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Abstract— We introduce and discuss two novel second-order
consensus networks with state-dependent couplings of Cucker-
Smale type. The first scheme models flocking to synchronization
over a network of agents where the alignment of the agent’s
states occurs over a non-trivial limit orbit that is generated
by the internal dynamics of each individual agent. The second
scheme models the speed alignment of a group of agents which
avoid approaching each other closer than a prescribed distance.
While seemingly different, both of these systems can be analyzed
using the same mathematical methods. We rigorously analyze
both examples and reveal their striking similarities. We arrive
at sufficient conditions that relate the initial configurations and
the systems’ parameters that give rise to a collective common
behavior. Simulation examples are presented to support our
theoretical conclusions.

I. INTRODUCTION

The dynamics of networked agents are of immense im-

portance in various disciplines of applied science. In recent

years, there has been a broad interest in the study of

distributed co-operative dynamic algorithms run among a

finite number of agents. The most prominent family of co-

operative algorithms is this of the consensus networks (see

for example [7], [9], [10], [11], [13], [17], [22] and references

therein).

The standard setting of a consensus network regards a

number of agents N < ∞ labeled to form a group [N ] =
{1, . . . , N}. Every member i ∈ [N ] possesses a value of

interest zi ∈ R that is initialized and updated according to:

i ∈ [N ] :

{
żi =

∑
j wij(t)

(
zj − zi

)
, t ≥ t0

zi(t) = z0i , t = t0.
(1)

The parameters wij ≥ 0, known as coupling rates, charac-

terize the “effect” of agent j onto i. Certain connectivity

criteria (thoroughly discussed in the aforementioned works)

ensure that the solution z = (z1, . . . , zN ) satisfies

zi(t)→ z∗ as t→∞, ∀ i = 1, . . . , N

for some value z∗ ∈ [mini z
0
i ,maxi z

0
i ].

The research on stability of this kind of networks is already

a saturated subject. While there exist numerous works on
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such linear systems, there are relatively few on non-linear

versions of (1), [1], [4], [8], [12], [13] and even fewer

on consensus-based schemes, i.e. schemes that coordinate

the agents in order to collectively execute a more complex

task different than unconditional convergence to a common

equilibrium [2].

A similar to (1) family of co-operative networks is this

where each agent is defined through the pair of (xi, ui) ∈
R × R usually understoond as position and velocity and

attempts to coordinate its velocity with respect to its neigh-

boring agents. These systems are known as second order

(flocking) networks and linear versions have attracted the

research interest of the control community [23]. Recent

advances regard non-linear variations of (1). In a series of

papers [4], [3] a significant non-linear version of second

order algorithms is introduced and analyzed:

i ∈ [N ] :

⎧⎪⎨
⎪⎩
ẋi = ui

u̇i =
∑

j wij(x)(uj − ui), t ≥ t0

ui(t) = u0
i , xi(t) = x0

i , t = t0.

(2)

where wij(x) = K
1+||xi−xj ||2β are distance-dependent cou-

plings. The working hypothesis (2) illustrates that the further

the relative distance between two agents is, the less effect

they have on each other. It then may occur that the agents

will not be positioning themselves sufficiently close so that

the network preserves the necessary connectivity strength in

order for global speed alignment to occur. This is, in fact,

the actual challenge in systems of type (2): the derivation of

appropriate initial conditions so that global flocking emerges.

Typically one would expect a connection between the initial

position and velocity configuration and the network coupling

parameters K and β. The system (2) has attracted immense

interest over the years and it has been substantially improved

in various ways [5], [13], [16], [19].

Theorem 1.1 ([13], [19]): Consider the system (2) and

its solution (x,u) with wij(x) ≥ ψ(maxij |xi − xj |) and

ψ an appropriate non-negative integrable function. Then,

convergence to a common equilibrium velocity occurs ex-

ponentially fast if the initial data satisfy

max
i,j
|u0

i − u0
j | <

∫ ∞

maxi,j |x0
i−x0

j |
ψ(s) ds.

