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Authentication of Swipe Fingerprint Scanners
Vladimir I. Ivanov and John S. Baras, Life Fellow, IEEE

Abstract— Swipe fingerprint scanners (sensors) can be distin-
guished based on their scanner pattern—a sufficiently unique,
persistent, and unalterable intrinsic characteristic even to scan-
ners of the same technology, manufacturer, and model. We pro-
pose a method to extract the scanner pattern from a single image
acquired by a widely-used capacitive swipe fingerprint scanner
and compare it with a similarly extracted pattern from another
image acquired by the same or by another scanner. The method
is extremely simple and computationally efficient as it based on
moving-average filtering, yet it is very accurate and achieves an
equal error rate below 0.1% for 27 swipe fingerprint scanners
of exactly the same model. We also show the receiver operating
characteristic for different decision thresholds of two modes of
the method. The method can enhance the security of a biometric
system by detecting an attack on the scanner in which an image
containing the fingerprint pattern of the legitimate user and
acquired by the authentic fingerprint scanner has been replaced
by another image that may still contain the fingerprint pattern of
the legitimate user but has been acquired by another, unauthentic
fingerprint scanner, i.e., for scanner authentication.

Index Terms— Authentication, biometrics, fingerprint, scanner,
sensor, pattern, noise.

I. INTRODUCTION

AFINGERPRINT scanner converts the surface or subsur-
face of the fingertip skin into a digital signal, typically an

image [1]. This conversion process can never be made perfect
in practice. The imperfections induced by the scanner we
classify into: (a) persistent and largely time-invariant imper-
fections, which we call scanner pattern, and (b) imperfections
that change rapidly over time, which we call scanner noise.
Although studies that quantify these imperfections (as non-
idealities) of the fingerprint scanners and their suitability
for scanner identification are publicly unavailable, studies on
the variability at semiconductor level and in digital cameras,
FBI’s Personal Identity Verification program tests that certify
fingerprint scanners, and the interoperability problems among
fingerprint scanners suggest that such scanner pattern exists.
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We developed a simple, approximate, and tractable model
of the relationship among the scanner pattern, the scanner
noise, and the fingerprint pattern for one type of capacitive
fingerprint scanners together with a method to extract the
scanner pattern from a single image and compare it with the
pattern similarly extracted from another image. A sufficient
similarity between the two patterns indicates that the same
scanner acquired both images. We present two modes of
operation of the method that use a simple one-dimensional
moving-average filter and a correlation coefficient as a sim-
ilarity score. We applied them in an open-set scenario test
on 5,400 images acquired by 27 swipe UPEK fingerprint
scanners of exactly the same model. We present the receiver
operating characteristics (ROCs) in function of the decision
threshold, which is predetermined and independent from the
particular scanner under test. The equal error rate (ERR)
is 7.46 ·10−4. The method is computationally efficient, robust,
unconditionally stable, and does not require any hardware
modifications, so it can be added as software to systems
already manufactured and even put into service.

The method we propose can enhance a biometric system by
incorporating an additional layer of security that verifies the
authenticity also of the scanner connected to it, i.e., for scanner
authentication, by detecting attacks on it, such as detecting if
an image containing the fingerprint pattern of the legitimate
user and acquired by the authentic fingerprint scanner has
been replaced by another image that may still contain the
fingerprint pattern of the legitimate user but has been acquired
by another, unauthentic fingerprint scanner. Such verification
is increasingly needed because when authenticating to mobile
devices (e.g., smartphones and laptops) security problems may
arise as this authentication usually takes place in unsupervised
environments (e.g., at home). Since a mobile device can
be easily stolen, an attacker with physical access to it can
launch a powerful attack by manipulating the data acquired
and transmitted by the biometric scanner. Furthermore, most
biometric information has a low degree of secrecy as it can be
captured by an unintended recipient and without user’s con-
sent. Since biometric characteristics are difficult to change and
cannot be revoked, their compromise may lead to more serious
consequences than, for example, compromise of a password.
Finally, the widespread use of biometric technologies is set to
make the biometric information essentially publicly available,
with the face photos being public even today.

II. RELATED WORK

Our observation is that the scanner pattern stems from the
variability of element characteristics at the semiconductor level
and is caused by imperfections of the conversion from the
object applied to a scanner to the scanner output (a digital
image). The most closely related research on using such device
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imperfections is forensics of digital cameras and scanners,
which we review next. However, we do not discuss meth-
ods for cameras or scanners that classify different models,
brands, or manufacturers because such methods look for sim-
ilarities in the acquisition and/or processing chain of devices
of the same model, brand, or manufacturer, and therefore are
unable to identify individual devices by problem objective.
Not included are also methods which are able to identify
cameras or scanners based on their unique characteristics, but
which characteristics have not been created as result of man-
ufacturing the device (but were introduced afterwards) or are
relatively easy to alter, e.g., dust particles or scratches on the
camera lenses or the scanner platen.

A. Digital Cameras and Flatbed Scanners

The established term for the variability of interest in dig-
ital cameras is “pattern noise” and is used to denote “any
spatial pattern that does not change significantly from frame
to frame” [2]. The pattern noise generally has two com-
ponents: fixed-pattern noise (FPN) and photo-response non-
uniformity (PRNU). The FPN, also called dark current noise,
is the variation in pixel-to-pixel values when the sensor array is
not illuminated; it is due to variations in the detector size and
in the doping density, and to impurities. The FPN is additive
and independent from the image content. The PRNU is the
variation in the pixel responsivity when the sensor array is
illuminated. The PRNU is caused by variations in the detector
size, spectral response, and coatings’ thickness; it is multi-
plicative and content dependent. Both the FPN and the PRNU
are present in both CCD and CMOS image sensors. Besides
the pattern noise, the photo image sensors have temporal noise
that changes from frame to frame, including photodetector shot
noise, pixel reset noise, readout circuit thermal and flicker
noises, and quantization noise. An early work [3] estimated
the pattern noise in two types of CMOS sensors.

Imperfections in the imaging sensor provide uniqueness that
is relatively easy to extract. The pioneering studies [4] and [5]
used the coordinates of bright pixels caused by the FPN to
identify 9 CCD video cameras of 4 models. Their method
was applied in [6] to identify CMOS video cameras based
on the pixel-to-pixel non-uniformity of both the dark current
and the amplifier gain in each sensing element, and in [7]
to identify 12 CCD digital still cameras of the same brand by
detecting a larger set of sensor imperfections. Its extension [8]
to CCD still cameras detected defect patterns due to dark
currents and was tested on 3 cameras of the same model and
10 cameras of different models. A hybrid method [9] based
on both FPN and PRNU that used a Gaussian smoothing
filter was tested on 5 cameras of the same model and also
identified 20 CCD modules of the same model. Although
promising, these early studies did not provide quantitative
assessment of the effectiveness of their methods. Furthermore,
although prevalent among cheap cameras, not all cameras
have such defective pixels. Many cameras also postprocess
the images to remove such defects from them, and such
defects may be masked by the image content. Finally, all these
methods required the original camera used to acquire the query

image or availability of sufficiently many images acquired by
this camera in order to determine the unique pattern of the
FPN or the defective pixels.

