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Abstract— We consider a typical crowdsourcing task that
aggregates input from multiple workers as a problem in infor-
mation fusion. To cope with the issue of noisy and sometimes
malicious input from users, trust is used to model workers
expertise. We propose a probabilistic model to jointly infer
multi-dimensional trust of workers, multi-domain properties of
questions, and true labels of questions. Our model is flexible and
extensible to incorporate metadata associated with questions.
To show that, we further propose two extended models, one
of which handles input tasks with real-valued features and
the other handles tasks with text features by incorporating
topic models. In order to decrease entropies and reduce error
rates more quickly with fewer annotations from workers, we
further propose strategies for selecting which questions to ask
and which workers to assign the questions to based on multi-
dimension characteristics of questions and workers trust values
in those dimensions. We evaluate our models and algorithms
on real-world data sets. These results can be applied for fusion
of information from multiple data sources like sensors, human
input, machine learning results, or a hybrid of them.

I. INTRODUCTION

In a crowdsourcing task, in order to estimate the true labels
of questions, each question is distributed to the open crowd
and is answered by a subset of users (or workers). The an-
swers from workers are then aggregated, taking into account
the reliability (or knowledge) of workers, to produce final
estimates of true labels. Example questions are: image label
inference with multiple annotators’ input, topic-document
pair relevance inference with crowd’s judgements, Bayesian
network structure learning given experts’ partial knowledge,
and test grading without knowing the answers. As we noted
in our earlier work [1], most past research ignores the
multiple domains involved in questions. For example in
test grading without golden truth, bio-chemistry questions
require knowledge in both biology and chemistry. Some are
more related to biology while others are more related to
chemistry. Similarly, workers also exhibit such multi-domain
characteristics: people have different levels of knowledge in
different subjects. These observations motivate our modeling
of multi-domain characteristics for both questions and trust in
workers’ knowledge and the design of principled methods for
aggregating knowledge input from various unreliable sources
with different expertise in each domain.

In our work initiated with [1], we proposed to model
each question by a concept vector, which is a real random
vector where the value in a particular dimension indicates its
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relationship of the question with the knowledge or domain
corresponding to this dimension. Back to the test grading
example, each bio-chemistry question is represented by a
two-dimensional hidden concept vector with the first dimen-
sion corresponding to chemistry and the second dimension
corresponding to biology. So a concept vector [0.7,0.3]
means the question is more related to chemistry. Each
worker is also associated with a trust vector [1], which is
a real random vector with each dimension representing the
trustworthiness of the worker’s knowledge in the domain
associated with this dimension. The goal our work in [1] and
continuing in this paper is to better estimate the true labels
of question Q by fusing answers from multiple unreliable
workers with varying trust values in each of the domains.
Note that the concept vectors of questions and the trust
vectors of workers are both hidden. In [1] we proposed
a probabilistic model that incorporates questions’ concept
vectors, workers’ trust vectors, answers submitted by workers
and designed an inference algorithm that jointly estimates
true label of questions along with concept vectors and
trust vectors. The inference algorithm of [1] is based on
a variational approximation of posterior distributions using
a factorial distribution family. In addition, we extended [1]
the model by incorporating continuously-valued features.
In applications where each question is associated with a
short text description, each dimension of the concept vector
corresponds to a topic. Therefore we further proposed [1]
an extended model that integrates topic discovery. In our
work we assume that we send the questions to all workers,
wait and gather answers from the workers, and update the
posterior probability distributions after gathering all the input
from workers.

The models used in this paper were first presented in
[1] and we extend the work of [1] here first by providing
some detailed algorithmic flows and proofs. In addition,
we observe that annotations from workers are expensive in
nature [2]. To help the crowdsourcing system learn more
from fewer answers from workers, we propose in the present
paper active learning strategies for selecting question-worker
pairs that help reduce entropy and error rates. And this is the
major difference and improvement on our work of [1]. We
propose strategies for proactively selecting which questions
to ask and which workers to solicit answers from, based
on the multi-dimensional trust values of workers and multi-
dimensional characteristics of questions.

II. RELATED WORK

There are a lot of works on how to leverage trust models to
better aggregate information from multiple sources. Conflicts
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between information provided by different sources were used
to revise trust in the information [3]. Trust was also used as
weights of edges in the sensor network and was integrated
into distributed Kalman filtering to more accurately estimate
the state of a linear dynamical system in a distributed setting
[4]. Local evidence was leveraged to establish local trust
bewteen agents in a network and those local trusts were then
used to isolate untrustworthy agents during sensor fusion [5].

