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Abstract—We consider the collaborative control of a group
of autonomous mobile agents. Building upon our earlier work
we consider the communication needs and connectivity of the
agents’ network as they move. We develop algorithms that
automatically sense the possibility of connectivity loss among
the agents. We also consider the automatic detection of path
disconnection when more than one path need to be maintained
between pairs of agents. Using local probing schemes we
formulate such problems as event-triggered control problems.
We develop distributed algorithms that automatically select
some agents and move them appropriately so as to maintain
certain degree of desired connectivity among the moving agents.
We characterize the trade-off between the gain from main-
taining a certain degree of connectivity vs. the combined cost
of communications and the associated dynamic re-positioning
of agents. The results illustrate the efficiency achieved by
event-triggered control in such problems. We also describe
the resulting communication topologies and in particular their
similarity to dynamic small world topologies.

I. INTRODUCTION

Control of swarms of autonomous platforms (vehicles,

robots, aircraft, ships, etc.) has recently attracted great inter-

est due to a wide variety of applications such as providing

coverage and connectivity to ground agents, automated high-

way systems, mobile sensor networks, disaster relief efforts,

collaborative robotics, etc.

In problems regarding the control and coordination of

vehicle networks, decentralized methods are preferred as

centralized control requires immense communication and

computational resources The collaborative control of au-

tonomous mobile agents can thus be viewed as a hierar-

chical design problem: A high level decision making and

path planning module is responsible for maintaining the

connectivity while creating a sequence of way-points for

their motion. A low level motion control module computes

the real control commands for agents to follow the way-

points generated under the motion constraints. In a series

of previous papers (see e.g. [19] [20]) Baras, Tan and Xi

addressed the problems of high level and low level motion

planning using a combination of distributed hybrid Gibbs

sampler based methods and model predictive control (MPC).

*Research supported by the National Aeronautics and Space Adminis-
tration (NASA) Marshall Space Flight Center under cooperative agreement
no. NCC8-235, and also by the U.S. Army Research Laboratory Collabo-
rative Technology Alliance Program, Cooperative Agreement DAAD19-01-
2-0011.

In this paper, we address the problem of designing a high

level component responsible for maintaining the commu-

nication needs of the group, and in particular the (path-)

connectivity of their communication network as they move.

The module has outputs to, and inputs from the higher level

path planning component . This communication connectivity

is crucial in scenarios with a group of agents moving in a

particular area and covering it, while avoiding obstacles and

collisions. Here the connectivity is maintained by clustering

the agents and providing connections between the clusters.

Building on our previous work [14], we address the prob-

lem of maintaining connectivity among ground clusters of

moving agents. Among the agents in each cluster, one is

designated as the cluster-head. The cluster heads can be

designated in a distributed manner [2], and can be equipped

with multi-mode communication capabilities. In normal sit-

uations, connectivity is maintained by the cluster-heads, who

send messages directed to other cluster-heads. Therefore, the

connectivity of clusters is a crucial factor in the performance

of the group of agents as a whole. As a result, we develop

algorithms that sense the possibility of loss of connectivity

among the agents. When direct communication between

the clusters is not possible, a suggested solution is to use

Aerial Platforms (APs) as relays in networks. However, the

use of APs is costly and should be kept to a minimum

level. Furthermore, the APs should be positioned so that

the resulting network is well-connected. In other applications

specific agents can move to specific locations and/or change

their physical characteristics (e.g. increase their transmission

power) in order to provide and maintain communication

connectivity between the moving agents.

The organization of the paper is as follows. Section II pro-

vides the basic set up and discusses a model for detecting the

possibility of loss of connectivity among the agents. Section

III formulates the problem of maintaining connectivity as

an event-triggered control problem, which uses centralized

decision making. In section IV we explore the issues of

collaborative decision making at the onset of connectivity

failure between clusters. Section V discusses a clustering

algorithm used to provide the intended connectivity between

the ground units using as few APs as possible. Section

VI investigates the question of characterizing efficient and

‘good’ topologies, which provide better connectivity.
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II. BASIC SET UP

We consider a number of autonomous mobile agents in

a terrain. Using the methods from our previous work [19],

the planning algorithm initially moves the nodes, so that they

are arranged in n clusters. We assume that each group has a
leader (cluster-head), who is in charge of maintaining com-

munications with the other leaders. From now on we refer

to the leaders as nodes or agents. The nodes have identical

omnidirectional antennas with good quality communication

possible if their distance is less than a constant Rdisc.