Lukas et al. [10], [11] introduced the currently prevalent
approach for camera identification. It extracts the high-medium
frequency part of the pattern noise, assumed to be a stationary
additive white Gaussian signal, by subtracting a version of
the image denoised by a wavelet-based algorithm [12] such
that the residue is essentially the pixel non-uniformity (caused
by the different light sensitivity of the sensor elements),
the dominant component of the PRNU. The noise residues
extracted from multiple (generally 300 and minimum 50)
images were averaged to compute the camera reference pat-
tern. The correlation coefficients between the noise residue of
each image and the reference patterns of 9 cameras (2 of the
same model) were computed, and the camera corresponding to
the maximum coefficient was chosen in a closed-set scenario
test. Despite its promising performance, the method is com-
putationally intensive as it requires two-dimensional wavelet
4-level decomposition and reconstruction, and local variance
estimation and Wiener filtering in the transform domain at
all 4 levels of decomposition. In another test [13] on the
same cameras, the decision thresholds, individual for every
camera, determined by using the Neyman-Pearson method
at false accept rate (FAR) of 10−3 yielded estimated false
reject rates (FRR) from 1.14 · 10−11 to 4.68 · 10−3, depending
on the camera. Using an approximate linearization of the
sensor output, the continuation studies [14] and [15] of this
method estimated each reference pattern by a maximum-
likelihood estimator (MLE) from 30 blue-sky or uniformly-lit
images from 6 cameras (2 of the same model). A normalized
generalized matched filter was applied to image blocks with
parameters estimated by a correlation predictor based on a
polynomial multivariate least-square estimator using heuristic
features from the image, all of which incurred significant
computational cost. A major drawback of all studies in this
group is that their decision thresholds were camera and even
image dependent, thus essentially not open-set scenario tests.

A continuation study [16] using peak-to-correlation
energy (PCE) ratio for detection reported a large-scale open-
set scenario test on over 1 million images acquired by about
6,900 cameras covering 150 models, with 60 to 200 images
per camera. The FRR was 2.38 ·10−2 and the FAR, estimated
by chi-square fitting, 2.4 · 10−5. The reference pattern was
estimated from 50 images by using the MLE of [14] and [15]
and the same wavelet-based denoising filter. A variant [17] of
this method verified if two images were acquired by the same
camera in a set of 8 (2 of the same model), with 10 images
per camera, by computing the primary-to-secondary peak ratio
of their normalized cross correlations. The method of [18],
similar to [10] and [14], had the reference pattern estimated
from about 300 uniformly-lit images and the PRNU extracted
by a high-pass filter equivalent based on a 2D Gaussian filter
in spatial domain. With a single test image and 100 images per
camera, the average closed-set scenario accuracy was 83.7%;
in the open-set scenario, the FAR was 0.1%, the FRR 89%, and
the EER 16%. In a different approach [19] for camera model
identification, the 592 features of image measures and statistics
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were reduced to 192 and then classified by support vector
machines (SVM). Its accuracy on 16 phone cameras (with
2 cameras of 2 models) and 100 training and 100 testing
images per camera was 95.1%.

In the method [20] for identifying flatbed scanners, the aver-
aging of the 2D noise residues, each computed by an
anisotropic local polynomial estimator based on directional
multiscale optimization, produced the 2D reference pattern,
the rows of which and the noise residue were then averaged to
compute the linear reference and noise patterns, respectively.
A correlation coefficient and SVM using two sets of 8 statis-
tical features were used for classification. In their third set of
closed-set scenario tests, the accuracy among 3 and all 4 scan-
ners was 97.6% and 96%, respectively. In a similar study [21],
averaging 100 2D noise residues, computed as in [10], pro-
duced the array reference pattern, which was averaged by
rows to compute the line reference pattern. No error rates
were reported, but the identification with the array reference
pattern was better than with the line reference pattern. Another
contemporary method [22] for flatbed scanners used 3 sets
of noise features derived from the noise residue statistics of
5 denoising filters, the 2D wavelet decomposition coefficients,
and the absolute neighborhood prediction error in smooth
regions. A principal component analysis (PCA) reduced the
60 features to 25, which were classified by SVM, yielding
90.1% accuracy with 13 training and 13 testing images from
7 scanners. Its extension [23] reported 84% accuracy when
classifying individual scanners in a set of 14, with 50 training
and 50 testing images, although most errors were among
scanners of the same model. In an extension [24] of [20]
using an additional denoising median and two Wiener filters,
the statistics of the linear column pattern and of the row
and column correlation vectors produced 204 features, which
were then reduced by linear discriminant analysis (LDA) to
10 and finally classified by SVM. The accuracy when tested on
7 flatbed scanners with 200 training and 200 testing subimages
was 99.26%.

A further improvement [25] of [10] reduced the scene details
in the noise residue by applying small weight factors to large
components in 6 weight models after low-pass filtering in the
wavelet domain. The reference pattern was estimated from
50 blue-sky images. In open-set tests on 6 cameras, with
200 images per camera, the best FRR was 2.05% at 0 FAR and
1.75% FRR at 0.03% FAR. In an improvement [26] of [15],
only regions of the noise residues with pixels having the top
20% highest SNR (w.r.t. the PRNU) were used for detection.
A comparative study [27] for the methods in [11] and [15], and
2 models of [25] concluded that [11] combined with a mixed
correlation coefficient performs best. Each reference pattern,
estimated as in [11] from 100 blue-sky images, was correlated
with the noise residues first whitened in the frequency domain
and yielded best FRR of 0.36% at 0% FAR on 7 cameras with
200 images per camera. Its improvement [28] introduced a
correlation over circular cross-correlation norm as a similarity
score to suppress the contamination from periodic components
and reported best FRR of 0.1% at 0% FAR on the same dataset,
outperforming [13], [15]/ [16], and [25]. The method in [29]
identified regions with similar smoothness and brightness,

assigned weights to the different regions, and computed the
reference pattern as their weighted average. The tests on
16 cameras showed better ROCs over those in [13] and of
model #3 in [25]. At FAR of 0.1%, the lowest FRR was 51.7%
with 30 training images and 55.7% with 15 training images,
with EER of about 8% in both cases.

One of the alternative methods [30], using a DCT, unsharp
and high-pass filters to extract spectral noise, reported best
accuracy of 99.06% in a closed-set tests on 8 scanners with
160 training and 160 testing images per scanner. A novel
sparse 3D transform-domain collaborative filtering was used
for denoising in [31]. Reference [32] proposed an edge
adaptive pattern noise predictor based on context adaptive
interpolation and adaptive Wiener filter in the spatial domain
to remove scene details. A simpler, faster, and easier to
implement method [33] using a median filter and anisotropic
diffusion algorithm for image denoising achieved EER of 0.5%
and FRR of 1.4% at FAR of 0.1% on 69 cameras of 7 models.
Another simple method [34], using a spatial 2D adaptive
Wiener and two median filters, estimated the reference pattern
from over 100 blue-sky images and retained for matching
20% of the pixels with the largest magnitudes, significantly
improving the ROC over the common wavelet-based method
when tested on 18 cameras. In [35], homomorphic filtering
converted the PRNU into additive, extracted it by SVD, and
matched with PCE; it was tested on 5 phone camera models
with 50 training and 50 testing images. In [36], pixels from
positive and negative clusters (pixels with similar noise residue
values) were combined into cluster-pairs. Too small a number
of mismatched cluster-pairs indicated the image was acquired
by the same camera. An SVM generalization [37] for two
open-set classifications—camera attribution (when each image
is attributed to a specific camera) and device linking (whether
two images were acquired by the same camera)—used the
correlations from 9 image regions and proposed boundary
carving to adjust the SVM decision hyperplane to reduce
the false matches from unknown classes; it achieved 97.18%
accuracy for the camera attribution and 87.4% for the device
linking on large datasets.