In the context of crowdsourcing tasks to the open crowd,
many works develop models for aggregating unreliable input
from multiple sources to more accurately estimate true labels
of questions. The authors in [6] combined multiple weak
workers’ input for constructing a Bayesian network structure
assuming each worker is equally trustworthy. Workers’ trust
was considered to improve accuracy in aggregating answers
in [7]-[10].

A model that jointly infers label of image, trust of each
labeler and difficulty of image is proposed in [11]. However,
they model questions and workers using scalar variables and
they use the Expectation-Maximization inference algorithm,
which has long been known to suffer from the existence of
many local optima. Another work that went a step further
based on signal detection theory is [12], where they assume
that each question comes with a feature set and models each
worker by a multidimensional classifier in an abstract feature
space. Our model [1] can handle more general cases without
such an assumption and when text information is available
for each question, each dimension of a question becomes
interpretable. Moreover, it is difficult to find analytical solu-
tions for the posterior distributions of hidden variables in
[12]. An approach in the spirit of test theory and item-
response theory (IRT) was proposed in [13] and they relied
on approximate message-passing for inference. Their model
is not as flexible and extensivle as our model [1] because they
have to redesign their model to incorporate rich metadata
associated with each question.

In cases where labels from workers are costly, either
in terms of money or time, active learning plays a role
to lower the cost. Examples of the criteria used in active
learning are uncertainty sampling [14], minimization of the
expected error estimate [15], and reduction of the size of the
version space [16]. All these works assume there is a single
labeler giving out annotations for questions. A more recent
work [17] explores active learning methods in the case of
multiple unreliable annotators where they proposed methods
for choosing the question and the worker that provides the
most useful information. They model workers’ trust as a
function of the questions’ features. However, features might
not be available all the time and the coefficients used in
the function are not easily interpretable. Differently, in our
work, our model works with and without question features
and the trust of workers can be directly associated with the
topics of questions. Furthermore in the present paper, we
provide methods for actively selecting both questions to ask
and workers to answer these selected questions by taking
advantage of the multi-dimension characteristics of worker
trust and questions domains.

III. PROBLEM DEFINITIONS

We start with the model of [1]. Assume there are M
workers available and N questions whose true labels need
to be estimated. We use R; to denote the true label variable
of question ¢, where R; € {0, 1}. Each question is answered
by a subset of workers M; and we denote the answer of
question ¢ given by worker j by l;; € {0,1}. The set of
questions answered by worker j is denoted by Nj.

The multi-domain characteristics of question ¢ are repre-
sented by a concept vector \;, a D-dimensional real-valued
random vector, where D is the total number of domains.
To simulate a probability distribution, we further require
Xii € [0,1],1 = 1,....D and 12, Ay = 1, where \;
denotes the /th dimension of the concept vector. We impose
a Dirichlet prior distribution for concept vector \; with

hyperparameter o = {al}lD:I, where «; denotes the soft
counts that specify which domain a question falls into a
priori.

Workers contribute to the estimation of the true label of
questions by providing their own guesses. However, workers’
inputs may not be reliable and sometimes even malicious.
In multi-domain crowdsourcing tasks, different workers may
be good at different domains. The multi-dimensional char-
acteristics of a worker is described by a D-dimensional trust
vector 5; = {fj1,...,Bj1,...,B;p}, where 3, denotes j-
th worker’s trust value in domain ! and it takes either a
continuous or a discrete value. In the discrete case, the
inference is generally NP-hard and message-passing style
algorithms are used. We consider the continuous case only
where 3; € [0,1]7,Vj. Higher value of 3; indicates that
worker j is more trustworthy in domain [. The true value
of Bj; is usually unknown to the crowdsourcing platform. It
has to be estimated from answers provided by workers. We
assume a Beta prior distribution for (3;; with hyper-parameter
0 = {00,061}, where 6y > 0 is the soft count for worker j to
behave maliciously and 6; > 0 is the soft count for worker
7 to behave reliably. This interpretation resembles the Beta
reputation system [18] that models beliefs of workers.

We aim to estimate the true labels of questions and trust
vectors of workers from answers provided by workers.

