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Abstract— This paper studies linear set-dynamics driven by
random convex compact sets (RCCSs), where the parameter
matrix evolves according to an underlying Markovian random
process taking values in a finite set. We derive dynamics of
the expectations of the associated reach sets. We establish that
such expectations evolve according to coupled deterministic set–
dynamics. We provide sufficient conditions for the convergence
of the reach sets expectations. We also give conditions under
which the reach sets remain asymptotically bounded with
probability one. As an illustrative example, we apply our results
to evaluate the expectations of the reach sets associated to the
position of a quadrotor.

I. INTRODUCTION

Reachability analysis determines the set of states that
a system can possibly visit. Its relevance stems from the
close relationship with optimal control, set–membership
state estimation, safety verification and control synthesis
under uncertainty. The analysis of uncertain constrained
dynamics based on the concepts of reachability leads to
a-priori guarantees of robustness properties such as robust
constraint satisfaction, robust stability and convergence and
recursive robust feasibility. The main research topics in
reachability analysis include both the characterization and
computation of the exact and approximate reachable sets and
tubes [1]–[3]. Reachability analysis within the deterministic
set–membership setting was addressed in [2], [4], [5], where
the derived results are valid as long as the constraint sets
are known exactly. An extension of the deterministic setting
to the random case was presented in [6], where the sets
of possible initial states and the disturbance constraint sets
are random; this was done by considering the associated
linear set–dynamics driven by RCCSs. In particular, the set–
dynamics of the associated expected reach sets as well as the
dynamics of the corresponding covariance functions were
derived. The derived reachability notions in the stochastic
case were based on the theory of random sets [7]–[14], on the
set–dynamics framework for the set invariance under output
feedback [15], and on the theory of the minimal invariant
sets [16].

In this paper, we extend the reachability analysis provided
in [6] to the case where the system parameters are also uncer-
tain. In particular, we assume that the matrix of parameters
evolves according to an underlying homogeneous, irreducible
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Markov chain. We derive the dynamics for the expectations
of the associated reach sets, and study the convergence prop-
erties of such dynamics. The type of random process govern-
ing the evolution of the matrix of parameters accommodates
a rich class of stochastic time-varying systems. Such systems
can be used to represent random abrupt changes in structure,
intermittent faults, or random time-delays. An alternative
interpretation of the results presented here is in the context
of uncertainty quantification. Namely, we demonstrate how
the uncertainty in system parameters propagates through the
system dynamics, as depicted by the evolution of the reach
sets, in addition to the uncertainty in the initial states and
disturbance.

Paper structure: Section II provides the problem setup
and paper objectives. Section III introduces the mathematical
background concerning random sets. Section IV presents the
set–dynamics corresponding to the reach sets expectations
together with the convergence analysis for such dynamics.
We introduce here also a result that characterizes the limiting
behavior of the reach sets in the almost sure sence. Section V
presents numerical simulations for the reach set expectations
associated to a quadrotor position, under different scenario
regarding the random process driving the matrix of parame-
ters.

Basic Notations and Definitions: Given two sets X ⊂
Rn and Y ⊂ Rn and a vector x ∈ Rn, the Minkowski set
addition is defined by X ⊕ Y := {x+ y : x ∈ X, y ∈ Y },
and we write x ⊕ X instead of {x} ⊕ X . The Cartesian
product of X and Y is a set Z ⊂ R2n, with Z = X ⊗ Y =
{z : zT = [xT , yT ], x ∈ X, y ∈ Y }. Given the sequence
of sets {Xi ⊂ Rn}bi=a, a ∈ N, b ∈ N, b > a, we denote⊕b

i=aXi := Xa⊕· · ·⊕Xb. Given a set X and a real matrix
M of compatible dimensions (possibly a scalar) the image of
X under M is denoted by MX := {Mx : x ∈ X}. Given
a matrix M ∈ Rn×n, ρ(M) denotes the spectral radius of
M , that is, the largest absolute value of its eigenvalues. A
set X ⊂ Rn is a C set if it is compact (closed and bounded),
convex, and contains the origin. A set X ⊂ Rn is a proper
C set if it is a C set and has non–empty interior. We say that
a set X ⊆ Rn is a symmetric set w.r.t. 0 ∈ Rn if X = −X .
The collection of non–empty compact sets in Rn is denoted
by Com(Rn). The collection of non–empty compact, convex,
sets in Rn is denoted by ComConv(Rn). The convex hull
of a set X ⊂ Rn is denoted by co(X). The support function
s(X, ·) of a non–empty closed convex set X ⊂ Rn is given
by