B. Fingerprint Scanners
The method for digital cameras of [10] and [13] was applied

in [38] to 16 optical and 4 capacitive fingerprint scanners
in 3 sets. In the first set, with 2 optical models having
3 scanners each, the accuracy was 99.65% with 1 training
image and 100% with 4 images or more, but most errors
were among scanners of the same (optical) model. In the
third set, with 8 scanners (optical and capacitive), the accuracy
was 98% with 64 training images but dropped to about 85%
with 1 image. In the second, the most problematic set, with
3 models (2 optical and 1 capacitive) having 2 scanners each,
there were many errors even for optical scanners of the same
model. The highest accuracy of 95% was with 256 training
images but dropped to 45% with 1 image. All this supports
our finding that identifying fingerprint scanners, especially of
the same model, requires another approach.

A critical drawback of the PRNU-based methods is their
poor performance with a single or even a few training images,
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Fig. 1. A block diagram of a fingerprint scanner.

which, however, is the case in biometric authentications where
typically 3 to 5 images become enrolled. Moreover, to achieve
high accuracy, some of these methods require homogeneous
training images, e.g., uniformly lit or of a blue sky, which is
inapplicable to our case because the enrolled image(s) contain
fingerprint patterns. Furthermore, the mixture of the fingerprint
pattern and the scanner pattern in capacitive fingerprint scan-
ners is not simply multiplicative (as in case of PRNU) because
the image acquisition in these scanners is very different from
that in digital cameras. Finally, an image acquired by swipe
scanners manifests a structure that if exploited eliminates the
need for 2D signal processing, which is what the PRNU-based
methods use.

Our method [39]–[41] to distinguish area fingerprint scan-
ners using a single image, acquired by each scanner, used
2D wavelet decomposition and reconstruction by zeroing the
LL-subband coefficients, and a correlation coefficient, com-
puted using the pixels with magnitudes below a threshold.
By fitting Gaussian PDFs on the distributions in the worst-case
scenario of the open-set tests on 24 area capacitive fingerprint
scanners of exactly the same model, we estimated an EER
of 2.8 · 10−10. Although simple, universal, and extremely
accurate, the method is computationally intensive (due to the
2D wavelet transform) and uses many (all) pixels of the image.

III. SIGNAL MODEL AND SIGNAL CHARACTERISTICS

A. Signals and Signal Model

The imperfections induced by the fingerprint scanner we
classify into two categories: (a) imperfections that are persis-
tent and largely time-invariant, which we call scanner pattern,
and (b) imperfections that change rapidly over time, which we
call scanner noise. The scanner pattern can be a function of
many and diverse factors in the hardware and software, e.g.,
the specific sensing method, the semiconductor technology,
the chip layout, the circuit design, and the post-processing.
Pinpointing the exact factors or much less quantifying them,
however, is difficult because such information is proprietary.
Nevertheless, our observation is that the scanner pattern is
mainly caused by non-idealities and variability in the fin-
gerprint sensor (see Fig. 1); however, the signal processing
unit can also contribute to it. The intrinsic characteristics
that determine the scanner pattern, as per our definition,
remain relatively unchanged over time. Variations in these
characteristics, however, may still exist and may be caused
by environmental changes, e.g., changes in temperature, air
pressure, air humidity, and sensor surface moisture; material
aging; or scratches, liquid permeability, and ESD impact on
the surface. The scanner noise is generally caused by non-
idealities in the conversion that vary considerably within short
periods of time, e.g., thermal noise (inherently present in any

Fig. 2. Image construction and sensing elements of a swipe scanner.

electronic circuit) and quantization noise (from the analog-to-
digital conversion).

The actual function describing the relationship among the
scanner pattern, the scanner noise, and the fingerprint pat-
tern (when present) can be very complex. This function
depends on the particular sensing technology, the scanner
design, and its implementation, all of which are proprietary
and usually publicly unavailable. Furthermore, even if the
function can be determined exactly, using it to estimate the
scanner pattern may prove analytically intractable or require
computationally impractical signal processing. However, this
function can be simplified by considering only the major
contributing factors and by using approximations; this simple,
approximate model we call signal model.

Generally, in swipe (a.k.a. slide or sweep) scanners,
a line (e.g., a row or a column) of sensing elements performs
an instant scan of a tiny strip of the fingertip skin and
converts this scan into a line of pixels. As the fingertip is
swiped over this line of sensing elements, a sequence of
lines of pixels is produced and then assembled (and also
possibly enhanced) to construct a two-dimensional fingerprint
image (see Fig. 2). The method proposed here we developed
for the capacitive swipe scanners of UPEK, Inc., that were
formerly known as TouchStrip® scanners (sensors). UPEK was
acquired by AuthenTec, Inc., in 2010, then AuthenTec was
acquired in 2012 by Apple, Inc., which in 2013 sold the UPEK
technology to DigitalPersona, Inc., which in turn merged with
Crossmatch, Inc., in 2014. Nevertheless, we refer to them
hereinafter as “swipe UPEK scanners” as they are still known
in the industry or simply as “swipe scanners” unless noted
otherwise. Each such scanner that we used is a TCESC4K
module, contains a TCS4K swipe sensor, and is connected
(via a development kit) to a computer via a USB. To the
capacitive area UPEK scanners of [39] and [42] hereinafter
we refer as “area scanners.”

Directly applying the methods we developed for area scan-
ners [39]–[43] to swipe scanners is problematic because:
(a) constructing a 2D image from the instant scans in swipe
scanners is very different from that in area scanners, (b) arti-
facts, including image enhancement, are possibly introduced in
this construction process, and (c) swipe scanners have nearly
3 orders of magnitude fewer number of active sensing elements
than area scanners have. However, in swipe scanners: (i) the
image pixel values never saturate (i.e., never “clip”), unlike the
pixels in area scanners, and hence all sensing elements can be
used, and (ii) in a single image, each sensing element produces
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many (e.g., hundreds) pixel values and thus the scanner pattern
of each sensing element gets “incorporated” into many image
pixels, thus facilitating its estimation. Based on our analy-
sis [40] of the image acquisition and the images we acquired
by both area and swipe UPEK scanners, we hypothesize
that the capacitive sensing elements of these two types of
scanners are very similar, which leads to the signal model
we propose next, despite that we could not find publicly
available information to corroborate this. We also observed
deviations from what we expected, which suggests that the
sensing elements of swipe scanners possibly differ to some
extent or that these scanners employ additional processing.
Nevertheless, the excellent performance we obtained in both
modes of operation (direct and inverse, described later) serves
as an indirect validation of the suitability of this signal model.

In swipe UPEK scanners, the line of sensing elements is
perpendicular to finger’s length and sequentially scans the
fingertip while the latter is being swept over the scanner in
direction of finger’s length. In this way, the consecutive lines
of pixels form rows in the image and therefore for any row
index i , all pixels in any column j are produced by the same
sensing element with index j (see Fig. 2). Based on our
signal model that we proposed in [40], [42], and [43] for area
UPEK scanners:

g(i, j) = s(i, j)

1 + s(i, j) f (i, j)
+ n(i, j, t),

for swipe UPEK scanners we propose the following model:

g(i, j) = s( j)

1 + s( j) f (i, j)
+ n(i, j, t) = r(i, j) + n(i, j, t)

(1)

where g(i, j) is the pixel value at row i and column j , f (i, j)
is the fingerprint pattern, and s( j) is the scanner pattern of the
j -th sensing element in the row because s( j) = s(i, j) for all
i since the scanner pattern along columns is the same as it
is produced by the same sensing element j . n(i, j, t) is the
scanner noise; it is temporal in the row index i because of the
same reason. t is time and represents the temporal nature of
the scanner noise across different image acquisitions; hence
n(i, j, t) becomes n(i, j) when considering a single image.
r(i, j) is simply a short notation for the first additive term:

r(i, j)
�= s( j)

1 + s( j) f (i, j)
. (2)

B. Signal Characteristics

Each pixel value g(i, j) has 8 bits (although some imple-
mentations produce fewer effective bits per pixel) and ranges
from 0 to 255 grayscale levels. We assume that the values
g(i, j) as saved in a computer file are not further enhanced
(or compressed) by image processing as to facilitate the
fingerprint authentication or are enhanced (or compressed),
but the scanner pattern information in them has not been
destroyed or substantially altered. Fig. 3 shows a segment from
an image with a fingerprint pattern acquired by such a swipe
scanner.