IV. MULTI-DOMAIN CROWDSOURCING MODEL

We describe the generating process for the Multi-Domain
Crowdsourcing (MDC) Model in this section following [1].
1) For each question i € {1,..., N},
a) draw the domain distribution ;| ~ Dir(«);
b) draw domain C;|\; ~ Discrete(););
2) For each question ¢, draw the true label R; ~
Uniform(0, 1);
3) For each worker j € {1,...,M} and domain [ €
{1,..., D}, draw the trust value j;; ~ Beta(f);
4) For each question-worker pair (¢,j), draw observed
answer ll‘j ~ F (Ri, ij Cl>
In step 1, the domain for question ¢ is then drawn according
to a discrete distribution with parameter \;, i.e. generating
C; = [ with probability \;;. In step 3, we profile each worker
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Fig. 1. The graphical model for observed data provided by workers L,
multi-domain expertise 3, true labels R, domain variables C, and concept
vectors A. M is the total number of workers. N the number of questions.
« is the hyperparameter of the Dirichlet prior distribution for A and 6 is
the hyperparameter of the Beta prior distribution for 3.

by a vector §; with 3;; drawn from a Beta distribution.
In step 4, the observed answer of question ¢ provided by
worker j is drawn according to an output distribution F, a
Bernoulli distribution. We will specify the form of this output
distribution in the following paragraph.

The generating process is illustrated in Fig. 1 from [1].
The joint probability distribution is

N

p(L,R,B,C.\) =[] p(ri) p (Nila) p (Ci|\i) -
=1
M

p(8) [T pWslri, G = 1,8))
1

=1

(D

j=
where N is the total number of questions, M is the
total workers, and D is the total number of domains.
p (Lij|rs, C; =1, B;) is the output distribution F in Fig. 1
and is the likelihood of worker j's answer given its expertise
vector and the domain variable of question ¢, and the true
label. p(r;), and p(B;) are prior distributions. F can be
compactly expressed as:

p il G =1, B5) = B3~ (L= g7 @)

where 1{l;; = r;} is an indicator function taking the value
of 1 if the observed label given by worker j to question @
is equal to the ground truth. We assume a non-informative
prior for true label p(r; = 1) = p(r; = 0) = 3.

A. Inference And Parameter Estimation

In order to estimate the questions’ true labels r;,¢ =
1,..., N and workers’ trust vectors 3;,j = 1,..., M, their
posterior distributions need to be computed. However, the
computation of posterior distributions involves integrating
out a large number of variables, making the computation
intractable. We propose to use a variational approximation
of the posterior distribution of variables in equation (1) with
a factorized distribution family:

a(R.8,00) = [Tatr) [Tanla) TLatc) [Ta (8:l6)

3l
3)
The optimal forms of these factors are obtained by maxi-
mizing the following lower bound of the log likelihood of

observed labels In p(L):
lnp(L) ZEIHP(L7R,B,C,>\)—EIHQ(R,ﬁ,C, >‘) 4
q q

We show inference details in Algorithm 1. Upon conver-
gence of Algorithm 1, we obtain the approximate posterior
distributions of the questions’ true labels {r;}’s and of the
workers’ trust vectors {/3;}’s.

Algorithm 1: Multi-Domain Crowdsourcing

Input: initial values of hyperparameters «, 6

Output: approximate posterior ¢ (R, 3,C, \)

Do the following updates repeatedly until convergence.
1) First update ¢(8;),Vj =1,...,M,l=1,...,D,
sequentially, in the following way:

Bji ~ Beta (éjlo, éjll) &)

\ivhere éle = 9j10 + ZieNj q(Ci = l)q(Ri =+ lij) and
0511 = 0511 + D e n, 9(Ci = Da(R; = 1iy).
2) Then update ¢(r;),Vi =1,..., N, sequentially, in

the following way:
Ing(r;) o< Inp(r;)+

> XD: q(C; =1) {51‘]‘ (w(éjzl) — (0 + éjlo)) +

JEM; I=1
(1—4di;) (1/1(51'10) —(0n + éjzo)) }
where ¢ (-) is digamma function. Then normalize

q(ri),m; € {0,1} to make them valid probabilities.
3) Then update g(\;):

(6)

q(Ai) ~ Dir ({@u} ;)
where Dir(+) is Dirichlet distribution and
ai = oy +q(C; =1).
4) Then update ¢(C; = 1):

(M

+) [q(ri = lij) (w(éﬂl) — %0 + éjl0)>

+q(ri # lij) (d)(éjl()) — (O + éjlo)) }
(8)

