γ (depends on Ri) is the cost incurred in estimating x̄
by x̂i and could found explicitly. In the following analyses,
we neglect Γ since it would have a structure similar to the
other term. Therefore, an identical analysis can be carried
out by explicitly considering Γ. In the previous section, we
have been able to find the Nash strategy for the players
in an arbitrary interval (t0, t1]. Thus, if the players come
to an agreement about the measurement information acqui-
sition times {τi}nT

i=1, they can find their strategies for the
intervals (τi, τi+1] where τ0 = t0 and τnT+1 = T . Since
the strategies on different intervals are independent of each
other, the strategy for the entire time horizon [0, T ] can be
constructed by concatenating the individual strategies over
the intervals (τi, τi+1]. Now the question that remains to be
answered is how the players come to an agreement about the
measurement information acquisition times. Let us analyse
this from the point of view of both the players.

For P1:

min
n1(T ),τ1

1 ,··· ,τ1
n1(T )

n1(T )∑
i=0

E
[ ∫ τ1

i+1

τ1
i

‖Kt,τ1
i

3 [GW ](t)‖2
R̃−S̃dt+

λ1n1(T )
]
. (32)

Whereas, P2 will seek to optimize the following function:
For P2:

max
n2(T ),τ2

1 ,··· ,τ2
n2(T )

n2(T )∑
i=0

E
[ ∫ τ2

i+1

τ2
i

‖Kt,τ2
i

3 [GW ](t)‖2
R̃−S̃dt−

λ2n2(T )
]

(33)

where τ10 = τ20 = 0 and τ2n2(T )+1 = τ1n1(T )+1 = T .
Under the assumption that R̃− S̃ � 0 in order to ensure that
the solution of the Riccati equation (11) is well defined, one
can easily find out that for P2, the optimal choice would be
to never access the state information. However, this is not
the case for P1 and the choice of P1 depends on the value
of λ1 and the game parameters, namely A and G.

Remark 4.1: If the game parameters for both the players
satisfy the condition CS−1C ′ = BR−1B′, both optimization

problems for the players have the same solution, and that
solution does not ask for any observation except at initial
time 0. Similar results were obtained in [20].

Let us define,

L1(τ11 , · · · , τ1n1(T )) =

n1(T )∑
i=0

E
[
λ1n1(T )+ (34)

∫ τ1
i+1

τ1
i

‖Kt,τ1
i

3 [GW ](t)‖2
R̃−S̃dt

]
,

and

L2(τ21 , · · · , τ2n2(T )) =

n2(T )∑
i=0

E
[
λ2n2(T )− (35)

∫ τ2
i+1

τ2
i

‖Kt,τ2
i

3 [GW ](t)‖2
R̃−S̃dt

]
.

Let us denote the set of feasible switching strategies by:

S = {{τk}Nk=0 | 0 = τ0 < τ1 · · · < τN < T, and
N ∈ N} (36)

where N is the set of natural numbers.
At this point, the problem is a multi-objective optimization

problem where we have two objectives L1 and L2 that need
to be minimized. This could be formulated as:

min
s∈S

{L1(s), L2(s)} (37)

Let us denote the optimal value of Li by c∗i . Therefore, the
optimization problem (37) can equivalently written as:

min
s∈S
{(L1 − c∗1)2, (L2 − c∗2)2}, (38)

A multi-objective optimization problem has the notion of
Pareto optimally and therefore we seek for Pareto optimal
solution(s) of this problem.

Definition 4.2: A feasible point s ∈ S is said to (Pareto)
dominate another feasible point s1 ∈ S if

1. Li(s) ≤ Li(s1) for all i = 1, 2, and
2. Lj(s) < Lj(s1) for some j ∈ {1, 2}.
A solution s∗ ∈ S is called Pareto optimal point if there

does not exist another solution s ∈ S that dominates it.

Let us take µ ∈ [0, 1] and define the weighted cost function

Lµ = µ(L1 − c∗1)2 + (1− µ)(L2 − c∗2)2 (39)

Let us define a weighted cost problem:

min
s∈S

Lµ(s). (40)

The Pareto optimal solution of (38) has one-to-one corre-
spondence with the optimal solution of the weighted cost
problem (40) for some µ, see [22]. Let us denote

N∑
i=0

∫ τi+1

τi

E‖Kt,τi
3 [GW ]‖2

R̃−S̃dt = C(N, τ1, · · · , τN )

⇒Lµ(N, τ1, · · · , τN ) = µ(C + λ1N − c∗1)2

+ (1− µ)(C − λ2N − c∗2)2
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For a fixed N and µ, to select optimal τi we seek: ∂L
µ

∂τi
= 0.

Therefore the necessary conditions are:

(C + (µλ1 − (1− µ)λ2)N − µc∗1 − (1− µ)c∗2)
∂C

∂τi
= 0

(41)

For all i = 1, · · · , N ∂C
∂τi

= 0 implies∫ τi

τi−1

tr(‖ΦA(τi, t)G‖2R̃(t)−S̃(t))dt = (42)∫ τi+1

τi

tr(‖ΦA(t, τi)G‖2R̃(τi)−S̃(τi)
)dt,

which needs to be satisfied or (C + (µλ1 − (1− µ)λ2)N −
µc∗1 − (1− µ)c∗2) = 0 admits a solution.

Claim 4.3: For a fixed N , (C + (µλ1 − (1− µ)λ2)N −
µc∗1 − (1− µ)c∗2) = 0 has a solution.
The proof of the above claim follows directly from the fact
that C(N, τ1, · · · , τN ) is a continuous function of τi and
the maximum and minimum values of C are c∗2 + λ2N and
c∗1−λ1N respectively. Therefore, there is a point in S where
the function attains a value equal to the convex combination
(with parameter µ) of its maximum and minimum values.

It is straightforward to show that {τi} satisfying
C(N, τ1, · · · , τN )+(µλ1−(1−µ)λ2)N−µc∗1−(1−µ)c∗2 = 0
is optimal. After this point, Lµ will be a function of an
integer variable N and can be solved.

Under this choice of sampling instances, the costs incurred
by P1 and P2 are respectively [(µc∗1+(1−µ)c∗2)+(1−µ)(λ1+
λ2)N ] and 1

2 [(µc∗1 + (1− µ)c∗2)− µ(λ1 + λ2)N ] .
The above analysis shows how we can find the solutions

for the weighted cost problem (40) for some µ and hence
we can comment on the actual problem (38). Note that one
could equivalently formulate a weighted cost L̃µ = µL1 +
(1− µ)L2.

In the following we cite an interesting remark for this
game and the remark is equivalent to one of the the remarks
presented in [20]

Remark 4.4: The noise matrix G plays a role in deter-
mining the instances when the observations are acquired, but
the optimal strategies for the players do not rely on G. For a
deterministic game (G ≡ 0) the results show that the player-
i does not need any more information other than yi(0). In
fact, the deterministic framework results in the same control
and switching strategy as the symmetric (i.e. B = C, S = R)
game framework.

V. CONCLUSIONS

In this work, we have considered a two players partially
observed stochastic differential LQ game where the players
have intermittent but synchronised observations. The obser-
vations require finite costs. With costly information, we have
derived the Nash strategies for the actions u and v, and also
we have shown how to find the Pareto optimal instances for
acquiring the observations for the players.

This framework can be used with event-based framework
for a large systems. By design, there is a finite inter-
val between two successive optimal observation acquisition
times. Thus, this framework excludes the possibility of Zeno
behavior.
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