Fig. 3. A segment from a fingerprint image acquired by a swipe scanner.

1) Fingerprint Pattern f (i, j): A scanner scans the surface
of the fingertip skin (a sequence of ridges and valleys) and
represents it as a 2D signal. Along with the scanner imperfec-
tions, this process may also include nonlinear transformations,
e.g., projection of the 3D fingertip onto the 2D scanner
platen, and nonlinear sensing and conversion of the ridges and
valleys into electrical signals, hence making the fingerprint
pattern a nonlinear function of the actual skin surface. For our
purposes, we can view f (i, j) in either dimension roughly
as one dominant single-frequency oscillation together with
its harmonics. This frequency depends on the width of the
ridges and valleys, which are specific for each individual.
It also depends on the finger type: typically, thumbs have wider
ridges and deeper valleys than little fingers, and index fingers
have narrower ridges and valleys than thumbs but wider than
little fingers. This frequency also depends on the gender (men
typically have wider ridges and valleys than women) and
on the age (children usually have narrower ridges/valleys).
Finally, it may also vary even within the same fingertip. For
our purposes, a precise estimate of it is unnecessary, and our
study concluded that about 0.63 radians per pixel is sufficiently
representative. Furthermore, the spatial scanning resolution of
the scanners is sufficiently high as they sample the fingertip
skin at the rate of about 10 times faster than a typical f (i, j)
along either dimension. Finally, f (i, j) in our model (1) is
normalized to (0, 1]. In the regions with absolutely no skin,
i.e., away from the fingertip, f (i, j) = 0 and g(i, j) ≈ s( j).

2) Scanner Noise n(i, j, t): We denote with this the com-
bined effect of all factors that result in short-term variations,
i.e., from within several seconds to much faster, in the pixel
values of consecutively acquired images under exactly the
same acquisition conditions and under exactly the same envi-
ronmental conditions (e.g., without changes in temperature,
air humidity, and air pressure). Reproducing the exact same
conditions when a fingertip is applied is certainly impossible,
and therefore this is only an abstraction to define the scanner
noise. Examples for factors in such short-term variations are
thermal, shot, flicker, and so forth noises present in electronic
circuits, and quantization noise. Other contributing factors may
also exist, but identifying them without details about the pro-
prietary scanner implementation is difficult and we have made
no effort to do so because the statistical characteristics of the
aggregation of all these short-term noises are important for us.
However, unlike for area scanners [40], measuring the scanner
noise of swipe scanners and quantifying its characteristics,
in either space or time, proved to be difficult because swipe
scanners acquire images only with fingerprints, not also with
air as area scanners do. Moreover, precisely estimating these
characteristics proved essentially unnecessary for the herein
method development. Assuming that the sensing elements of
area and swipe UPEK scanners are very similar to one another,
we can assume that n(i, j) is:
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a) Additive: A plausible and widely-used assumption is
that the combined effect of the noises in an electronic circuit
can be modeled as an additive noise, as in (1).

b) Zero mean: Based on our analysis of the scanner
noise in area UPEK scanners, we assume that n(i, j) has
zero mean when averaged along many (e.g., over 100) rows i .
Hence, by averaging g(i, j) for all rows i , the corresponding
average noise navg( j) at sensing element j is approximately 0,
regardless of the distribution of n(i, j) along index i .

c) Much smaller than r(i, j): We observed that for
swipe UPEK scanners, the pixel values g(i, j) never become
0 and rarely if ever fall below 100 and even 120. In [40],
we estimated that the scanner noise of area UPEK scanners has
a standard deviation of about 1.336 (= √

1.785), on average.
Assuming a similarly strong scanner noise in swipe UPEK
scanners, even 3σ of 1.336 (≈ 4) is much smaller than 100 and
therefore also much smaller than r(i, j).

3) Scanner Pattern s( j): Unlike for area scanners and
similarly to the scanner noise (above), quantifying the char-
acteristics of the scanner pattern of swipe scanners proved
difficult and essentially unnecessary. Hereby we summarize
the important conclusions about the scanner pattern of area
scanners from [40] that gave us important insight and aided the
method development for swipe scanners. First, we assume that
the scanner pattern s( j) and the fingerprint pattern f (i, j) are
independent. Next, as defined in (1), s( j) ranges from 0 to 255
and can be viewed as having two components:

s( j) = μs( j) + sv ( j), where: (3)

• μs( j) is the mean of s( j). It varies gradually in space but
may (considerably) change over time in the long term and
also under different environmental conditions (e.g., under
changes in temperature or moisture) and other factors,
which typically results in a relatively constant offset from
μs( j) in normal conditions. Our objective is to remove
μs( j) because it is not reproducible and cannot serve as
a persistent characteristic of the individual scanners;

• sv ( j) is the variable part of s( j). It varies rapidly in
space but is relatively invariant in time (both in short
term and in long term) and under different environmental
conditions. sv ( j) is reproducible and can serve as a
persistent characteristic of each scanner. Therefore, our
objective is to estimate sv ( j) and use it to authenticate
the scanner.

Our analysis [40] of the probability distribution of sv ( j) in
area UPEK scanners showed that for practical purposes it can
be assumed Gaussian. Deviations from normality, however,
do exist, such as outliers in particular and possibly heavy tails.
Furthermore, our study on the spatial dependence of the scan-
ner pattern concluded that it exhibits some limited correlation
but can be assumed largely uncorrelated, i.e., approximately
white. Nevertheless, it is very important that the scanner
pattern estimation be robust against significant deviations from
this Gaussian assumption and also be able to tolerate a certain
degree of correlation in the scanner pattern, as the method we
propose here is.

We observed that we can obtain the variable part sv ( j) by
subtracting from s( j) its low-pass filtered version F{s( j)}:

sv ( j) = s( j) − F{s( j)}. (4)

F{.} is a (possibly noncausal) moving-average filter, which
essentially computes the local (sample) mean, i.e., an estimate
of μs( j). Using other filters F{.} or holistically equivalent
high-pass filters is also possible, but we chose the moving-
average filter due to its simplicity and sufficient filtering here.

IV. OUR METHOD

A. Techniques

The method we propose here is based on two techniques:
1) Averaging Along Columns: By averaging the pixel values

g(i, j) for all rows i (i.e., along each column j ) and by using
assumptions (a) and (b) in III-B.2 for n(i, j), the average
navg( j) of n(i, j) along columns becomes close to 0 and we
obtain a close approximation for the average row gavg( j):

gavg( j) = 1

I

∑

∀i

g(i, j) = 1

I

∑

∀i

[r(i, j) + n(i, j)]

≈ 1

I

∑

∀i

r(i, j), where I is the number of rows. (5)

We call this case direct mode. Note that independence of
the scanner noise n(i, j) from r(i, j), and thus from the
scanner pattern s( j) and the fingerprint pattern f (i, j), is not
required here as long as n(i, j) is additive and zero mean
(i.e., assumptions (a) and (b) in III-B.2).

Another way of averaging, which we call inverse mode, is to
first invert the pixel values. By using assumptions (a) and (c)
in III-B.2 for n(i, j), we neglect the scanner noise n(i, j)
in (1), thus assuming that g(i, j) ≈ r(i, j), and define the
pixel inverse:

h(i, j)
�=

⎧
⎨

⎩
1, if g(i, j) = 0

1

g(i, j)
≈ 1

s( j)
+ f (i, j), otherwise.