B. Integration with Features

Algorithm 1 ignores features of questions. In most cases
we do have features associated with questions. These features
help us better estimate both the questions’ true labels and
the workers’ trust vectors. Our proposed model MDC can
be easily extended to incorporate question features. The
extended graphical model is shown in Fig. 2 from [1], where
x denotes the features observed. We call this extended model
MDFC. Intuitively, the features associated with questions
allow us to better estimate the questions’ concept vectors and
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the workers’ trust vectors so that true labels of questions can Algorithm 2: Multi-Domain Crowdsourcing With Fea-

be more accurately inferred. tures

Input: initial values of hyperparameters «, 6

Output: approximate posterior ¢ (R, 3,C, \)

E-step and M-step are repeated until convergence

E-step: Given current estimation of model parameters
w’s, Xp’s, w, and 4: Do the following updates
repeatedly until convergence.

1) First update ¢(8;),¥j =1,...,M,l=1,...,D,
sequentially, in the following way:

Bji ~ Beta (éjl(); éjll) (11)

' . ' where ejl() = 9j10 + ZieNi Q(Ci = l)Q(Ri 7é lij) and
Fig. 2. The graphical model for observed data provided by workers L, ~ ’
features z, multi-domain expertise (3, true labels R, domain variables C, and 9jll - eﬂl + ZieNj q(Oi = Z)Q(Ri = lij)'
parameter for domain distribution A. p, 3, w, and § are model parameters. 2) Then update ¢(r;),¥i =1,..., N, sequentially, in
the following way:

@

Let’s assume question ¢’s feature vector z; is a K-

dimensional real-valued vector. The likelihood of feature Ing(r;) oc Inp(r;) —log (1 + exp (—w’z — §))+
x;, given domain variable C;, is modeled by a multivariate D
Gaussian distribution with y;” as the K-dimensional mean Z Z‘I(Ci =1) [5”. (1/1(53'11) — (01 + éjlo)) +
vector of the [-th domain and X; as the K x K covariance JEM; I=1
At 1 . 1 (1—14d3) (1#(9]‘10) — (O + 9le)) }
Inp(z;|C; =1) —3 (i — ) S (v — ) — 3 In|%, (12)
9) where t(-) is digamma function. Then normalize
where |3;| denotes the determinant of the covariance matrix q(ri),ri € {0,1} to make them valid probabilities.
of the I-th domain. The conditional distribution of the true 3) Then update g(\;):
label variable R;, given feature variable x;, can take various . ~ 1D
forms. We use the logistic regression model: 9(As) ~ Dir ({all} ! 1) (13)
1 where Dir(+) is Dirichlet distribution and
p(ri = 1la;) = (1 + exp( w'x; — 5)) (10) it = ou + q(Ci = 1).
where w is the regression coefficient and ¢ is the intercept 4) Then update ¢(C; = 1):
for the regression model. D
The inference and parameter estimation of MDFC differs Ing(C; =1) o () (Z )
from Algorithm 1 in three ways: first, the update of ¢(C;) =1
includes an extra term In p(x;|C; = 1); second, the update of _ ( N 4 i )
q(r;) includes an additional term p(r;|x;); third, there is an * Z]\; a(ri = 1) ($(0j01) = w031 + Oy10)
additional M-step to estimate model parameters i;’s, 3;’s, JeMs 5 B 5
w, and § given current approximate posteriors. The details +q(ri # lij) (7/}( ji0) — (0 + 9le)”
of variational inference and model parameter estimation of 1 Te1 1
MDEC is similar to that of MDTC. ) (@i — )" X7 (2 — ) — 5 In |3 (2; — /”)4
(14)
C. Integration with Topics Models M-step: Given current approximate posterior
In many crowdsourcing applications, we can often get distributions, obtain the estimates of y;’s, ¥;’s, w, and
access to questions’ text descriptions. Given the text descrip- 0 by maximizing the expectation of the logarithm of
tion, we can use the latent Dirichlet allocation to extract topic the posterior:
distribution of a question [19]. The advantage of topic models N
over the Gaussian mixture model in Section IV-B is that the urer = Zi:l q9(Ci = D
domains (topics) are of low dimensions and are easier to Zfil q(C; =1)
interpr.et. For example, u§ing topic mode.ls, a question might w3 q(C =1 (z — o) (m — ‘u;zew)T
be assigned to the domain of sports while another question by =
assgined to music domain. For a crowdsourcing platform, Zi:l q(Ci=1)
it needs to profile a worker’s trust in all these interpretable w6 =
topics instead of some latent unexplainable domain. We call argmax]Eln p (LR, B, CAN{p "} 2y {SP H2 y w, 6)
this extended model with topic discovery MDTC and we will w0
exploit the topic discovery of questions in the experiments using L-BFGS quasi-Newton method
section. 1s)
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Fig. 3. The graphical model for MDTC. L are observed answers from
workers, w;j is word k observed in question ¢, multi-domain expertise
[, true labels R, domain variables C, parameter for domain distribution
A, topic distribution for word k in question ¢ : z;;, word distribution for
domain [ : ¢;.