s(X, y) := sup
x
{yTx : x ∈ X} for y ∈ Rn.
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Given a PC–set L in Rn, the function g(L, ·) given by

g(L, x) := inf
µ
{µ : x ∈ µL, µ ∈ R+} for x ∈ Rn

is called the gauge (Minkowski) function of the set L. If L is
a symmetric PC–set in Rn, then g(L, ·) induces the vector
norm |x|L := g(L, x) whose unit norm ball is the set L. For
X ∈ Com(Rn) and Y ∈ Com(Rn), the Hausdorff distance
(metric) is given by

H(L,X, Y ) := min
α
{α : X ⊆ Y⊕αL, Y ⊆ X⊕αL,α ≥ 0},

where L is a given, symmetric, proper C set in Rn. The
norm of a non–empty compact subset X of Rn (i.e., X ∈
Com(Rn)) is given by ‖X‖L := H(L,X, {0}).

Remark 1: [17] We recall that if A is a stable matrix
(ρ(A) < 1), then there exists a symmetric, proper C-set L in
Rn and a scalar λ ∈ [0, 1) such that AL ⊆ λL. In particular
λ ∈ [ρ(A), 1).

II. PROBLEM SETUP

We consider the following autonomous discrete–time, lin-
ear, time–varying (DLTV) system:

xk+1 = Aθkxk + wk, (2.1)

where xk ∈ Rn is the current state, xk+1 is the successor
state, and θk is a random process taking values in a finite set
S = {1, . . . , q}. Consequently, the matrix Aθk is a matrix
valued random process taking values in the finite set A =
{A1, . . . , Aq}. We assume θk to be a homogeneous Markov
chain with probability transition matrix P = (pij) such that
Pr(θk+1 = j|θk = i) = pij .

The linear dynamics is driven by an unknown but bounded
disturbance wk ∈ Rn. The unknown disturbance variable is
bounded in the sense that, for all k ∈ N, it holds that:

wk ∈Wk, (2.2)

where, for each k ∈ N, the disturbance set Wk is a random
compact set, as defined in Section III. The initial state of the
system (2.1) belongs to a random compact set X0:

x0 ∈ X0. (2.3)

Inspired by the set–dynamics theoretical framework [16],
similarly as in [17], we introduce the map R (·, ·, ·), given
by:

R(X,W, θ) := AθX ⊕W. (2.4)

Clearly, the function R (·, ·, ·) maps Com(Rn) ×
Com(Rn) × S to Com(Rn) as well as ComConv(Rn) ×
ComConv(Rn)×S to ComConv(Rn). Reachability analysis
reduces to the characterization of the reach sets Xk, k ∈ N
which are generated by the stochastic set–dynamics:

X+ = R(X,W, θ) so that
∀k ∈ N, Xk+1 = R(Xk,Wk, θk). (2.5)

Thus, the reach set at time k ∈ N is the kth iterate of the map
R(·,W, θ) : Com(Rn)→ Com(Rn) evaluated at X0, while
the reachable tube is the trajectory of the system (2.5) with

the initial condition equal to X0. In this case, the stochastic
reach sets admit an explicit representation given by:

∀k ∈ N+, Xk := Φ(k, 0)X0 ⊕
k−1⊕
i=0

Φ(k, i+ 1)Wi. (2.6)

where Φ(k, i) = Aθk−1
Aθk−2

. . . Aθi is the state transition
matrix, with Φ(k, k) = I .

Next, we recall a reachability analysis result in the de-
terministic case. Let Aθk = A for all k where A is a
deterministic matrix. In addition, let Wk = W for all k, and
let X0 ∈ Com(Rn) and W ∈ Com(Rn) be deterministic
sets. Under these assumptions, the reach sets admit the
explicit representation

Xk := AkX0 ⊕
k−1⊕
i=0

AiW. (2.7)

and the following result holds.
Proposition 1 ( [16], [17]): If ρ(A) < 1 then the reach

sets Xk converge to the unique solution of the fixed point
set equation X = AX ⊕W , which can be explicitly written
as

X∞ :=

∞⊕
i=0

AiW. (2.8)

Paper Objective: Our main aims are to:
• derive the set-dynamics of the reach set expectations

whose evolution is controlled by the Markovian random
process θk;

• provide conditions under which the expectations of the
reach sets converge.