(6)

Here again, independence of the scanner noise n(i, j) from
r(i, j), and thus from the scanner pattern s( j) and the fin-
gerprint pattern f (i, j), is not required as long as n(i, j) �
r(i, j) (i.e., assumptions (a) and (c) in III-B.2) and therefore
n(i, j) can be neglected.

Next, since s( j) is the same along each column j , averaging
along columns, i.e., for all rows i , will “amplify” it with
respect to f (i, j). Hence, for the average row havg( j) we
have:

havg( j) = 1

I

∑

∀i

h(i, j) ≈ 1

s( j)
+ favg( j) (7)

where favg( j) is the average fingerprint pattern when averaged
along columns. An example for havg( j) is shown in the upper
plot of Fig. 4. Notice the remarkably small local variations of
havg( j) along column indices j despite the fact that the pixel
values g(i, j) along nonadjacent columns (i.e., in function of
index i ) may substantially differ, as visible in the lower plot
of Fig. 4. This can be explained by looking at the inverses of
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Fig. 4. An average row havg( j) and 3 columns g(i, j) from the same image.

Fig. 5. Inverse pixel values h(i, j) of 3 adjacent columns and their averages.

the adjacent columns in Fig. 5—even though (the inverses of)
the pixel values considerably differ on a pixel-by-pixel basis,
their averages along each column are very similar in value.
Thus, havg( j) changes slowly, not rapidly as the sequences of
ridges and valleys g(i, j) do in the lower plot of Fig. 4 and
the inverses h(i, j) in Fig. 5.

Third, we observed that the mean μs( j) also changes
slowly, and since the magnitude of the variable part sv ( j)
around this mean is small, the trend of 1/s( j) is determined
by 1/μs( j). Hence, favg( j) in (7) must also change slowly,
being comparable to the rate of change of havg( j), i.e., favg( j)
is a slowly varying function in the column index j . This
can be explained with the high spatial resolution of the
scanner—the scanned fingerprint pattern on average does not
change significantly from one column to the next one. Finally,
since favg( j) and s( j) (and thus also 1/s( j)) are independent,
the problem of separating them becomes reduced to separating
the rapidly changing, noise-like signal 1/s( j) and the slowly
varying signal favg( j), independent from it. This can be done
similarly to (4): havg( j)−F{havg( j)}. Two exemplary F{.} are
the moving-average filter we present here and the adaptive
Wiener filter described in [40] and [44].

Fig. 6 shows an example for the average row gavg( j) and its
corresponding (i.e., computed from the same image) havg( j).

2) Linear Approximations: Our analysis discovered that
gavg( j) approximately contains the variable part of s( j) and

Fig. 6. Average rows in direct and inverse mode.

also in a form that is relatively easy to extract. This can
be seen from the series of approximations we present next.
First, we noticed that for swipe UPEK scanners, r(i, j) is
approximately a linear function of the fingerprint pattern
f (i, j); this approximation and its accuracy we detail in
Appendix A. In summary, in (18) we conclude that:

r(i, j) ≈ b( j) {1 − b( j) [ f (i, j) − a]} , (8)

where b( j) = s( j)

1 + s( j)a
and a = 0.0025. (9)

With this a and the scanner pattern values s( j) in the range
from about 100 to 255, b( j) is between about 80 and 156.

By substituting approximation (8) in (5) and averaging
r(i, j) along each column j , the average row gavg( j) becomes:

gavg( j) ≈ 1

I

∑

∀i

r(i, j) = b( j)
{
1− b( j)

[
favg( j)− a

]}
(10)

because b( j) does not depend on the row index i since
it is a function only of the scanner pattern s( j). As the
number of rows is typically large (well over 100), favg( j) is
close to the population mean of f (i, j) along i , observed
to be about 0.0025, which is also the constant a in (9).
All this makes

[
favg( j) − a

]
approximately constant and in

the order of 10−4 in magnitude. This, together with the
approximate range of b( j) (above), makes the second additive
term b( j)

[
favg( j) − a

]
in (10) in the order of 10−2 and

thus dwarfed by 1, which is the first additive term in (10).
Therefore, gavg( j) is approximately equal to b( j).

Finally, our analysis in Appendix B shows that for swipe
scanners with their signal ranges and with the filters we
propose (described next), the approximation b( j) ≈ const ·
s( j) with const varying within ±3% is sufficiently accurate.
This implies that b( j), and therefore also gavg( j), is essen-
tially the scaled scanner pattern s( j). Hence, a filter can
remove the mean of s( j) and thus obtain only its variable
part, as we wanted. That is, similarly to (4) and havg( j)
in inverse mode, here in direct mode we can also compute
gavg( j) − F{gavg( j)} and achieve our goal. Again similarly,
two exemplary F{.} are the moving-average filter we present
here and the adaptive Wiener filter described in [40] and [44].
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Fig. 7. Signal processing modules and conceptual diagram of operation.

B. Modules

Fig. 7 shows the conceptual diagram in which the acquired
image g is processed to produce the scanner verification
decision d , together with the main interface signals between
the modules. A module can process its signals in several ways,
which we call modes of operation. The modules in Fig. 7
and their modes are a subset of the those in [40] and [44]
and are presented here in order to illustrate the concept and
demonstrate exemplary performance.

Some swipe scanners produce images containing also rows
and/or columns of pixels with constant values (like padding)
around the actually acquired image, which need to be cropped
out from it. Let I and J be the number of rows and columns,
respectively, of this cropped image g with pixels g(i, j).

1) Preprocessing Module: It takes g as input and pro-
duces u, a 2D signal with the same size as g. It has two
modes: direct u(i, j) = g(i, j) and inverse u(i, j) = h(i, j).

2) Averaging Module: It computes the average row v of the
pixels along columns (for swipe UPEK scanners) of u, i.e., the
average of pixels produced by the same sensor element j :

v ( j) = 1

I

I∑

i=1

u (i, j) , for j = 1..J. (11)

In case of computational or time constraints, only some of
the I rows can be averaged, e.g., about 100 rows are sufficient.

Some swipe scanners may employ more than one line of
sensing elements, in which case the construction of the 2D fin-
gerprint image from the sequence of lines of pixels, acquired
by the sensing elements, involves signal processing which is
manufacturer proprietary and usually publicly unavailable.

3) Filtering Module: It filters the average row v to pro-
duce x, which contains the scanner pattern:

x = v − F{v}. (12)

This module essentially removes the fingerprint pattern and
the (variable) mean μs( j) of the scanner pattern, yielding
only its variable part sv ( j). Depending on F{.}, the Filtering
Module can operate in several modes. Here we present only
the moving-average filter mode; another mode that uses an
adaptive Wiener filter is described in [40] and [44].

Generally, for a pixel k sufficiently far from the ends of
v so that (k + j) does not address elements outside of it,
the output (i.e., local mean) v(lm) of a moving-average F{.}
is:

v(lm) (k) = F{v(k)} = 1

M

⌊
M−1

2

⌋

∑

j=−
⌊

M
2

⌋
v (k + j) (13)

where M is the size of the moving-average window. It is
preferable that M is odd so that the window is symmetric, but

Fig. 8. Input and output signals of the moving-average filtering in direct
mode.

choosing M to be even is also possible. We obtained optimal
results with M = 3, but good overall performance can also be
achieved with M from 2 to about 7.