Each topic corresponds to one domain of a question. The
learned topic distribution can then be used as a damping prior
for domain variable C. We show that our MDC is flexible
to incorporate topics models and it is an easy extension to
jointly infer topic distribution and the true labels of quesitons
and the workers’ trust vectors in equation (1).

In addition to obtaining posterior probability distributions
for R, 3, C, A\, we can also obtain the posterior distribution
for the topic distribution for the k-th word in the i-th
question z;x, and the word distribution for [-th topic ¢;
simultaneously. Denote n;,, as the number of occurances of
word w in question ¢ and 7);,,; as the probability that the word
w in question ¢ is associated with domain /. The variational
inference process differs from Algorithm 1 in the following
ways:

1) The M}s have a Dirichlet posterior distribution with

parameter oy + ¢(C; = 1) + >, NiwNiwi Where
Zw NiwNiwl 1 the additional term introduced by topic

discovery.
2) The update of ¢(z;,, = 1) = 1)y follows:
In Niwl X Elnp(ziw = l‘)\v) + Eln ¢lw (16)
q q

where ¢, = p (Wi = w|P, zix =1) .
3) The ¢is have a Diricilet posterior distribution with
parameter Y; as follows:

Y =T+ Niwliut (17)

where Y is the hyper-parameter of the Dirichlet prior distri-
bution.

V. ACTIVE LEARNING

Given that MDC and MDTC can estimates workers’ trust
values in different dimensions, we explore the effect of
optimally selecting both which question to ask and which
worker(s) to assign the question to. The intuition is that
instead of choosing random questions and assigning them
to random workers, we seek to choose the most informa-
tive questions and solicit answers of those questions from
workers that are most trustworthy in the same domains as
the questions. In this section, we propose information gain
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Algorithm 3: Multi-Domain Crowdsourcing With Topic
Model

Input: initial values of hyperparameters «, 6

Output: approximate posterior ¢ (R, 3,C, \)

Do the following updates repeatedly until convergence.
1) First update ¢(3;),Vj=1,...,M,l=1,...,D,
sequentially, in the following way:

Bji ~ Beta (éjl(); éjll) (18)
where 9]10 = 6‘le + ZZGN q(C; = D)q(R; # lij) and
9]l1 - ogll + Zzgj\/j q(C l) (R - ll])

2) Then update ¢(r;),Vi=1,...,
the following way:

N, sequentially, in

Ing(r;) o< Inp(r;)+

D
Z ZQ(Ci =1) {5@' (¢(9j11) — (O + 93‘10)) +
jeM; =1
(1—-@7)(#KﬁﬂO)—-¢(3ﬂ1-F9jm)>}

(19)
where t(-) is digamma function. Then normalize
q(ri),m; € {0,1} to make them valid probabilities.

3) Then update g(\;):

a(\;) ~ Dir ({a@u}2,) (20)

where Dir(+) is Dirichlet distribution and
ag =a;+q(C; =1)+ >, NiwNiwi- .
4) Then update ¢(C; = 1):

()

;= lij) (w(éjll) - ¢(9~j11 + éjzo))

Ing(C;) o ¥(ay)

+Z[

JjeM;
+q(r; # Lij) (w(éjm) —9(Ojn + éle)) }
(21)
5) Then update g(¢;):
a(n) ~ Dir ({T1,}) 22)

where Y, = T + > Miw i -
6) Then update g(z;.):

hlp (Ziw - l) =In Niwl = azl (Z azk)
Z le

(23)

For each i, w, normalize {7, }2, to make them valid
probabilities.




metrics based on which we choose questions and metrics
of probability of a worker’s correctly answering a question
based on which we choose workers. The results of this
section are major innovations and additions to our work in
[1].