A. Related Work

In a series of papers the authors have adapted concepts

from the theory of non-negative matrices in order to develop

a unified study of consensus dynamics in many versions [18],

[16], [17], [19], [20]. The main advantage of this approach is
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that it uses fairly mild assumptions to provide strong stability

results with explicit estimates on the rate of convergence.

The characteristic notion used in these works is an es-

timator of the averaging effect of non-negative stochastic

matrices, known as the contraction coefficient [6], [14] and

will be briefly discussed in the next section. The contraction

coefficient is the fundamental proofing tool for the classic

convergence theorems on the products of non-negative ma-

trices and non-homogeneous Markov Chains. Additionally,

it provides the underlying framework for investigating the

stability of general linear consensus networks [7], [13], [17].

While in most related works, the rate of convergence is

strongly associated with the performance of the network

[15]; flocking networks of Cucker-Smale type require rate

estimates as an prerequisite step to prove asymptotic stability.

In [20] the authors used the contraction coefficient for the

study of first order, non-linear networks that lie beyond the

form of (1). In the present work, we discuss the extension

of the contraction coefficient to two types of second-order

consensus-based systems.

B. Contribution

We introduce and discuss two seemingly different exam-

ples of networks and we reveal how they can be studied

under a fairly similar methodology. The first example is an

extension of the classic Cucker-Smale type of networks for

bird flocking to a differential equation form of the kind

of [20] where the co-ordination process involves only the

velocity variable. In this scenario, the agents are assumed

to have an inherent common dynamic rule that governs

the update of their velocity in addition to the collective

coupling. The results state sufficient conditions on the initial

configuration of the position and the velocity in order for the

flock to achieve asymptotic alignment around a limit set that

need not be a mere equilibrium, but it will be a solution of

the internal dynamic system on a synchronized mode.

The second example is a collision avoidance dynamic

network. In this scenario, the agents attempt to achieve

collective consensus around their velocity with the additional

restriction that the agents must be kept away from each

other at a minimum prescribed distance. The result is again

a condition on the initial configuration and the system’s

parameters that guarantees convergence around a common

speed while the flock remains connected at all times.

The stability properties of both of these networks are

rigorously analyzed with appropriate modification of the

mathematics used for examining the averaging properties of

the contraction coefficient. This enables us to consider milder

connectivity assumptions that extend and generalize existing

results [2].

C. Organization of the paper

The rest of the paper is organized as follows. In §II we

introduce the notation to be adopted in this work as well as a

few underlying results that will come of use. In §III we state

the two problems, we make some introductory remarks on

the derivation of the particular forms, we state the escorting

assumptions on the various parameters involved and conclude

with the presentation of the main stability results. The proof

of one of the main results is carried out in §IV. Due to space

limitations the proof of the second result of this work is put in

the extended version of the work [21]. Simulation examples

are presented in §V. Discussion and concluding remarks for

future work are provided in §VI.

II. PRELIMINARIES

A. Basic Notation

Let N < ∞ denote the number of autonomous agents

and [N ] as defined above. The communication scheme is

represented by a weighted graph G = ([N ], E) where [N ]
is the set of agents, E = {aij : i, j ∈ [N ]} is the set of

edges. We denote the weighted degree of node i, as di =∑
j aij . The dynamics evolve in R

m for some m ≥ 1 that is

endowed with the inner product 〈·, ·〉 and the corresponding

euclidean norm || · ||. For all z ∈ R
m we also define |z| =

maxi=1,...,m |zi|. Each agent i ∈ [N ] is characterized by the

state (xi, ui) ∈ R
m × R

m. Clearly xi = (x
(1)
i , . . . , x

(m)
i )

stands for the position of i and ui = (u
(1)
i , . . . , u

(m)
i ) stands

for its velocity. In compact form we write x = (x1, . . . , xN ),
u = (u1, . . . , uN ) both elements of the augmented space

R
N×m. For l = 1 . . . ,m, the spread of y ∈ R

N×m in the

l-th dimension is

Sl(y) = max
i

y
(l)
i −min

i
y
(l)
i

and finally we denote S(y) = maxl Sl(y). We also set

xi,j = xi− xj and ui,j = ui− uj the difference in terms of

vectors, for the sake of convenience. The space of continuous

functions defined in S and taking values in V with s ≥ 0
continuous derivatives is defined as Cs(S, V ). Throughout

this paper any derivative is defined in the extended sense,

i.e. d
dt or “ · ” denotes the right-hand derivative operator.