Because of the finite length of v, processing the signal
discontinuities at the beginning and the end may lead to
undesired artifacts. To avoid this, we shorten the computation
when the averaging window goes outside of v, which method
we recommend. It is also possible to pad with replicas of the
pixels located near each end or with a suitably chosen constant.
Incorporating such methods to mitigate edge effects may seem
trivial, but actually it is quite important because the length of
v is relatively small and these artifacts may impair the scanner
pattern estimate for about 10 pixels, which is not negligible
and may decrease the performance. Furthermore, since tightly
applying a fingertip in the regions close to the two ends of a
swipe scanner is difficult, the pixels in these regions typically
contain little to no fingerprint pattern; hence, the estimate of
the scanner pattern there can be made very precise if such
unwanted artifacts are mitigated or altogether avoided.

Another aspect of the processing in this module is applying
a windowing function in (13). By weighing the pixel values
v(k + j) differently, the pixels away from the current index
receive smaller weights and their effect on the filtering is
diminished, which may increase the accuracy. For simplicity,
here we do not use windowing.

Finally, the output x of this module is:

x (k) = v (k) − v(lm) (k) , for k = 1..J. (14)

Fig. 8 shows the inputs v in direct mode and the outputs x
of the Filtering Module using a moving-average filter for two
images, one containing a thumb and another one a little finger,
acquired by the same scanner, and the correlation coefficient
between them. The lower plot shows only the first half of the
columns for better visibility. For comparison, Fig. 9 shows the
signals v and x for the same images as in Fig. 8 and using the
same moving-average filter but processed in inverse mode, and
the correlation coefficient between them. In contrast, Fig. 10
shows the inputs v in direct mode and the outputs x for
two images containing the same thumb finger (as in Fig. 8)
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Fig. 9. Input and output signals of the moving-average filtering in inverse
mode.

Fig. 10. Input and output signals of the moving-average filtering in direct
mode.

but acquired by two different scanners, and their correlation
coefficient. Again, the lower plot shows only the first half of
the columns for better visibility.

4) Masking Module: This module is optional, but using
it can considerably improve the robustness and the perfor-
mance in boundary cases. Its output y is a mask indicating
whether or not each pixel in x will be further used and
processed:

y( j) =
{

1, if |x( j)| ≤ θ — pixel j to be used

0, otherwise — pixel j not to be used.
(15)

The threshold θ is chosen as to exclude from further
processing two groups of pixels. The first group consists of
the pixels close to the beginning and to the end of x as they
may be unacceptably distorted as result of processing the
discontinuities of the finite-length signal (described earlier).
Although the techniques we proposed significantly mitigate
such artifacts, sometimes this is insufficient and leads to a

very inaccurate matching score; therefore, such pixels must be
excluded. Twice the length of the filter used in the Filtering
Module may serve as a loose upper bound for the total number
of pixels that this group may contain. The second group
of pixels includes pixels with excessively large magnitudes
because we observed that they provide very imprecise esti-
mates of the scanner pattern (due to various and unexplainable
reasons). The number of pixels in this group is typically
small (about several). Hence, if the combined number of pixels
of the two groups becomes too large (i.e., in the order of
tens), we recommend that the case be carefully analyzed and
possibly the threshold θ increased.

The optimal value of θ should be determined by experi-
mentation and tests. When this is infeasible, as a very approx-
imate guideline, θ in direct mode can be chosen from about
2.5 to about 5 (we obtained very good results with θ = 3.5),
and in inverse mode from about 1 · 10−4 to about 3 · 10−4

(we obtained very good results with θ = 2.5 · 10−4).
5) Matching Module: It computes a similarity score

between the scanner patterns extracted from two images and
produces a decision as to whether or not they are sufficiently
similar. Let xe and xq be the outputs of the Filtering Module
when the input is, respectively, an image ge acquired for the
scanner enrolment and an image gq acquired for the scan-
ner verification. The corresponding outputs of the Masking
Module are ye and yq. The Matching Module (a) selects
the common pixels marked as to be used in ye and yq,
(b) quantifies in a score the similarity between xe and xq
for these common pixels, and (c) compares this score with a
threshold and produces a binary decision d as to whether or not
ge and gq have been acquired by the same scanner.

Quantifying the similarity between xe and xq can be done
in several ways (modes) (see [40] or [44]): using a correlation
coefficient (preferred), a normalized correlation, or a relative
mean-square error. Correlation, i.e., matched filtering, is a
natural choice as it is the conventional method for detecting
digital watermarks and has already been used for identifying
digital cameras [13]. Being a robust and simple method, cor-
relation also requires little computational power, which is very
important for the intended applications of this authentication.

Let D be the set of all indices k for which both ye(k) = 1
and yq(k) = 1, i.e., the pixels marked as to be used in both
xe and xq, and ND be the number of elements in D. In case
of a correlation coefficient, the similarity score z is:

z = (x′
e − x′

e) · (x′
q − x′

q)

‖x′
e − x′

e‖ ‖x′
q − x′

q‖ (16)

where x′
e and x′

q are vectors containing only those elements
of xe and xq, respectively, whose indices are in D. x′

e and
x′

q are the means of the elements of x′
e and x′

q, respectively.
If any of the denominator terms is 0, then z = 0. The
decision d is 1, i.e., scanner match, if z ≥ τ , where τ is a fixed
decision threshold predetermined as result of optimization and
from the required trade-off between the FAR and the FRR.
Otherwise, the decision d is 0, i.e., scanner nonmatch. It is
important to note that our method is a solution to the harder,
open-set problem because the decision threshold τ , once



IVANOV AND BARAS: AUTHENTICATION OF SWIPE FINGERPRINT SCANNERS 2221

optimized, is fixed and is used to binary classify the query
image as being acquired or not by the authentic scanner with-
out comparing it with any other scanner image. In contrast,
solutions to closed-set problems only point to the scanner
that most likely acquired the query image in a fixed group
of scanners.

If ND is less than a predetermined number, the pixels
in common are too few to produce a reliable similarity
score and thus to make a decision; therefore, a new image
needs to be acquired. This predetermined number generally
depends on the number of sensing elements and is established
experimentally. For swipe UPEK scanners, which have about
140 sensing elements that effectively can be used for our
purposes, we recommend this number to be about 50.

To improve the score robustness and the overall accuracy,
we recommend that several scores between xe and xq be
computed and then combined into a single combined score that
is compared with τ . For example, xe and xq (and ye and yq,
respectively) can be split into two to give two corresponding
scores: one score z′ computed between the first halves of
xe and xq, and another score z′′ between their second halves.
Combining the two scores can be done by using several types
of means. Using a quadratic mean (i.e., a root mean square)
provides very good results; the combined score in this case is:

zcombined =
√

(z′)2 + (z′′)2

2
. (17)

We observed that for swipe UPEK scanners, the scores
z′ and z′′ computed for two images acquired by one and
the same scanner in some cases and for some scanners can
substantially differ: one of the scores can be much larger
than 0.5, whereas the other one can be much smaller and even
close to 0. The cause for this is unclear. Combining them
with the quadratic mean, however, ensures that the combined
score is sufficiently large as to produce a scanner match
decision, thus reducing the FRR. Moreover, we observed that
the quadratic mean also reduces the FAR. Finally, it is also
possible to use uneven halves or to split the signals into
more than two parts, although using many parts is discouraged
because the individual scores may become unreliable as the
number of pixels for their computation becomes too small.

To improve the fingerprint authentication, several images
are typically used to enroll a fingerprint pattern. Similarly,
(these) several images can also be used (as in [40] and [44])
to increase the accuracy of the scanner authentication. In one
method of using multiple images xe acquired during the
scanner enrolment, the Matching Module performs (a) and (b)
in Section IV-B.5 for each pair of one enrolled image and
the query image, and then averages all scores before per-
forming (c). Similarly, this can also be applied when several
query images xq are acquired. In another method, an “average”
enrolled scanner pattern xe,a is computed by pixel-wise aver-
aging all enrolled xe, after which the average xe,a is used as a
single enrolled xe for matching. This method, however, may be
suboptimal in certain cases because thus-computed xe,a may
be considerably distorted for certain pixels and hence cause
decision errors.