A. Question Selection

There are many strategies for choosing which questions
to ask. There might be monetization values associated to
each question. In this case, questions of higher monetization
values have higher priority. We propose entropy-based metric
to measure the information gain of a question. Questions that
have higher entropy are more uncertain and are therefore
preferred over questions of lower entropy. Formally, we
select the question that satisfies the following:

argmin — Z q(ri)Ing (r;)

¢ ri€{0,1}

(24)

B. Worker Selection

Given the chosen question 7 according to equation (24), we
propose to choose a worker that has the highest probability
of answering the question correctly. Formally, we choose the
worker that satisfies:

argmaxp (r; = l;;)

= argmaXzD:p(Cz = l)p (71 = lz]|01 = l)

J l;l 25)
= argmaxz q(Ci=DEB;

J =1
= argmaxiq(@ = Z)%

ii5 011 + 0510

where ¢(C; = 1) is the approximate posterior probability of
question ¢ belonging to topic ! using variational inference
methods in Section IV and éjll,éﬂo are beta distribution
parameters of worker j’s trust in topic /. The intuition of
the metric in equation (25) is that we choose the worker
that has the largest cross product between its trust vector
and the given question’s topic distribution. The metric in
equation (25) assumes that the selected worker will even-
tually answer the question given to him. However, in real
applications, this is not the case. Workers might not be
interested in answering the question. So we could model the
probability of a worker answering a question into the metric
in selecting workers:

argmax p (j answers question %) p (r; = l;;)

J
Equation (26) is the expected utility of choosing worker j
to answer question i. Worker j’s probability of answering
question i, p (j answers question ¢), can be estimated using
various supervised learning as long as we have workers’
profile data, questions’ metadata, and workers’ history of
engagement with questions (whether a worker answered or

skipped a question).

(26)

TABLE I
WORKER SETTINGS FOR UCI DATASETS

worker type [ domain 0  domain 1
type 1 0.5 0.5
type 2 0.95 0.5
type 3 0.5 0.95
type 4 0.95 0.95

VI. EXPERIMENTS

In this section, we compare our proposed models MDC,
MDFC, and MDTC with crowdsourcing models with single
dimensional trust (SDC) and show that our models have
superior performance on both the UCI dataset and scientific
text dataset. In addition as shown in [1], our models can
effectively recover the workers’ trust vectors which can be
used to match the right workers to a given task in the future.
The models we consider for comparison are listed as below
(as in [1]):

1) MDC: our proposed multi-domain crowdsourcing model

without features.

2) MDFC: extended model of MDC with continuously-
valued features.

3) MDTC: another extended model of MDC that combines
topic model given text descriptions associated with
questions.

4) MV: the majority vote as the baseline algorithm.

5) SDC: the state-of-the-art in [10]. We call this algorithm
SDC because it is equivalent to MDC when each worker
is represented by only a scalar variable (single domain
in our case)

A. UCI datasets

We conducted experiments on the pima dataset from
UCI Machine Learning Repository! [20]. Each data instance
corresponds to a 8-dimensional feature of an anonymous
patient. The dataset consists of 768 data intances and we ask
the following question for each instance: should the patient
be tested positive for diabetes. Since there are no worker-
provided labels in this dataset, we simulate workers with
varying reliability in different domains. We adopt k-means
clustering to cluster the data into two clusters (domains).
Therefore, each worker is profiled by a two-dimensional
random vector. Details of the simulated workers are shown
in Table L.

B. Text Data

To evaluate MDTC, we tested our model on 1000 sentences
from the corpus of biomedical text with each sentence
annotated by 5 workers [21]. Each worker answers whether a
given sentence contains contradicting statements (Polarity).
Each sentence has the scientific text along with the labels
provided by 5 experts. However, since the labels provided
by experts are almost consensus and the naive majority vote

http://archive.ics.uci.edu/ml/datasets.html?
sort=nameUp&view=1list
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(a) Error rates for bootstrap (b) Error rates for bootstrap
of 1500 random worker-question of 2000 random worker-question
pairs pairs

Fig. 4.  Error rates for active learning strategy and random selection
with underlying models MDC and MDTC to estimate posterior probability
distributions. Before using active learning/random selection, we randomly
select 1500 and 2000 worker-questions pairs in Fig. 4(a) and Fig. 4(b) for
initial setup.

algorithm gives ground truth answers, we need to simulate
workers of varying trust of knowledge in different topics.
When the number of topics (domains) is D, we simulate
D workers in total, where worker j answers topic j close
to perfectly (probabililty of right guess 0.97) and answers
questions in topics other than j nearly randomly (probability
of right guess 0.64). For each simulation setting, we repeat
30 times and report the mean error rate.