III. RANDOM SETS TECHNICAL PRELIMINARY

It is well–established that Com(Rn) endowed with the
Hausdorff distance H(L, ·, ·) is a complete metric space [11],
[13]. In fact, with the use of the Hausdorff distance H(L, ·, ·)
the space Com(Rn) can be made into a separable, locally
compact metric space [10], [11], [13]. It is also known
that ComConv(Rn) is a closed subset of Com(Rn) and
that the convex hull is a map co(·) : Com(Rn) →
ComConv(Rn) which is continuous w.r.t. the Hausdorff
distance H(L, ·, ·) [10], [11], [13]. Additionally, as shown
in [10], [11], [13], ComConv(Rn) is an abstract, locally
compact, convex cone which can be embedded isometrically
into the Banach space C(L∗) of continuous functions on the
dual unit ball L∗ := {y ∈ Rn : ∀x ∈ L, yTx ≤ 1}
(w.r.t. the unit ball L) of Rn by identifying a set X ∈
ComConv(Rn) with its support function:

s(X, y) = sup
x
{yTx : x ∈ X}, (3.1)

for all y ∈ L∗. Most often, L is chosen as the Euclidean norm
ball L = B2 := {x ∈ Rn : xTx ≤ 1} so that its dual L∗

satisfies L∗ = L. This mapping preserves both the metric and
linear structure [10], [13]. A random set X can be taken in
the Borel sense [8], [9], [11], and thus a random set X can be
regarded as a measurable map defined on a probability space
(Ω,Σ, P ), and taking values in the collection Com(Rn) of
non–empty compact subsets of Rn [10], [12].
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A selection of the random set X is a random vector x
such that x(ω) ∈ X(ω) holds almost surely. By adapting the
definition of the expectation of a random set as introduced by
Artstein and Vitale [10] and using E(·) to denote expectation,
we have the following definition.

Definition 1: Let X be a random set such that each
selection x has finite expectation E(x). The expectation of
a random set X , denoted by E(X), is given by:

E[X] := {E[x] : x is a selection of X}. (3.2)
A necessary and sufficient condition for E(X) to be well–

defined, (i.e., that E[X] ∈ Com(Rn)), is that E[‖X‖L] <
∞ [10]. If the underlying probability space is nonatomic,
then it is known [7], [9], [10] that E[co(X)] = E[X].
Using the strong law of large numbers, the set expectation
definition has been specialized for different assumptions on
the countability of the realizations of X .

Proposition 2 (finite realizations [18]): Suppose X is a
random set so that X = Kj ∈ Com(Rn) with probability
pj , for j = 1 . . . , N . The expectation of X is given by:

E[X] = ⊕Nj=1pj co(Kj).
Proposition 3 (countable realizations [18]): Suppose X

is a random set so that E(‖X‖L) < ∞, X = Kj ∈
Com(Rn) with probability pj , for j = 1, 2 . . .. It follows
that if

∑
j ‖Kj‖L < ∞ then the expectation of X is given

by:

E[X] = lim
N→∞

⊕Nj=1pj co(Kj) , ⊕∞j=1pj co(Kj).

The expectation of a random set can be extended also to the
case where X is a continuous map and is expressed in terms
of a Stieltjes-Minkowski integral.

In light of the previous definitions we have the following
assumption on the sets X0 and Wk.

Assumption 1: (i) The sets Wk, k ∈ N are i.i.d. RCCSs,
such that E[‖Wk‖2L] = E[‖W‖2L] <∞ (which implies
that E(‖W‖L) < ∞). Furthermore, the expectation
E[Wk] = W ∈ ComConv(Rn) for all k ∈ N.

(ii) The set X0 is a RCCS such that E(‖X0‖2L) <∞ (which
implies that E[‖X0‖L] <∞). Moreover, its expectation
E[X0] = X0 ∈ ComConv(Rn).

(iii) The random process θk, the random sets X0 and
Wk, k ∈ N are independent.

IV. REACH SETS EXPECTATIONS DYNAMICS

In [6] the linear set–dynamics driven by random convex
compact sets in the case where the parameter matrix A is
deterministic was studied. In addition, set-dynamics for the
expectations of the reach sets was derived. In this section,
we pursue a similar objective, with the difference that the
matrix of the system parameters is a matrix valued random
process. The dynamics of the expected reach sets associated
to (2.5) is given by

E[Xk+1] = E[AθkXk]⊕ E[Wk]. (4.1)

The following remark paves the way for a more explicit
characterization of (4.1).