B. The contraction coefficient.

The development of Markov Chains as well as the main

mathematical proof tool in the background of many works on

consensus networks is the coefficient of ergodicity. An idea

developed independently by various mathematicians but was

first introduced in one of Markov’s first papers [6].

Theorem 2.1: Let A = [aij ] be a non-negative matrix with

constant row sums (i.e.
∑

j aij ≡ n for some n ≥ 0). Then

S(Az) ≤ (
n−min

i,i′

∑
k

{aik, ai′k}
)
S(z).

The proof of Theorem 2.1 can be found in

[6]. The contraction coefficient is the quantity(
n−mini,i′

∑
k{aik, ai′k}

)
. Although the classic theory of

non-negative matrices clearly regard non-negative aij , the

background proofs like this on the contraction coefficient

can be used to handle examples of negative values of aij .

III. THE MODELS & THE MAIN RESULTS

In this section we present the dynamic algorithms, the ac-

companying assumptions and we will conclude by declaring

the main results of the paper.
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A. Flocking to Synchronization

The following algorithm assumes the scenario that agents

have an individual way of flying determined by an internal

dynamical behavior.

i ∈ [N ] :

⎧⎪⎨
⎪⎩
ẋi = ui

u̇i = g(t, ui) +
∑

j aij(t,x)(uj − ui), t ≥ t0

ui(t) = u0
i , xi(t) = x0

i t = t0
(3)

The new feature we added is obvious. Here an agent’s state

is not only affected by the state of its neighboring nodes and

the power of connection between each other but also due

to an inherent dynamical process, that although identical to

each individual is nevertheless independent of the coupling

process. Hence in the alignment problem is not clear if the

condition of Theorem 1.1 suffices to ensure convergence. In

fact it is our goal to reveal the interplay between the coupling

forces of the consensus network, the initial configuration and

the potential instability induced by the internal dynamics

through a new stability condition.

The assumption of the internal dynamics is stated below.

Assumption 3.1: For the function g = (g1, . . . , gm) in (3)

the following conditions hold:

1) g ∈ C1([t,∞) × R
m,Rm), in addition both g and

g′ are functions that are uniformly bounded in both

arguments,

2)
∂gk(u)
∂u(p) = 0 for p �= k.

The second condition stated above implies that g is, in fact,

decomposed among the m-dimensions. This is admittedly

a hard assumption on g the necessity of which will be

explained in the §VI. In the meantime we are allowed to

consider, the following form on g:

g(t, u) =
(
g1(t, u

(1)), . . . , gm(t, u(m))
)
. (4)

Next, we will state the assumption on the connectivity

weights aij :

Assumption 3.2: The coupling weights aij belong to

C0([t0,∞)× R
N×m, [0,∞)) and satisfy

sup
t≥t0

aij(t,x) ≥ ψ(S(x))

for ψ ∈ C0
(
[t0,∞), [0,∞)

)
that is non-negative and non-

increasing.

Assumption 3.2 allows couplings aij to vanish, as ψ(·) is

not necessarily bounded from below. Following the spirit

of (2) the further apart two agents are, the weaker their

communication should be so that it may become arbitrarily

small.

For the statement of the first result we are in need of some

additional notation. Set

g̃ = sup
t≥t0

max
l

max
ya,yb∈Ul

∫ 1

0

g′l(t, qya + (1− q)yb) dq

where Ul = [mini u
(l)
i (t0),maxi u

(l)
i (t0)] and g′l =

∂gl(t,z)
∂z

that in view of Assumption 3.1 is bounded.