The communication connectivity of the agents is modelled

by an undirected graph. The vertices vi ∈ V , i = 1, 2, ..n
denote the agents and eij = (vi, vj) ∈ E, i, j = 1, ..., n
denote the links between them. Assume that there are overall

m links between the agents (leaders); we give an arbitrary

ordering to the links and alternatively represent the link set

as E = {lk, k = 1, ...m}. We denote the set of nodes who
are at graph distance k from node vi as its k−neighbors
(i.e. k−hops away from node vi, in multi-hop paths without

loops). We also call the set of nodes with graph distance

less than or equal to k from node vi, and the edges between

them as node i’s k− neighborhood and denote it by Nk(vi).
A graph is called k−connected if the minimum number of

edge removals needed to make the graph disconnected is k.

We assume that initially the leaders form a (path) con-

nected graph, and by sending out HELLO messages, each

leader knows its neighbors and has an estimate of their

distance [21]. Also each leader knows its two-hop away

neighbors. The nodes may occasionally become discon-

nected. This may happen because of sudden obstacle occur-

rences or deviations from previously determined paths upon

terrain uncertainties. We assume that the agents send distress

messages (help request signals) to the AP or some other

coordinating unit, if they think AP intervention is necessary

to save the graph connectivity. However, AP intervention is

costly and should be considered only if the link losses affect

the connectivity in a serious manner. The basic problem that

each agent has to address is whether to call for intervention

or not, but before that, each agent has to be provided with a

method to sense the possibility of link losses.

The agents periodically monitor their own energy level

with respect to a reference threshold to make sure if they

can transmit correctly. If they sense any decline in energy

or other resources, they will try to inform the coordinating

unit (or the AP) directly or via their neighbors. Each agent

sends periodical HELLO messages to their neighbor. Upon

receiving a HELLO message a node sends an ACK message

to the sender. If a node does not receive an acknowledgement

after a timeout interval, it will resend the HELLO message.

We set a maximum threshold Ntry . If the number of trials

exceeds this threshold, the link is considered lost [21]. Recent

literature has addressed elaborate distributed fault detection

in wireless systems and other distributed systems [1] and

[4]. Nodes can employ various local monitoring mechanisms

to monitor connectivity or loss of connectivity: SNR mea-

surements, SINR measurements, packet transmission success

rates, levels of received power and their variations, etc. Here,

we assume that, as in [4], the nodes are provided with failure

detection modules by which they can maintain reachable

node lists that enable them to detect unwanted partition-

ing and network disconnection. We use this simple event-

triggered model, and study the tradeoff between asking for

AP intervention vs. the cost of risking graph disconnection.

III. A MODEL FOR AP INTERVENTION COST ANALYSIS

In this section we consider the problem of deciding

whether AP intervention is necessary in the presence of

link losses. The problem is formulated as a stopping time

problem in a stochastic control framework. We assume that

local probing schemes enable the nodes to keep track of

the reachable nodes and of losses in connectivity. We also

assume that the link/path disconnection is reported to a

coordinating unit (or to the AP). The coordinating unit

decides on whether AP intervention is necessary or not.

A. General model

Consider a k− connected network configuration. Assume

a time horizon N and that during each time interval t, each
link can fail with some probability. The failure probabilities

are determined by terrain specifications and the nodes’ power

levels. For simplicity we assume a constant average discon-

nection probability p for all links. The ‘state’ of the system
at each time t is denoted by xt and is equal to the number

of link deletions necessary to make the graph disconnected.

There are two possible choices for the control action at

each time interval. The choice of ut = 0 corresponds to
normal system operation, in which no AP intervention is

demanded. In this case the state transitions as a Markov

system based on the transition probabilities resulting from the

graph topology and link deletion probabilities. The choice of

ut = 1, corresponds to AP intervention, in which case APs
will be sent to circumvent the lack of connectivity problem.

We augment the state space with a termination state T . After
the AP intervention, the state will transition to T and will

remain there for the rest of the time horizon.