Remark 2: Let {Xi}Ni=1 be sets in Com(Rn) and let
{Aij}Ni,j=1 be matrices in Rn×n. The sets Yi = ⊕Nj=1AijXi,
i = 1, . . . , N can be equivalently expressed as

Yi = {yi : yT = (yT1 , . . . , y
T
N ), y ∈ Y}, (4.2)

where Y = AX, with A = (Aij) and X = ⊗Ni=1Xi.
Basically, Yi is the set induced by ith n–dimensional
elements of Y. The set Y can be equivalently ex-
pressed as Y = ⊕Ni=1AXi, where Xi = {x : xT =
(0, . . . , 0, xTi , 0, . . . , 0), xi ∈ Xi}.

We recall that θk evolves according to a homogeneous
Markov chain with probability matrix P = (pij) and with
time dependent probability distribution πk,i = Pr(θk = i).
We first note that a direct computation of E[AθkXk] is not
immediate since θk and Xk are not independent (Xk encodes
information about the past trajectory of θk). To deal with
this, we apply an approach used in the theory of Marko-
vian jump linear systems (MJLSs) [19]. Namely, we define
the sets Xk,i = 1{θk=i}Xk, where 1{ω} is the indicator
function of the event ω. It follows that with probability one
Xk = ⊕qi=1Xk,i and the random set dynamics becomes
Xk+1 = Aθk

(
⊕qj=1Xk,j

)
⊕ Wk = ⊕qj=1 (AjXk,j) ⊕ Wk.

Multiplying both sides by 1{θk+1=i} we get Xk+1,i =
⊕qj=1

(
1{θk+1=i}AjXk,j

)
⊕ 1{θk+1=i}Wk. By noting that

E[⊕qj=1

(
1{θk+1=i}AjXk,j

)
] = ⊕qj=1 (pjiAjE[Xk,j ]) we

obtain the following coupled linear set–dynamics

X̄k+1,i = ⊕qj=1pjiAjX̄k,j ⊕ W̄k,i, i = 1, . . . , q, (4.3)

where E[Xk,i] = X̄k,i, W̄k,i = πk+1,iE[Wk] = πk+1,iW̄
and E[Xk] = X̄k = ⊕qi=1X̄k,i. Recalling Remark 2, a
compact representation of (4.3) is given by

Xk+1 = AXk ⊕Wk, (4.4)

where X0 = ⊗qi=1X̄0,i = ⊗qi=1π0,iE[X0], Wk =
⊗qi=1W̄k,i = ⊗qi=1πk+1,iW̄ , and

A =

 p11A1 . . . pq1Aq
... · · ·

...
p1qA1 . . . pqqAq

 .

Note that the disturbance set is time varying and therefore
we cannot directly apply Proposition 1 do derive a con-
vergence result. Based on Assumption 1–(i), ‖W̄k,i‖L =
‖πk+1,iW̄‖L ≤ ‖W̄‖L ≤ E[‖Wk‖L]| <∞, for all k, i. But
since {Wk}k≥0 is a sequence of i.i.d. RCCs (E[‖Wk‖L]| are
equal for all k), this means that there exists µ ≥ 0 such that
‖Wk‖L ≤ µ, for all k. To study the convergence properties
of (4.4), we use a similar approach as in [16], [17], and
define the sets

S̃k = ⊕ki=0Ri, (4.5)

with Ri = AiW̃, where W̃ = ⊗qi=1W̄ . We have the
following result.

Proposition 4: Let ρ(A) < 1 and let Assumption 1 hold.
Then the sequence {S̃k}k≥0 converges to a set S∞ denoted
by

S̃∞ = ⊕∞k=0AkW̃ , (4.6)
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Proof: The proof relies on showing that {S̃k}k≥0 is
Cauchy. This follows by observing that H(L, S̃k+j , S̃k) ≤∑k+j
i=k+1 λ

i‖W̃ ‖L ≤ λk+1

1−λ ‖W̃ ‖L, where λ is as in Remark
1. It follows that {H(L, S̃k+j , S̃k)}k≥0 converges to zero.
Consider now the set dynamics

X̃k+1 = AX̃k ⊕ W̃ , X̃0 = X0. (4.7)

Corollary 1: Let ρ(A) < 1 and let Assumption 1 hold.
Then the sequence {X̃k}k≥0 converges to the set S̃∞.

