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INTRODUCTION

Deviation from legitimate protocol operation in
wireless networks has received considerable
attention in recent years. The increased level of
sophistication of protocol components has led to
the extreme where wireless network devices have
become easily programmable. Consequently, it is
feasible for a network peer to tamper with soft-
ware and firmware, and abuse the protocol. The
solution to the problem is the timely and reliable
detection of such misbehavior instances. Howev-
er, two difficulties arise: the random nature of
some protocols and the nature of the wireless
medium. Therefore, it is not easy to distinguish
between misbehavior and an occasional protocol
malfunction.

The goal of every system is to achieve robust-
ness not only against a specific disruption, but
also to maintain an acceptable performance level
when such disruption occurs. This is not possible
to achieve without careful design planning. In
order to construct an intrusion detection system
(IDS) that ensures robustness of a given system,
the goal and capabilities of both the IDS and the
adversary need to be defined. Only then is it
possible to evaluate the performance of the sys-

tem under the worst case scenario, derive an
optimal detection strategy, and determine
whether the critical system parameters remain
within acceptable boundaries.

In this article we first define a set of security
guarantees and requirements that need to be
satisfied by an IDS, and define an adversary
model. We then provide motivation for employ-
ment of sequential detection methods for medi-
um access control (MAC) layer misbehavior
detection. Finally, we illustrate the efficiency of
our scheme by evaluating the performance of
our system against least favorable attacks. In this
work the term least favorable attack refers to the
attack that maximizes the gain of the adversary
while minimizing the probability of detection,
thereby achieving maximal detection delay. A
suboptimal attack is any attack that does not sat-
isfy the above conditions.

SECURITY GUARANTEES AND
REQUIREMENTS

This section presents a set of security require-
ments an IDS must satisfy in order to derive a
set of security guarantees (throughput, detection
delay, etc.) that can then be delivered to a cus-
tomer. It is important to notice that different
IDSs will have different security constraints
depending on the type of anomalies they aim to
detect, their acceptable error tolerance (number
of false alarms), and the cost involved in the
construction of such systems. This consequently
leads to a different set of security guarantees.
Hence, each IDS can be defined by a set of secu-
rity constraints it satisfies and security guaran-
tees it delivers. In order to properly evaluate the
performance of a given IDS in the reminder of
the article, we first define the goal and capabili-
ties of a detection system.

The goal of the detection system is to detect
any deviation from normal behavior with the
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minimum time delay and minimum probability
of false alarm, PFA. Decisions about the occur-
rence of misbehavior should be robust (they
need to perform well for a wide range of attack
strategies).

As for the capabilities of the detection sys-
tem, we assume that the system is adaptive (can
change its detection strategy depending on the
wireless medium conditions) and intelligent (is
capable of deriving a detection strategy that min-
imizes gain of an intelligent adversary under
given security requirements).

In order to be able to obtain a set of security
guarantees, an IDS needs to satisfy the following
security requirements.

ROBUSTNESS AGAINST A
CRITICAL CLASS OF ATTACKS

The basic requirement for every system is
robustness against a critical class of attacks that
is guaranteed by deploying a corresponding
IDS. The critical class of attacks F represents
the set of behaviors the system is not willing to
tolerate that lead to suboptimal performance.
The class of attacks outside of class F represent
attacks that cause insignificant damage to the
system and can be tolerated. Each system will
have different tolerance levels for different
behaviors; consequently, class F cannot be uni-
versally defined. We say that a system S is robust
against a class of attacks F if its IDS can detect
an adversary A ∈ F within a timeframe T, while
maintaining the performance level of the sys-
tem above the predefined threshold PT. The
parameters T and PT are not fixed and vary
depending on how strict the security is required
to be for a given system. A system S is optimal if
its IDS is capable of constructing a universal
detection strategy that minimizes the detection
delay for the worst case attack scenario. Addi-
tionally, all nodes belonging to a robust IDS
should be capable of identifying failures and
anomalies in their neighborhood and notifying
the rest of the network in a timely manner
about such events.

RESILIENCE TO ATTACKS IN THE
PRESENCE OF INTERFERENCE

Wireless networks with stringent security
requirements require presence of mechanisms
that can detect and isolate different classes of
misbehavior, but that are also capable of func-
tioning with acceptable performance in the pres-
ence of interference when a complete sequence
of the adversary’s actions cannot be obtained.
We assume that a resilient system is capable of
adjusting its optimal detection strategy as the
operating conditions of the system change, while
suffering minimal losses during the change in
detection strategy.