Theorem 3.3: Consider the initial value problem (3) with

Assumptions 3.1 and 3.2 to hold and its maximal solution

(x(t),u(t)), t ∈ [t0, T ). If there exists r∗ > 0 such that

S(u0) <

∫ r∗

S(x0)

(Nψ(r)− g̃) dr and Nψ(r∗) > g̃, (5)

then T =∞ whereas the solution satisfies

S(u(t))→ 0 as t→∞ and sup
t≥t0

S(x(t)) <∞.

B. Collision Avoidance

The second dynamic model we will study rolls back to

the classic consensus problem and convergence to a common

constant value but this should occur with agents staying at a

minimum distance. The system we propose is

i ∈ [N ] :

{
ẋi = ui

u̇i =
∑

j(aij + bij)(uj − ui)
(6)

where

bij = −fij(||xi,j ||2)〈xi,j , ui,j〉/S(u)
models a well-defined, yet not-necessarily coupling, term.

The functions fij are repelling forces that can be appro-

priately constructed so as to keep the agents at a relative

distance.

Assumption 3.4: For any i �= j, fij is any function f ∈
C0

(
(d0,∞), [0,∞)

)
satisfying for all d1 > d0∫ d1

d0

f(r) dr =∞ and

∫ d0

d1

f(r) ds <∞.

A simple example of repelling function (also to be used in

§V) is given for any ε > 1 by f(r) = (r− d0)
−ε. For more

examples we refer to [2]. Given the state-dependent type of

couplings, what is the sufficient condition for flocking? One

should expect a formula that connects the coupling strength

with the repelling functions fij .

Theorem 3.5: Consider the initial value problem (6) with

Assumptions 3.2 and 3.4 to hold and its maximal solution

(x(t),u(t)), t ∈ [t0, T ). If for all i �= j we have ||x0
i−x0

j || >
d0 and

S(u0)

N
<

∫ ∞

S(x0)

ψ(r) dr+
1

2
max
i �=j

∫ ∞

||xi,j(t0)||2
fij(s) ds (7)

then:

1) T =∞,

2) ||xi(t)− xj(t)|| > d0 for all t ≥ t0 and

3) the solution satisfies

S(u(t))→ 0 as t→∞ and sup
t≥t0

S(x(t)) <∞.

IV. PROOF OF THEOREM 3.3

This section is devoted to the proofs of Theorem 3.3. Due

to space limitation the proof of Theorem 3.5 is omitted. The

reader is referred to [21]. Let (x,u) be the maximal solution

of (3). This is defined in an interval of type [t0, T ) for some
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t0 < T ≤ ∞. Next we re-write the vector equation in (3) as

follows

u̇i = −nui + (n− di)ui +
∑
j

aijuj + g(t, ui)⇔

e−nt d

dt
(entui) = (n− di)ui +

∑
j

aijuj + g(t, ui)

where the differentiation is assumed to hold for t ∈ [t0, T ).
Pick i, i′ ∈ [N ] and l = {1, . . . ,m}. From the above

equation we take the difference:

e−nt d

dt

(
ent(u

(l)
i − u

(l)
i′ )

)
=

∑
j

ã
(l)
ij (t)u

(l)
j −

∑
j

ã
(l)
i′j(t)u

(l)
j

where

ã
(l)
ij (t) :=

⎧
⎪⎨

⎪⎩

n− di(t) +
∫ 1

0
g′l(t, qu

(l)
i (t) + (1− q)u

(l)

i′ (t)) dq,

j = i

aij(x(t)), j �= i,

or equivalently

e−nt d

dt

(
ent(u

(l)
i − u

(l)
i′ )

)
=

∑
j

w
(l)
j (t)u

(l)
j

for w
(l)
j (t) = ã

(l)
ij (t)−ã

(l)
i′j(t). The index for which w

(l)
j (t) >

0 is denoted by j+ and the index for which w
(l)
j (t) ≤ 0 is

denoted by j−. It is of crucial important to note that ã
(l)
ij (t)

as they were defined imply
∑

j w
(l)
j (t) ≡ 0. Set

θ(t) =
∑
j+

w
(l)
j+(t) =

∑
j+

|w(l)
j+(t)| = −

∑
j−

w
(l)
j−(t)