Proof: Follows from Proposition 4 together with
the observations that X̃k = AkX̃0 ⊕ S̃k−1 and that
H(L, X̃k, S̃k−1) ≤ λkX̃0, which in turn implies that
{H(L, X̃k, S̃k−1)}k≥0 converges to zero.

Corollary 2: Let ρ(A) < 1 and let Assumption 1 hold.
Then E[Xk] ⊆ X̃k for all k, where X̃k = ⊕qi=1X̃k,i, with
X̃k,i = {xi ∈ Rn : xT = [xT1 , . . . , x

T
q ], x ∈ X̃k}. In addition

lim supk→∞ ‖E[Xk]‖L ≤ ‖S̃∞‖L, where S̃∞ = ⊕qi=1S̃∞,i
with S̃∞,i = {xi ∈ Rn : xT = [xT1 , . . . , x

T
q ], x ∈ S̃∞}.

Proof: First note that by construction Wk ⊆ W̃ for
all k. Since X0 = X̃0, by an induction argument we get that
Xk ⊆ X̃k which further implies that X̄k,i ⊆ X̃k,i, where
we recall that X̄k,i = {xi : xT = (xT1 , . . . , x

T
q ), x ∈ Xk}.

Consequently E[Xk] = ⊕qi=1X̄k,i ⊆ ⊕qi=1X̃k,i = X̃k for all
k. The last claim of this corollary follows from Corollary 1.

Remark 3: The previous result established that if the
matrix A is strictly stable, then the limiting behavior of
expectations of the reach sets are such that they are subsets of
S̃∞. It should not come as a surprise that, as shown in [19],
matrix A is the same matrix that appears in the convergence
analysis of E[xk], where xk evolves according to a MJLS
driven by disturbance xk+1 = Aθkxk + wk, with similar
independency assumptions on θk, wk and x0 as in the set–
dynamics setup described in Section II.

A. Special cases

In the previous section we established set–dynamics for
evaluating the expectations of the reach sets. For such
evaluations to be tractable we need the initial expectations
for X0 and W0. In the case where they admit finite re-
alizations, Proposition 3 gives us the way to compute the
expectations. If however the set–valued random variables are
continuous maps, obtaining the initial expectations becomes
more challenging. One approach would be to approximate
the Stieltjes-Minkowski integral, by partitioning the sample
space and computing E[X] ≈ ⊕ipico(Xi(ωi)), where pi is
the measure of ωi. Naturally, the quality of the approximation
depends on the granularity of the partition. A special case
of a RCCS with continuous map is the Gaussian RCCS
defined as X = X̂⊕x, where X̂ is a deterministic nonempty
convex compact subset of Rn and x is a Gaussian random
vector in Rn. If we assume that X0 and Wk are Gaussian
RCCSs given by X0 = X̂0 ⊕ x0 and Wk = Ŵ ⊕ wk, with
x0 ∼ N (µ0, Q0) and wk ∼ N (0, R), then the random set–
dynamics corresponding to Xk can be decomposed in two
parts: Xk = X̂k ⊕ xk, where X̂k+1 = AθkX̂k ⊕ Ŵ and

xk+1 = Aθkxk + wk. Note that unlike the case where Aθk
is deterministic [6], X̂k are in fact RCCSs. However, since
the initial set and disturbance set are deterministic, (4.3) can
be iterated more efficiently.

In Section IV we derived results for convergence in
expectation for the sequence of sets {Xk}k≥0. Showing
convergence with probability one is more challenging due to
the time varying nature of the matrix of parameters. However,
under stronger assumptions on Aθk , Wk and X0, we can
show that {Xk}k≥0 remain bounded with probability one.