Fig. 11. Histograms of self correlations and cross correlations in direct mode.

C. Performance

Besides the modes we proposed above, the modules can
also operate in other modes, as described in [40] and [44],
delivering a varying overall performance in a trade-off with
the required computational power. One well-performing com-
bination of modes is when the Preprocessing Module operates
in direct mode, the Filtering Module uses a moving-average
filter with M = 3 and shortens the local mean computation
at the edges, the Masking Module uses threshold θ = 3.5,
and the Matching Module computes the correlation coefficients
between the two even halves of xe and xq, and combines them
in a quadratic mean to be the final similarity score. Another
well-performing combination is when the Preprocessing Mod-
ule operates in inverse mode, the threshold θ is 2.5 ·10−4, and
the other modules operate as they do in direct mode.

The normalized histograms (integrating to 1) of the corre-
lation coefficients in direct mode are shown in Fig. 11 and in
inverse mode in Fig. 12. We tested both modes in an open-
set scenario on 5,400 images acquired in the course of about
1.5 years at room temperature by 27 swipe UPEK scanners
for all 10 fingers of 2 persons (a male and a female) with
10 images per finger. In either mode, only a single image ge
was used for the scanner enrolment and only a single image gq
for the scanner verification. Also, in either mode, every image
was matched against all other images, with the total number of
matchings being about 15 million. Only one of the matchings,
AB or BA, was computed and recorded since all processing is
completely symmetric for ge and gq. There were no failures
to enroll or to verify in either mode (direct or inverse).

The corresponding empirical ROCs when varying the deci-
sion thresholds in Fig. 11 and Fig. 12 are shown in Fig. 13.
On the y-axis is shown the true accept rate (TAR), i.e., when
an authentic image is correctly identified as authentic, which
is equal to (1 – FRR). Both axes are shown on a logarith-
mic scale, but because the logarithmic function when being
very close to 1 is almost linear, the y-axis marks, evenly
spaced with the exponential step of −0.001, appear to be
linearly spaced. The y-axis labels as shown correspond to
10−0.011, 10−0.010, 10−0.009, and so forth through 1, but by
writing them as subtractions, the FRR becomes clearly visible
since it is the complement of TAR to 1. In direct mode,
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Fig. 12. Histograms of self correlations and cross correlations in inverse
mode.

Fig. 13. Receiver operating characteristics in direct and inverse mode.

the empirical EER (i.e., when the empirical FAR and FRR
are equal) is 7.46 · 10−4 and is achieved at decision threshold
0.54944. In inverse mode, the empirical EER is 22.42 · 10−4,
which is 3 times larger than the EER in direct mode, and is
achieved at decision threshold 0.51954. By increasing the deci-
sion threshold, the FAR decreases, whereas the FRR increases.
As visible in Fig. 13, for the same FAR, the FRR in inverse
mode is considerably worse than the FRR in direct mode—the
FRR in inverse mode is about 3.5 times larger than the FRR in
direct mode at FAR of 10−6, roughly 4 times larger at FAR of
10−5 and of 10−4, and about 5.5 times larger at FAR of 10−3.
Although the parameters of either mode have not been fully
optimized, we recommend using the direct mode when using a
moving-average filter because it is simpler and clearly provides
much better performance than the inverse mode. We attribute
this to the inversion, which is nonlinear and leads to distortion
of the scanner pattern since the scanner noise is not averaged
out directly as in direct mode but comes in the denominator
after the inversion (compare (5) with (6) and (7)). This widens
both the cross-correlation distribution and especially the self-
correlation distribution.

D. Features
1) Accuracy: To our best knowledge, our method is the

first and the only one providing an EER below 10−3 on a

large number of fingerprint scanners of the same acquisition
technology, manufacturer, and exact same model. Furthermore,
it requires only a single image for scanner enrolment and a
single image for scanner verification. The performance of the
combination of modules and modes presented here is just an
example for its potential, not its upper bound. A larger set of
modes and tools to optimize the performance and implement
the modules on a particular target is provided in [40] and [44].

2) Computational Efficiency and Speed: Since the main
application of the method is envisioned to be in mobile
devices, which are constrained in both computational power
and energy, the computational efficiency is very important.
Since the scanner authentication is only part of the user
authentication (the fingerprint authentication is another one),
it should add very little extra time. High speed of verification
is extremely important if the method is also to be used for
scanner identification. Our executable floating-point imple-
mentation of the method in direct mode on a low-performance
Intel T2300 processor (32 bit, 1.66 GHz, dual core) takes less
time than 10 ms per scanner verification.

3) Implementation and Scalability: Extreme simplicity was
also our central objective, which we achieved by using only
one-dimensional signal processing and avoiding any trans-
forms. This also results in linear dependence between the com-
putations needed and the number of pixels used. Furthermore,
the method can be implemented entirely in software, entirely in
hardware, or partially in either one. For example, the moving-
average filter simply scales by 1/M the adjacent pixels in a
window; in a fixed-point implementation, this can be further
speed-optimized by choosing M to be a power of 2 so
that the division becomes “shift right” as a microprocessor
instruction or a hardware operation. An FFT accelerator can
compute the correlation. Finally, the different modes allow
granularity with varying degrees of complexity depending on
the constraints, and the accuracy increases when more pixels
are used.

4) Robustness, Stability, and Fixed-Point Implementa-
tion: In addition to working with images with patterns of
two different fingers, both as patterns and as finger types,
the method works properly even when not a fingertip but
another body part is applied to the scanner (e.g., a palm)
because it inherently does not rely on specific characteristics
of the fingerprint pattern. Furthermore, the module parameters
can vary in wide ranges. All modules and modes are also
unconditionally stable as there are no feedback loops in any
form and at any level. Since floating-point coprocessors are
typically absent in mobile phones, being implementable in
fixed-point arithmetic is another important advantage because
it tolerates round-off errors due to finite-length effects in
the parameter, coefficient, and signal quantization. The image
depth is limited to 8 bits/pixel, which simplifies the scaling at
the interfaces between the consecutive processing stages both
in a microprocessor and in dedicated computational hardware.
The processing revolves around computing moving-average
sums, which cannot create overshoots in the intermediate
signals, and around scaling by bounded numbers. Computing
the correlation involves multiplication and accumulation of
two signals and can operate with the running indices so that
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the running sum never exceeds the dynamic range of the finite-
precision arithmetic unit. The rest are indexing operations and
comparisons.

Our method also does not employ transforms across
domains (e.g., a wavelet transform), which are typically
susceptible to numerical problems due to the finite word
length. The inverse mode, however, may require care when
implemented in fixed point because of potential round-off
errors. Finally, our method has an edge even over methods that
require floating point computations and use software libraries
for this because they will probably be more time and/or energy
consuming.

5) Cost and Deployment in Existing Systems: The method
was designed for and tested on a mainstream, general-purpose,
commercial off-the-shelf, low-cost fingerprint scanners as
mobile devices are most likely to be equipped only with
such. Since it does not require any changes in the scanner,
it can be added to systems already manufactured and put
into service by upgrading their software or programmable
hardware.

6) Other: Besides providing higher authentication accuracy
than the inverse mode, the direct mode both simplifies the
computations and decreases their number. It also makes pos-
sible implementing the method in limited-precision fixed-point
arithmetic because it greatly reduces the dynamic range of the
processed signals.

Since only a single image is needed for scanner enrol-
ment, the method can perform automatic scanner re-enrolment:
after a successful scanner verification, the query scanner
pattern can be stored as a newly enrolled pattern and thus
adapt the system to long-term variations of the scanner
pattern.