In the normal system operation, we consider a connectivity

cost CCON , which is a non-increasing function of k, the
edge-connectivity of the graph. We assume that the engage-

ment and operation of the APs causes a constant rate cost

CAP . We model this by a stopping cost. At the time t⋆, when
the stopping action happens ( ut⋆ = 1 ), the system incurs a
cost of CAP (N − t⋆ + 1). The system evolves as:

xt+1 =

{

wt if ut = 0

T if ut = 1
(1)

where w(t) is determined by the graph topology and link
loss probabilities as described above. The problem could be

posed as an optimal stopping time problem, via defining a

cost function:

g(xt, ut, wt) =

{

CAP (N − t) if ut = 1

CCON (wt) if ut = 0.
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The dynamic programming (DP) equations are:

Jt(xt) =

⎧

⎪

⎨

⎪

⎩

min[CAP (N − t + 1), E[CCON (wt)

+Jt+1(wt)], if xt �= T

0 if xt = T.

The coordinating unit (or the AP(s) themselves) decides

on whether to send APs based on this stopping criterion.

B. The ring case

We now illustrate the approach by considering a group

of n moving agents with a ring communication topology.

The agents participate in a mission with time horizon N .
The agents periodically send messages and based on their

received messages, they calculate estimates of distances and

update their list of reachable nodes. We assume independent

link losses. Since a ring is a 2− connected topology, the state
space S consists of three actual states and a termination state
T , S = {0, 1, 2, T}.
If we denote the probability of state transition from i to

j using control l, (l = 0, 1) before the stopping as pij(l),
then because of the independence assumption, for i = 0, 1, 2,
pij(l) can be easily calculated, e.g. pi0(0) = 1− (1− p)n −
np(1 − p)n−1.
In the normal mode of operation, when the AP is not called

in, we consider the cost to be proportional to the average

hop length. We assume that when AP intervenes, there is

a constant cost of CAP per operation cycle. If the agents

fail to call for intervention before a disconnection happens,

there would be a high cost Cdisc > CAP . If the intervention

happens, we assume that the APs guide the agents to their

nominal trajectories. The incurred costs are:

g(xt, ut) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

CAP (N − t) if ut = 1

2n if ut = 0, xt = 2

4n if ut = 0, xt = 1

Cdisc ut = 0, xt = 0

Therefore the problem is cast as a stopping time problem

and it can be solved using the DP iteration:

Jt(xt) = min{CAP (N − t + 1), E[g(xt) + Jt+1(wt)]}.

with the terminal cost JN (xN ) = CAP . The optimal cost

to go function Jk(xk) is a monotone decreasing function
of its argument. We have simulated the ring scenario with

different numbers of nodes, maintenance and disconnection

cost, and error probabilities. Figure 1 illustrates the benefit of

the event triggered AP calling for periodic surveillance. The

parameters of the simulation are p = 0.01, n = 10, N =
20, Cdisc = 300. Nodes start with complete ring topology
and are subject to losses. We have allowed the termination

cost to vary, CAP = αCdisc, for α ≤ 1/3. We have compared
the expected cost of the event triggered scheme, with the cost

of periodic AP presence, in which an AP is considered to

always be present and subject to a cost of CAP per time

interval. Figure 1 shows the ratio of cost improvement due

to using the event triggered method (
J0(2)

N.CAP
),with respect

to α = CAP

Cdisc
for different number of nodes. For smaller n,
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Fig. 1. Event triggered cost improvement ratio
J0(2)

N.CAP
vs. α =

CAP
Cdisc

there is a cut-off at small values of α demonstrating that even
when the cost of surveillance is small, it is beneficial to use

the event triggered method. However, for a fixed probability

of link loss p, as the number of nodes in the ring increases,
the probability of failure increases. For larger n, with fixed
p, the cut-off happens at greater values of α.

IV. A COLLABORATIVE METHOD FOR MAINTAINING

CONNECTIVITY

Here we propose a rating mechanism by which, each

agent rates its incident links (edges) and the links in their

k−neighborhood. The “importance” rate that a node vi

assigns to an incident edge lj will be an indicator of the
number of paths starting from vi, which pass through lk.
After each link is rated by its incident links, a consensus

type algorithm can be utilized, so that a single average

“importance rate” is assigned to each link. If a set of links

fail, our algorithm decides on how many APs are needed to

intervene based on the “importance” of the failing links.

A. Measures of link importance

The importance of a link is a measure of how many

disjoint paths in the network use it. The following notions

of “between-ness” [11] capture the importance of links for

our application:

• Shortest path between-ness: The number of shortest

paths between all pairs of nodes in a network which

pass through the suggested link.