Proposition 5: Let Assumption 1 hold and assume there
exists 0 ≤ λ < 1 such that the linear matrix inequalities
ATi PAi − λ2P � 0, i = 1, . . . , q are feasible, where P is a
symmetric positive definite matrix. Let L , {x : xTPx ≤ 1}
and assume there exist positive scalars αw ≥ 0 and αx ≥ 0
such that ‖Wk‖L ≤ αw and ‖X0‖L ≤ αx with probability
one. Then there exists a sequence of sets {X̃k}k≥0 such that
with probability one Xk ⊆ X̃k for all k, where

X̃k+1 = λX̃k ⊕ W̃ , (4.8)

with X̃0 = αxL and W̃ = αwL deterministic compact sets,
and L the proper, compact set used in the Hausdorff distance.
In addition {X̃k} converges to a set X̃∞ denoted by

X̃∞ = ⊕∞i=0λ
iαwL,

Proof: Unless stated otherwise, all the following state-
ments hold with probability one. First note that, as discussed
in [17], the feasibility of the linear matrix inequalities means
that AiL ⊆ λL for all i. Recalling that Xk can be explicitly
represented as Xk := Φ(k, 0)X0 ⊕

⊕k−1
i=0 Φ(k, i + 1)Wi,

we define the sets Sk =
⊕k−1

i=0 Φ(k, i + 1)Wi. According
to the definition of the Hausdorff distance, the assumption
‖Wk‖L ≤ αw implies that Wk ⊆ αwL. This means
that each term in the sum of Sk satisfies Φ(k − 1, i +
1)Wi ⊆ αwΦ(k, i + 1)L ⊆ λk−i−1αwL. Introducing S̃k =⊕k−1

i=0 λ
k−i−1αwL, it holds that Sk ⊆ S̃k for all k. But

since Φ(k, 0)X0 ⊆ λkαxL and Xk = Φ(k, 0)X0 ⊕ Sk,
we have that Xk ⊆ X̃k where X̃k = λkαxL ⊕ S̃k.
Similar to Proposition 4, we can show that {S̃k} is Cauchy,
and therefore by completeness {S̃k} converges to a set
S̃∞ , ⊕∞i=0λ

iαwL. Observing that H(L, X̃k, S̃k) ≤ λkαx
it follows that the sequence {H(L, X̃k, S̃k)}k≥0 converges
to zero and consequently {X̃k}k≥0 converges to the set S̃∞.

The previous result shows that under certain conditions
we can guarantee that the sets Xk do not grow unbounded
for all possible realizations. In addition, it provides a su-
perset for the limiting behavior of Xk which implies that
lim supk→∞ ‖Xk‖L ≤ ‖X̃∞‖L with probability one. The
search for a λ as described in Proposition 5 can be done by
solving a sequence of semi–definite programs, as part of a
linear search algorithm.

V. ILLUSTRATIVE EXAMPLE

In this section we study the dynamics of the expectations
of the reach sets induced by the position of a quadrotor.
We use a simplification of the model studied in [20], to
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which a small–angle approximation was applied to obtain
the following linear system

φ̈ = aθ̇ + bα2U2

θ̈ = −aφ̇+ bα3U3

ẍ = gθ

ÿ = −gφ.

The meaning of the symbols shown in the model are:
(φ, θ) are the pitch and yaw angles, (x, y) are the position
coordinates, a = 8.667e−04 and b = 30.667 are nominal pa-
rameters that depend on the moments of inertia and residual
propeller angular speed, g = 9.81m/s2 is the gravitational
acceleration, and U2 and U3 are thrust dependent inputs.

The state–space dimension of the original model is 12. We
assume that that the quadrotor remains at a constant altitude
(the velocity on the z direction is zero) and no roll takes
place, and hence the lower dimensional model shown above.
For consistency with the original description of the model
we kept the notations used in [20]. Note however, that the
symbols have no connection with the symbols used in the
previous sections.

Scalars α2 and α3 are drag coefficients that affect the
thrusts generated by motors 2 and 4, and 1 and 3, respec-
tively. Their nominal values are α2 = α3 = 1. We will
randomly vary their values and study their effect on the
quadrotor position. The evolution of αi’s is determined by
the evolution of a random process θk ∈ {1, 2, 3, 4} that maps
into the set of pairs {(1, 1), (0.4, 1), (1, 0.3), (0.25, 0.25)}
from where (α2, α3) take values.