=
∑
j−
|w(l)

j−(t)| =
1

2

∑
j

|w(l)
j (t)|

=
1

2

∑
j

|ã(l)ij (t)− ã
(l)
i′j(t)|

Then for t ∈ [t0, T )

e−nt d

dt

(
ent(ui − ui′)

)
=

= θ(t)

(∑
j+ |w(l)

j+(t)|uj+

θ(t)
−

∑
j− |w(l)

j−(t)|uj−

θ(t)

)
≤ θ(t)S(u)

But from the identity |x − y| = x + y − 2min{x, y} we

deduce

θ = n+

∫ 1

0

g′l(t, qui + (1− q)ui′) dq −
∑
k

min{ãik, ãi′k}.

Now the choice of n we made in the beginning of the proof

implies that the summation of the minima over k cannot

include ã
(l)
ii (t) or ã

(l)
ii′ (t), hence we are left with the off-

diagonal elements and the following upper bound on θ(t):

θ(t) ≤ n−Nψ(S(x)) + max
ui,ui′

∫ 1

0

g′l(t, qui + (1− q)ui′) dq.

Finally, for i, i′ and l that maximize u
(l)
i − u

(l)
i′ , we have It

can be shown that

d

dt
S(u) ≤ −Nψ

(
S(x)

)
S(u) + ḡS(u). (8)

In order to prove exponential convergence to zero (hence

synchronized flocking) we need to show at first that T =∞
(so that n can be chosen independent of T ) as well as that

Nψ
(
sup
t≥t0

S(x(t))
)
> ḡ

where we note that f̄ is a function of the initial configuration

of the velocities. We will explain now how (7) guarantees

all the above. Consider the functional

V(x,u) = S(u) +

∫ S(x)

0

(
Nψ(r)− ḡ

)
dr (9)

and evaluate it at the solution
(
x(t),u(t)

)
, t ∈ [t0, T ) with

V(t) = V(x(t),u(t)). From (7) there exists t1 > t0 such

that for t ∈ [t0, t1)

d

dt
V(t) ≤ 0 ⇒ V(t) ≤ V(t0)⇒

S(u(t)) +

∫ S(x(t))

0

(Nψ(r)− ḡ) dr ≤

≤ S(u0) +

∫ S(x0)

0

(
Nψ(r)− ḡ

)
dr

and obviously

∫ S(x(t))

0

(Nψ(r)− ḡ) dr ≤ S(u0)+

∫ S(x0)

0

(
Nψ(r)− ḡ

)
dr

Once more the initial configuration (7) implies the existence

of s∗ < r∗ such that

S(u0) =

∫ s∗

S(x0)

(
Nψ(r)− ḡ

)
dr and Nψ(s∗) > ḡ

in view of the monotonicity of ψ in Assumption 3.2. Then

∫ S(x(t))

0

(Nψ(r)− ḡ) dr ≤
∫ s∗

0

(Nψ(r)− ḡ) dr

so ∫ s∗

S(x(t))

(Nψ(r)− ḡ) dr > 0

The last condition implies that S(x(t)) ≤ s∗ for t < t1.

Since no assumption was taken on t1, the monotonicity

of ψ yields that t1 = ∞, i.e. T = ∞. The differential

inequality (8) is then strictly negative, and u is trapped in

the initial configuration area. The number n is then a number

independent of the T it remains well-defined and constant for

all t ≥ t0 concluding the proof.
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Fig. 1. Simulations with strong coupling ε = 1 and the condition
of Theorem 3.3 applies for any initialization of the initial states. The
synchronization of agents’ velocities occurs in the two dimensions, around
the nominal orbits that are solutions of v̇1 = g1(t, v1) and v̇2 = g2(t, v2).