Finally, we have also implemented the method in software
that processes live images, acquired by the scanners, and
successfully demonstrated it [45] at the Biometric Consor-
tium Conference and Technology Expo (now Federal Identity
Forum & Homeland Security) in Tampa, Florida, in Septem-
ber 2011 and 2012.

V. APPLICATIONS

A scanner authentication consists of a scanner enrolment
and a scanner verification. In [39] and [42], we introduced the
term bipartite authentication to denote the two-part authentica-
tion: a biometric authentication with a scanner authentication,
a combination that verifies the authenticity of both the user
and the fingerprint scanner. A bipartite authentication consists
of a bipartite enrolment, which enrolls both the biometric
information of the legitimate user and the scanner pattern of
the legitimate scanner from the same image(s), and a bipartite
verification (see Fig. 14), which verifies both the biometric
information and the scanner pattern contained in the query
image, and allows access only if both verifications succeed.
Thus, the scanner authentication implements an additional
layer of security that verifies the authenticity of the acquisition
device of the fingerprint image. As the bipartite authentication
verifies both who the user is (their fingerprint) and what the
user has (their scanner), it binds the user and the device.

Therefore, the proposed method can be used to authenticate
a scanner and thus detect attacks on it [1], e.g., to detect a

Fig. 14. Bipartite verification.

Fig. 15. An attack in a device.

malicious replacement of the authentic scanner or a replay of
a stolen image of the authentic fingerprint at the input of the
fingerprint authentication subsystem (which can be hardware
and/or software), see Fig. 15. This type of attack is becoming
increasingly feasible in mobile devices (e.g., smartphones
equipped with fingerprint scanners) because they can be easily
stolen, giving to an attacker physical access to them and thus
the ability to launch so powerful an attack. This is a growing
security threat as the biometric information has a low degree
of secrecy and the widespread use of biometric technologies
makes it essentially publicly available [46]. In particular,
an attacker may possess stolen partial or even complete
fingerprint information of the legitimate user, including dig-
ital images acquired by an unauthentic fingerprint scanner
(i.e., another scanner) or information about user’s fingertip
obtained from a latent (i.e., left on a surface) fingerprint. The
attacker may also create a digital forgery of the authentic
fingerprint or digitally synthesize an image from the fingerprint
features (e.g., minutiae) of the legitimate user. Furthermore,
the attacker may also acquire an image by applying to the
scanner a physical forgery of a real fingertip, e.g., a gummy
finger made of Play-Doh or a foil with printed fingerprint
pattern on it, as described in [46]. In all these cases, and
as also demonstrated in [47] and [48], such attacks on a
system employing merely a fingerprint authentication may
succeed. Another attack will arise if (or better say, when)
online services start performing fingerprint (and generally,
biometric) authentication on the cloud because this will open
plenty of vulnerabilities both in the transit and in the storage of
the images. When added, however, the scanner authentication
can detect all of these attacks provided that the scanner which
acquired the fake image is different from the authentic scanner;
digitally synthesized images are even easier to detect as they
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don’t contain a scanner pattern at all. Finally, phones with fin-
gerprint scanners have become readily available: from Fujistu
with its REGZA and ARROWS, Apple since iPhone 5s,
and Samsung since Galaxy S5, to name a few, and it was
shown that phone’s fingerprint authentication can be easily
spoofed [47], [48].

Another application example is a contextual authentica-
tion or enforcing different user rights depending on the access
device. For example, a bank service that over the Internet
receives fingerprint images from user’s home computer and
user’s phone for increased security may limit the permitted
operations only to low-privilege ones (like checking account
balances) when the user authenticates from her phone because
it is easier to steal or compromise; the differentiation is made
based on the different scanner patterns of the fingerprint
scanners present in her computer and in her phone. Although
not a malicious or physical replacement, this is a type of scan-
ner replacement. Other possible areas of application include
mobile wallets, access to health care and medical records, and
asset management. The scanner pattern can also provide source
of randomness (e.g., for cryptographic purposes) and be used
for device identification.

APPENDIX A
LINEAR APPROXIMATION FOR r(i, j)

Hereby we derive a linear approximation for r(i, j) in
function of f (i, j). To simplify the notation, we omit the
indices and work with a single pixel with indices (i, j). The
standard tangent-line approximation for the function l( f ) at a
given point a is:

l( f )
�= r = s

1 + s. f
≈ k( f − a) + b, where

k = l ′(a) =
(

s

1 + s. f

)′∣∣∣∣
f =a

= − s2

(1 + s.a)2 = −b2

because b = s

1 + s.a
. Therefore, l( f ) = −b2( f − a) + b.

The accuracy of this approximation largely depends on the
selection of a. With g(i, j) being over 100 and r(i, j) about
the same, the range of the fingerprint pattern f is very small.
A possible explanation for this is that since the fingertip
is swiped, pressing it hard enough to produce a sufficiently
large f , much less to saturate the sensing elements, very
seldom occurs. By using the typical scanner pattern s of 200,
we have:

f = 1

r
− 1

s
≈ 1

100
− 1

200
= 0.005.

Hence, we conclude that f varies from 0 (no fingerprint) to
about 0.005. The best overall approximation is when a is in
the middle, i.e., a = 0.0025. Fig. 16 shows l( f ) and its linear
approximation with a = 0.0025 for 3 values of s and the
corresponding relative errors. Even in the worst case, i.e., when
s = 255, the relative error is at most 15.2% and this occurs
only near the ends of the range of f . Finally, with the indices:

r(i, j) ≈ b( j) {1 − b( j) [ f (i, j) − a]} , (18)

where b( j) = s( j)

1 + s( j)a
and a = 0.0025. (19)

Fig. 16. A linear approximation for r(i, j) and its accuracy in function of s.

TABLE I

LINEAR APPROXIMATION FOR b( j) AND IT ACCURACY FOR DIFFERENT μs

APPENDIX B
LINEAR APPROXIMATION FOR b( j)

We claim that for the characteristics of the signals in our
case and for our method, with const varying within ±3.1%:

b( j) = s( j)

1 + s( j)a
≈ const · s( j) (20)

which implies that b( j) is essentially the scanner pattern s( j).
First, in Table I we analyze the approximation:

1

1 + s( j)a
≈ 1

1 + μsa
(21)

for the parameter ranges we have. The value of a is taken from
Appendix A (the approximation for r(i, j)). Our analysis [40]
showed that the scanner pattern standard deviation σs is
typically smaller than 5, so we assume this value because it is
the worst case for the approximation accuracy. Thus, for these
values and parameter ranges, within ±3σ around the mean μs ,
we can assume that 1

1+s( j )a ≈ 1
1+μs a within ±3.1%.

Next, substituting (3) and (21) in the equality of (20) gives:

b( j) = s( j)

1 + s( j)a
≈ 1

1 + μs( j)a
[μs( j) + sv ( j)] (22)

= μs( j)

1 + μs( j)a
+ 1

1 + μs( j)a
sv ( j). (23)
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Since the mean μs( j) is slowly varying, a low-pass filter
F{.} on b( j) as in (23) will remove the first term μs( j)/
[1 + μs( j)a] and produce as output the processed and scaled
variable part sv ( j). Its scaling coefficient, however, still
depends on the index j via the mean μs( j). Nevertheless, this
is not a problem because the filter F{.} that we use has a short
span (several pixels). Within this span, μs( j) is essentially the
same, and thus the scaling factor 1/[1 + μs( j)a] is constant
for the indices over which the filter F{.} operates and for the
index j for which the Filtering Module produces the variable
part sv ( j). We note, however, that the approximation in (20)
is appropriate only for our specific processing of b( j) in order
to extract the variable part sv ( j), not in general.
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