However, calculation of the above between-ness measure is

a centralized task. Here we provide a decentralized, local

information based algorithm, with which the nodes can rate

their incident links. This way the links will be associated with

different importance rates from nodes in their neighborhood.

If necessary a consensus-type algorithm will be used to attain

a common estimate of the links’ importance. If a set of links

fail, the decision on whether and how many APs to send, will

be taken using the information on the importance of links

which have failed. We will now describe the algorithm.

B. A local scheme for finding the importance of the links

We assume that each node always maintains a list of its

current neighbors. We also assume that each node keeps a
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list of nodes which are reachable through its k−neighbors.
The choice of k is a trade-off between the tractability and
locality of the scheme. Therefore we prefer the use of small

values of k (e.g. k= 1,2,3). This can be done by neighborhood
discovery methods (e.g. [4], [21]). The idea is that each node

periodically sends heartbeat signals [1] to its neighbors and

piggybacks (on these heartbeat signals) the set of paths of

which it is aware of since sending its last heartbeat signal.

Upon receiving a message, a node investigates the paths

through each of its neighbors and adds the nodes in each

path, to the set of reachable nodes through its neighbors.

For a known number k, each node vi forwards messages

along all of the paths in its k−neighborhood. The message
will be propagated throughout the network, so that all possi-

ble nodes will receive the message. When a node receives a

message, it updates its reachable set along the corresponding

path in its k− neighborhood. If this procedure continues, the
nodes will eventually come up with a list of reachable set

of nodes through each path in their k−neighborhood. Each
node then rates each of the paths. The rating rik of each

path pk, according to node vi is equal to the number of

nodes which are reachable from vi through pk. The nodes

then rate each edge in their k−neighborhood, where Eij , the

rating that each node associates to link j, is equal to the sum
of the ratings of all paths emanating from vi, which include

link lj ; i.e. Eij =
∑

lj∈pk
rik.

After each node runs the algorithm, it will assign sub-

jective importance ratings, to all of the links in its k−
neighborhood. Therefore each node vi will maintain a list

E of the importance values Eij(k) it has assigned to the
links lj in its k−neighborhoods. A normalized list Enorm

is a measure of the relative importance of the links in the

K−neighborhood of each node. The main properties of the
algorithm that follow from the definition can be summarized

as:

Propostion 1: The following statements hold:

1) An edge l will be rated by a node v if and only if
l ∈ Nk(v), i.e. l falls in the k− neighborhood of v.

2) The importance rating decreases monotonically along

a path emanating from a rater node.

C. Link loss report based on link importance

Since our scheme provides nodes with subjective impor-

tance ratings on links in their k−neighborhood, these ratings
should be used in each node’s decision making on asking

for AP intervention. When a link fails, we assume that

the nodes incident to it, broadcast the link loss to their

k−neighbors. Upon acknowledging a link loss in a node’s
k−neighborhood, the node can decide on whether to ask
for intervention or not based on its importance rating ( or

normalized importance rating) assessment of the lost link.

V. CLUSTERING

Assume that all the ground leaders have the same altitude

(of 0) and form M clusters (Cj , j = 1, . . . , M ). Aerial

Platforms (APs) placed appropriately and acting as relays can

be used to provide connectivity between theM disconnected

ground clusters. Since APs are scarce/expensive resources,

the goal is to find the minimum number of APs and their

locations so that the resultant network (both between the

nodes and the APs and between the APs) is connected.

The ground nodes and the APs have identical omni-

directional radios with the signal between nodes decaying

as 1/Rα where R is the distance between nodes and α is

the path loss exponent, which depends on the environment

between the nodes. The radio specifications and the path loss

exponent α together determine a maximum communication
distance between the nodes. α is equal to 2 (i.e., free space
communication) for communication between the ground

agents and APs as well as for communication between the

APs. This results in a maximum communication distance

of R2 between the ground agents and APs and among the

APs. Since ground nodes communicate with α strictly greater
than 2 (α = 4 for a suburban environment), the maximum
communication distance R0 between leaders is strictly less

than R2 (usually by an order of magnitude). Assume that

all the APs fly at an altitude of h such that the maximum
communication distance between agents and APs projected

onto the ground, R1 (given by R1 =
√

R2
2 − h2), is greater

than R0. Thus the problem of finding the minimum number

of APs (L) and their positions can be reduced to R2, with aj

denoting the position of the APs projected onto the ground.