ADVERSARY MODEL
The lack of a proper adversarial model can lead
to significant decrease in system performance
due to missed detection, detection delay, or a
large number of false alarms. In order to proper-
ly evaluate the defense strategies and potential

damage caused by an adversary, a more formal
definition of adversary capabilities and goals is
provided.

INFORMATION AVAILABLE TO THE ADVERSARY
Throughout our work we adopt the strict
assumption that an adversary is intelligent; that
is, it knows everything the detection agent knows
and can infer the same conclusions as the detec-
tion agent. This assumption enables the detector
to obtain the upper bound on the detection
delay.

CAPABILITIES OF THE ADVERSARY
We assume the adversary has full control over
his/her actions. In order to describe the capabili-
ties of the attacker, we use the class of attacks F
defined earlier that describes his/her probable
set of actions. It is important to note that F rep-
resents the critical class of attacks from the view-
point of the IDS (i.e., the class of attacks that
are a threat to the IDS). However, when
observed from the attacker’s side, F represents a
set of actions available to the adversary and can
be described as a feasible class of attacks.

GOAL OF THE ADVERSARY
We assume the existence of a greedy adversary
whose objective is to design an access policy that
maximizes his/her gain over the defined period
of time while minimizing the probability of
detection, PD.

IEEE 802.11 MAC MISBEHAVIOR
In the distributed coordinating function (DCF)
of the IEEE 802.11 MAC protocol, coordination
of channel access for contending nodes is
achieved with carrier sense multiple access with
collision avoidance (CSMA/CA). A node with a
packet to transmit selects a random backoff
value b uniformly from the set {0, 1, …, W – 1},
where W is the size of the contention window.
The backoff counter decreases by one at each
time slot that is sensed to be idle, and the node
transmits after b idle slots. If the channel is per-
ceived to be busy in one slot, the backoff counter
freezes. After the backoff counter is decreased
to zero, the transmitter can reserve the channel
for the duration of data transfer. First, it sends a
request-to-send (RTS) packet to the receiver,
which responds with a clear-to-send (CTS) pack-
et. Thus, the channel is reserved for the trans-
mission. Both RTS and CTS messages contain
the intended duration of data transmission in the
duration field. Other hosts overhearing either
the RTS or CTS are required to adjust their net-
work allocation vector (NAV) that indicates the
duration for which they will defer transmission.
An unsuccessful transmission instance due to
collision or interference is denoted by a lack of
CTS or acknowledgment (ACK) for the data
sent and causes the value of the contention win-
dow to double. If the transmission is successful,
the host resets its contention window to the min-
imum value W.

IEEE 802.11 DCF favors the node that selects
the smallest backoff value among a set of con-
tending nodes. Therefore, a malicious or selfish
node may choose not to comply to protocol rules
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by selecting small backoff intervals, thereby gain-
ing significant advantage in channel sharing over
regularly behaving honest nodes. Moreover, due
to the exponential increase of the contention
window after each unsuccessful transmission,
non-malicious nodes are forced to select their
future backoffs from larger intervals after every
access failure. Therefore, the chance of their
accessing the channel becomes even smaller.
Although several other deviation strategies exist,
this one is the most challenging to detect, and in
this work we adhere to protocol deviations that
occur due to manipulation of backoff values.

MISBEHAVIOR DETECTION IN THE
MAC LAYER

The nature of wireless network operation dic-
tates that decisions about misbehavior should be
made online as observations are revealed and not
at a fixed observation interval. The sequence of
backoff values belonging to a monitored node in
the IEEE 802.11 MAC is revealed sequentially,
and if a node starts to misbehave, at a certain
(unknown) moment some probabilistic character-
istics of this process change. A detector should
decide as quickly as possible whether the change
has happened or not; at the same time it should
keep the number of decisions about change-
points when they are not present to a minimum
(minimize the number of false alarms). It is now
obvious that two quantities are involved in deci-
sion making: the time at which the decision about
the existence of a change-point is made and a
decision rule. Intuitively, this setup gives rise to
the sequential detection problem since a sequen-
tial decision rule consists of a stopping time N
that indicates when to stop observing and a final
decision rule dN which, at the time of stopping,
decides between hypotheses H0 (legitimate
behavior) and H1 (misbehavior). We denote the
above combination D = (N, dN).