Using a sampling period of h = 0.1s, we obtain a
8–dimensional discrete state–space representation for the
nominal case xk+1 = Axk+B1uk+wk, where we introduced
also the state disturbance wk. For the nominal case, we
construct a stabilizing controller that brings the quadrotor
(when no disturbance is present) to the origin of the (x, y)
plane, resulting in the close loop system xk+1 = Ā1xk+wk,
where Ā1 = A + B1K. We now consider the random
evolution of the parameters, and define the matrix Āθk =
A + BθkK. Consequently we have the stochastic dynamics
xk+1 = Āθkxk + wk. According to the set where parameters
(α2, α3) take values, modes 3 and 4 are unstable (that is,
the matrix A + BiK, i = 3, 4 is unstable). We assume that
the initial state belong to a Gaussian RCCS X0 = X̂0 ⊕ x̂0,
where x̂0 ∼ N (µ,Q). Similarly, for all k ∈ N, wk ∈ Wk,
where Wk = Ŵ . The compact set X0 is the lifting of the
rectangle defined by (x̄0 ± δ, ȳ0 ± δ), with 0 < δ ≤ δxy
to the 8–dimensional Euclidean space. The rectangle reflects
the uncertainty in the initial position: x̄0 − δxy ≤ x0 ≤
x̄0 + δxy , ȳ0 − δxy ≤ y0 ≤ ȳ0 + δxy . All other components
in the initial state are affected by x̂0 only. Similarity, W0

is the lifting of the rectangle (w̄(7) ± δ, w̄(8) ± δ), with
0 < δ ≤ δw to the 8–dimensional Euclidean space, where
indices 7 and 8 correspond to the accelerations on the x and
y–directions, respectively. This way we can model additional
forces acting on the quadrotor such as wind forces. The linear
set-dynamics (4.3) corresponding to the expectations of the

Fig. 1: i.d.d. case: p1 = 0.9, p2 = 1/3, p3 = 1/3, p4 = 1/3,
x̄0 = 2, ȳ0 = 6, δxy = 0.5, δw = 0.05, µ = 0.1, ρ(A) =
0.9145.

Fig. 2: i.d.d. case: p1 = 0.1/3, p2 = 0.1/3, p3 = 0.1/3,
p4 = 0.9, x̄0 = 2, ȳ0 = 6, δxy = 0.5, δw = 0.05, µ = 0.1,
ρ(A) = 1.082.

reach sets were simulated using the MPT Matlab toolbox
[21]. The compact sets representing the initial state and the
disturbance were represented through a set of vertices and
rays. It is well known that the number of vertices representing
a set obtained by repeated Minkowski sums increases expo-
nentially. Consequently, after each time iteration we limit the
number of vertices describing the expectations of the reach
sets.

The set dynamics numerical simulations were executed for
100 iterations. We depict the projections of the expectations
of the reach sets on the dimensions corresponding to the
position. We consider first a particular case for the Markovian
process θk, namely we assume it to be an i.i.d. random
process. Figures 1–2 shows simulation results for the i.i.d.
case under different choices of probability distribution. As
expected, as the probabilities associated to unstable modes
increase, the system becomes unstable, in the mean sense
(E[Xk] is not bounded); behavior that can be observed in the
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Fig. 3: Markovian case: P=[0.7,0.1,0.1,0.1;
0.2,0.5,0.2,0.1;0.1,0.1,0.6,0.2;0.2,0.2,0.2,0.4],
π0=[0.25,0.25,0.25,0.25], x̄0 = 2, ȳ0 = 6, δxy = 0.5,
δw = 0.05, µ = 0.1, ρ(A) = 0.9595.

Fig. 4: Markovian case: P=[0.7,0.1,0.1,0.1; 0.1,0.7,0.1,0.1;
0.1/3,0.1/3,0.1/3,0.9;0.01/3,0.01/3,0.01/3,0.99],
π0=[0.25,0.25,0.25,0.25], x̄0 = 2, ȳ0 = 6, δxy = 0.5,
δw = 0.05, µ = 0.1, ρ(A) = 1.0132.

evolution of the reach set expectations. Figures 3-4 depict the
evolution of the expected reach sets in the Markovian case.
The first figure shows a stable behavior. By appropriately
selecting the probability transition matrix, we can generate
an unstable behavior as shown in Figure 4. Note that the lack
of smooth transitions between the shapes of the reach sets is
due to reducing the number of vertices representing the sets
in order to keep the Minkowski additions scalable with time.

VI. CONCLUDING REMARKS

We have studied linear set–dynamics driven by RCCS,
with random matrix of parameters. The random process
governing the evolution of the matrix of parameters was
assumed to be a homogeneous Markov chain. We derived
the set–dynamics for the expectations of the reach sets. In
addition, we gave sufficient conditions for convergence in
terms of the spectral radius of a particular matrix. As an

illustrative example, we used the results derived in this paper
to quantify the expectations of the reach sets for the position
of a quadrotor
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