V. SIMULATION EXAMPLES

In this section we will briefly present two simple exam-

ples. Due to space limitation we will apply Theorems 3.3

and 3.5 in an elementary but illustrative way. Exhaustive

numerical investigations on the initial conditions formulas

of the theorems are postponed for the extended version of

this work. Both examples are among a network of N = 5
agents with dynamics evolving on the plane (m = 2). The

coupling functions are assumed

aij(t,x) = (1 + 0.9 sin(t))
ψ(||xi − xj ||)∑
j ψ(||xi − xj ||

and ψ(r) = 1
1+rε for ε ≥ 0. The initial time is taken t0 =

0. All simulations were carried with the ode23 routine in

MATLAB.

A. Example 1. Synchronization

We assume the following internal dynamics

g(t, z1, z2) = (sin(t) cos(z1), cos(t/3) sin(z2)).

Standard ODE arguments yield that the forward limit set

of the synchronized state is non-empty and compact. We

illustrate the case ε = 1 which implies that the coupling

strength is strong enough for arbitrary initial data and the

case ε = 1.5 of a weak coupling strength. Then appropriate

initial data violate the condition of Theorem 3.3. In Figs.

1 and 2 we provide simulations where the condition of the

Theorem is satisfied and the condition of the Theorem is

violated, respectively.
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Fig. 2. Simulations with weak coupling ε = 1.5 and the condition of
Theorem 3.3 does not apply for large velocity initialization. The spread
S(u0) is too large and the first condition is violated. There is an apparent
failure of velocity synchronization and a subsequent divergence of the
relative distance that results in the dissolution of the flock.

B. Example 2. Collision Avoidance

The repelling functions are taken

fij(r) =
Kij

(r − r0)ϕ

for numbers Kij arbitrarily chosen from (1, 2) and ϕ = 1.5
and r0 = 0.25. We set ε = 1 so that the condition of Theorem

3.5 is clearly satisfied. See Fig. 3 for the simulation results.

VI. DISCUSSION

In the present paper we addressed two variations of the

standard non-linear flocking algorithm of Cucker-Smale type

with asymmetric system parameters. We exploited a standard

tool from non-negative matrix theory known as the contrac-

tion coefficient. A proper modification of these concepts

enable us to study two seemingly different extension of

flocking networks. The reader should observe the striking

similarity in the analysis of the synchronization and the

collision avoidance flocking algorithms. Both systems in-

clude the consensus-based stabilizing term and a potentially

destabilizing term.

In the first example instability occurs from the existence

of multiple forward limit sets of the internal dynamics

and the large enough deviation in the initial conditions. In

such a case we seek a formula on the initial settings that

explains how strong a coupling must be in order to prevail

on the induced instability and drive the network to flocking

condition. Indeed observe that if ż = g(t, z) is a dynamical

system with a globally attracting limit set then g′ should be
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Fig. 3. Simulation Example 2. Flocking with collision avoidance. We
observe the velocity alignment in each dimension as well as the monitoring
of the maximum and the minimum relative distance over the agents with
the corresponding bounds.

negative evaluated at each point of the state space. Then ḡ is

negative and it also contributes to the stability of the network.

This is easily deduced from the condition of Theorem 3.3

which in such case yields a larger right hand side.

In the second example, the network can be destabilized by

a collision avoidance term. Agents that approach too close

to each other cause instability that can affect the rest of the

network as Figure 3 clearly shows. This instability demands a

strong coupling to hold the flock together. This is illustrated

in Theorem 3.5 and it is a condition strikingly similar to

a similar network introduced in [2]. However our model is

free of any symmetry assumptions on the coupling and the

repelling terms that the authors there were obliged to assume

following algebraic graph theory techniques.

The main drawback of this work is the strong Assumption

3.1 on the decomposition of g. Following the steps of the

proof of Theorem 3.3 one can see that if condition (2) of

Assumption 3.1 is violated then our analysis seizes to hold.

This issue is also mentioned in [20]. It is still not clear how

one should proceed in adapting the concept of the coefficient

of ergodicity to handle systems with more general nominal

dynamics in many dimensions. We consider this also as a

very interesting open problem for future research.
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