A. Problem Formulation

We formulate the connectivity problem as a constrained

clustering problem ([15], [16]) with a summation form distor-

tion function (D(C, A)) involving the distances between the
ground clusters (C) and the APs (A) and a summation form

cost function (C1(A)) involving only the distances between
the APs (A). The resultant clustering problem is then solved

using Deterministic Annealing (DA) to obtain near-optimal

solutions. In order for the ground nodes and the APs to form

a connected network, we need: 1) At least one node from

each cluster within a radius of R1 from an AP; and 2) Each

AP is within R2 of some other AP (i.e., the APs form a

connected graph).

Assuming that the APs are numbered from 1 to L, we can
make sure that they form a connected network by ensuring

that any AP numbered j is connected to at least one lower
numbered AP i, where i < j. This is used in the DA solution
where when we add a new AP, we make sure that it is

connected to at least one of the previously added APs. Hence

the connectivity problem can be stated as:

Minimize L; subject to
∃a1, . . . , aL; max

j∈{1,...,M}
min
g∈Cj

i∈{1,...,L}

‖ g − ai ‖ ≤ R1

and, max
l∈2,...,L

min
m<l

‖ al − am ‖ ≤ R2

where ‖ g − a ‖ is the l2-norm between points g and a
on the ground. Finding the exact solution to the problem

above involves an exhaustive search on the different ways

in which nodes can be selected from each cluster and the

ways clusters can be grouped together for coverage by
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Fig. 2. Complex Scenario: AP Placement with AP-ground node connec-
tivity and AP-AP connectivity.

a single AP all the while making sure that the APs are

connected to each other. This problem is NP-hard as it is

a generalization of the Euclidean disk-cover problem. Hence

using the approximation,

max(s1, . . . , sn) ∼= (sα
1 + . . . + sα

n)
1

α for large α

we can convert the AP-ground node and AP-AP constraints

into a summation form,

Minimize L; subject to

∃a1, . . . , aL;

M
∑

j=1

d1(Cj , au1(j)) ≤ Rα
1

and,
L

∑

l=2

d2(al, au2(l)) ≤ Rβ
2

for large α and β, where,

d1(Cj , ai) = min
g∈Cj

‖ g − ai ‖
α

d2(al, am) = min
m<l

‖ al − am ‖β

and u1(j) is a function that assigns an AP to every cluster;
u2(l) is a function that assigns the closest lower numbered
AP to an AP.

Constrained clustering problems of the above form are

non-convex optimization problems except in special cases.

Hence the Deterministic Annealing (DA) method is used

to solve the constrained clustering problem for globally

near-optimal solutions. Within the framework of constrained

clustering ([15], [16]), the distortion function between the

ground nodes and the APs is given by D(C, A) =
∑M

j=1 d1(Cj , au1(j)) and the cost function among the APs is

given by C1(A) =
∑L

l=2 d2(al, au2(l)). Figure 2 illustrates
an application of our algorithm.

VI. TOPOLOGY

By adding APs we have the advantage that the previously

far apart nodes now communicate through APs. Prior to AP

addition the neighborhood relation was based on physical

proximity. The addition of APs extends the concept of

neighborhood in that two far apart agents can communicate

directly through their corresponding APs. We assume that

each AP is capable of short time high energy transmission

upon necessity and that via a suitable medium access control

and AP energy scheduling, agents which are located geo-

graphically far from each other can communicate.

This extended notion of neighborhood makes long range

edges realizable. However, establishing long range connec-

tions requires higher cost. Therefore there is a trade off

between the cost of maintaining long range connectivity and

group performance. Here we consider two classes of ‘effi-

cient’ topologies, small world graphs and expander graphs.

A. Small world graphs

The small world graphs based on the model of Watts and

Strogatz [18] take a regular lattice and replace some original

edges by random ones connecting nodes at ‘long distance’

with some probability 0 ≤ φ ≤ 1; i.e. by introducing ‘short
cuts’. This family of graphs shows a favorable trade off

between performance and cost of collaboration.

In [8] Higham analyzed the small world phenomenon in

the Watts-Strogatz model by considering the hitting time

of a slightly randomly perturbed Markov chain on a ring.

Building on [8], we studied consensus problems on grid-

based small world graphs in [2]. We showed a significant

speed up in the convergence speed of consensus algorithms

in Watts-Strogatz models compared to that of the grid base

by perturbing the consensus weight matrix. The perturba-

tion corresponds to considering rare transitions among non-

neighboring states in the Markov chain associated with the

grid. In [9], we showed that by choosing shortcuts with low

probability one can improve the convergence rate of regular

grids significantly in a probabilistic sense. For other interest-

ing works on small world graphs in the control community

and consensus applications see e.g. [17], [12], [13], [6].