C. Active Learning on Text Data

We evaluated our new algorithms MDC, MDFC, MDTC,
MYV, against SDC in [1]. Here we present the evaluations of
these same algorithms when active learning is added, with
same datasets. Thus we evaluate our proposed strategies for
selecting which questions to ask and selecting which workers
to answer those questions. We tested the new algorithms with
active learning on the same experimental setting as in [1],
where we consider eight topics and eight workers in total.
Worker j answers topic j close to perfectly (probabililty
of right guess 0.97) and answers questions in topics other
than j nearly randomly (probability of right guess 0.64).
The models and the active learning strategies we use for
comparison are:

1) MDC+ random selection: randomly select worker-
question pairs and send the randomly-selected worker-
question pair to MDC to update posterior probability
distributions.

2) MDC+ active learning: select question according to
equation (24) and select worker according to equa-
tion (25). Use MDC as the underlying model to estimate
posterior probability distributions.

3) MDTC+ random selection: randomly select worker-
question pairs and use MDTC as the underlying model.

4) MDTC+ active learning: select question according to
equation (24) and select worker according to equa-
tion (25) and use MDTC as the underlying model.

In Fig. 4, we plot the error rates of the four combina-
tions of active learning strategies and underlying models at
each learning step. Fig. 4(a) is for the case where we use
1500 randomly-selected worker-question pairs to initialize
the model and Fig. 4(b) is for initial setup using 2000
pairs. In both cases, our proposed active learning strategy

combined with the MDTC has the lowest error rates. Random
selection combined with MDTC performs slightly better than
active learning with MDC. This also further demonstrates
the superiority of our proposed MDTC opposed to MDC.
Using the MDC as the underlying, active learning consistently
performs better than random selection. The error rates start
at higher values and decrease much more in Fig. 4(a) than in
Fig. 4(b). This also demontrates the powerfulness of active
learning to help the system learn much faster when the
crowdsourcing system does not have sufficient labels from
workers.

In Fig. 5, the first row Fig. 5(a) - Fig. 5(d) shows the error
rates for different combinations of active learning strategies
and underlying models for batch sizes from 1 to 4. Increasing
learning batch size is helpful to reducing time complexity
because selecting worker-question pairs is much less time-
consuming than updating posterior probability distributions
which is an alternating iteration process. We observe that
increasing learning batch size does not increase error rates.
The second row Fig. 5(e) - Fig. 5(h) shows the sum of
true label entropy of questions. For all learning batch sizes,
the true label entropy for active learning combined with
MDTC has the lowest entropy at all learning steps. Lower
entropy values indicate that the crowdsourcing system has
lower uncertainty over true label variables. Though we try
to minimize the true label entropy in equation (24) which
is effective in reducing true label entropy as shown in
the figures in the second row, the worker trust entropy is
also reduced as the learning step increases as illustrated in
Fig. 5(1) - Fig. 5(1).

VII. CONCLUSION

In this paper, we propose a probabilistic model (MDC) that
captures multi-domain characteristics of crowdsourcing ques-
tions and multi-dimensional trust of workers’ knowledge. To
show that our model MDC is very flexible and extensible to
incorporate additional metadata associated with questions,
we propose an extended model MDFC that incorporates
continuously-valued features of questions and MDTC that
also combines topic discovery. MDTC has the advantage that
the domains are interpretable. To investigate the usage of
our proposed models in adaptive task assignment setting, we
propose strategies for choosing which questions to ask and
which workers to assign the questions. We show that our
proposed active learning strategies coupled with the models
proposed to estimate posterior probability distributions can
effectively decrease true label and worker trust entropy and
reduce error rates.

The results in this paper can be applied for fusion of
information from multiple unreliable data sources instead of
just workers in the open crowd. Examples of data sources
are sensors, human input, and inference results given by
another system backed by a different set of machine learning
algorithms. Each of the data sources can be treated as a
”worker” in this paper and we can thereafter use models in
this paper to estimate the multi-domain trust values of the
data sources and true labels of questions.
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