Here, we consider a general setting in which the base

graph can be any sparse graph. We are interested in the ques-

tion: is a given graph “small-worldizable”? The following

procedure gives an implicit definition of what we mean by

being “small-worldizable”. Other criteria for a graph to be

small-worldizable are investigated by [5].

Recall that if F is a primitive stochastic matrix, according

to the Perron-Frobenius theorem [3], λ1 = 1 is a simple
eigenvalue with a right eigenvector 1 and a left eigenvector

π such that 1T π = 1, F∞ = 1πT and if λ2, λ3, ..., λr are

the other eigenvalues of F ordered in a way such that λ1 =
1 > μ = |λ2| ≥ |λ3| ≥ ... ≥ |λr|, and m2 is the algebraic

multiplicity of λ2, then

F t = F∞ + O(tm2−1|λ2|
t) = 1πT + O(tm2−1|λ2|

t)

Then ∆ = 1 − μ(F ) denotes the spectral gap and linear
iterations on graphs with higher spectral gaps converge faster.

Definition 1: Small-worldizable graphs Given a con-

nected graph Gn on n vertices:

• Consider a natural random walk on this graph. Denote

the corresponding Markov Chain graph as

F0 = (I + D)−1(A + I)
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where A is the adjacency matrix of the graph Gn and D
is the diagonal matrix with each node’s degree on the

corresponding diagonal.

• Perturb the zero elements of F0 by ε < 1
n
and adjust it

to get a new stochastic matrix Fε.

(Fε)ij =

{

ε (F0)ij = 0

(1 − nε)(F0)ij + ε (F0)ij �= 0

i.e. Fε = (1 − nε)F0 + ε11T .

• Gn(V,E) is small-worldizable if ∆(Fε)
∆(F0)

≫ 1, where

∆(F ) denotes the spectral gap 1 − μ(F ).
Small-worldizability can be characterized by:

Theorem 1: A graph G is small-worldizable if and only if
μ

1−μ
≫ 1

nε
.

The proof of Theorem 1 is a direct result of the following

Lemma:

Lemma 1: The second largest eigenvalue modulus

(SLEM) of Fε is given by

μ(Fε) = (1 − nε)μ(F0)

.

Proof: (Sketch) Consider the matrix

F1 = (1 − nε)−1Fε = F0 +
ε

1 − nε
11T .

From the Sherman-Morrison-Woodbury formula we have

det(F1 − λI) = [1 +
ε

1 − nε
1T (F0 − λI)−11] det(F0 − λI)

(2)

Furthermore, for any λ /∈ Spec(F0),

(F0 − λI)−11 = (1 − λ)−11

It follows that the eigenvalues of F1 are the same as the

eigenvalues of F0 except for λ1(F1) = 1 + nε
1−ε
. Therefore:

λ1(Fε) = 1, and for i �= 1, λi(Fε) = (1 − nε)λi(F0). The
result follows.

As an example consider the case of ring-type base graphs

of n nodes where each node is connected to its k neigh-
bors [18]. By exploiting the circulant structure of ring type

graphs C(n, k), for k 
 n, we can derive the result that
∆(F0) = O(n−2). By considering ε = n−α, α > 1, it can
be shown that the small world effect holds for α = 2. At
α = 3, the effect of shortcuts begins to dominate. This is the
onset of the small world phenomenon.

B. Expander graphs

Expander graphs have certain properties that make them

suitable for our application: their large spectral gap ensures

fast routing and convergence of decentralized algorithms;

the path diversity they provide results in robustness to link

failures [10]. There are at least two methods for distributed

construction of AP-level expander graphs:

• Following the approach of [10] we can form a random

expander graph as a 2d−regular multi-graph in which
the set of edges consists of d separate Hamiltonian

cycles on the APs. Such a graph can be constructed

distributedly and its diameter will be O(logd n) with
high probability.

• Following the approach of [7] we can form a random

expander graph as the union of two spanning trees

chosen independently from the uniform distribution over

all spanning trees. This can be implemented simply

by taking a random walk and include edges that visit

previously unvisited nodes. Such a graph has a constant

edge expansion with high probability.
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