In order to proceed with our analysis we first
define the properties of an efficient detector fol-
lowing the framework from earlier. The starting
point in defining a detector is minimization of
the probability of false alarms PP0[dN = 1]. Addi-
tionally, each detector should be able to derive
the decision as soon as possible (minimize the
number of samples it collects from a misbehav-
ing station) before calling the decision function
EE1[N]. Finally, it is also necessary to minimize
the probability of deciding that a misbehaving
node is acting normally PP0[dN = 0]. It is now
easy to observe that EE1[N], PP0[dN = 1], PP1[dN =
0] form a multicriteria optimization problem.
However, not all of the above quantities can be
optimized at the same time. Therefore, a natural
approach is to define the accuracy of each deci-
sion a priori and minimize the number of sam-
ples collected.

This scheme guarantees a minimum level of
performance, which is the best minimum level
possible over all classes of attacks.

OPTIMAL DETECTION STRATEGY
There has been extensive analysis of the impact
of MAC layer misbehavior on 802.11 MAC and
routing protocols. Denial-of-service (DoS)

attacks represent an extreme instance of misbe-
havior studied in this work. In [1] the authors
study simple DoS attacks at the MAC layer,
show their dependence on attacker traffic pat-
terns, and deduce that the use of MAC layer
fairness can mitigate the effect of such attacks.
Numerous misbehavior detection schemes have
been proposed over the last couple of years,
focusing on either changing the protocol in
order to improve its resilience to a certain class
of attacks [2] or measuring certain protocol
parameters and detecting deviation from normal
behavior [3]. The downside of the first approach
is that the protocol needs to be changed, which
is costly and time consuming. The second
approach focuses on a very specific class of
attacks, and exhibits superior performance for
detection of such attacks and fails when the
adversarial strategy changes (which is frequent
when the adversary is adaptive). None of the
proposed schemes attempts to construct an opti-
mal detection scheme for a given class of attacks
and derive performance bounds of the adversary.
We believe this is a crucial step in IDS design
since every IDS needs to satisfy a set of require-
ments, such as detection delay and cost, in order
to be efficient. If the initial analysis shows that a
given IDS cannot be employed in certain envi-
ronments due to the strength of potential adver-
saries, the system administrator may choose to
deploy multiple IDS units or deploy a more
expensive but more sensitive IDS that will per-
form better than the original one.

As we have mentioned, the nature of the
problem gives rise to employment of sequential
detection techniques. This setup was first pro-
posed by Wald [4], where he also introduced the
Sequential Probability Ratio Test (SPRT) as a
solution. The SPRT is defined in terms of the
log-likelihood ratio Sn of two joint probability
functions fi(x1, …, xn) under hypothesis Hi, i = 0,
1. The corresponding stopping time is N = infn
{Sn ∉ [A, B]} and decision rule dN = 1 if SN ≥ B
and dN = 0 if SN ≤ A, where A < 0 < B are
thresholds selected so that SPRT satisfies the
two decision error probability constraints with
equality. We can see that the SPRT test contin-
ues sampling as long as the log-likelihood ratio
takes values within the interval (A, B) and stops
when the threshold is exceeded. Once stopped,
the decision function dN decides in favor of
hypothesis H1 when SN exceeds the largest
threshold and in favor of H0 when SN is below
the smallest threshold. The detection delay,
EE[N], is inversely proportional to SN and is a
function of PD [4]. Wald proved that the SPRT
achieves the shortest detection delay among all
sequential and nonsequential tests. To illustrate
this claim, we measure detection delay of both
sequential and nonsequential detectors in our
experiments. The effectiveness of the proposed
statistics is easy to explain: the mathematical
expectation of the log-likelihood ratio is negative
before and positive after the change point.
Hence, if an adversary that generates his/her
backoff sequence according to the p.d.f. f1(x)
deviates from the legitimate p.d.f. f0(x), the log-
likelihood ratio will change and the sum Sn will
shift toward the upper threshold. If the adver-
sary’s distribution f1(x) significantly deviates
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from f0(x), the shift will be larger, and the thresh-
old will be crossed within a shorter time period.
It then depends on the adversary’s strategy:
whether he/she chooses to occasionally follow
the protocol and prolong detection or not. In
order to explain the efficiency of the proposed
detection system, we now revisit the optimal
attack strategy presented in [5] and extend it
with the framework presented earlier.

ADVERSARY MODEL
Following the framework presented earlier we
now present an adversary model in the IEEE
802.11 MAC.

Capabilities of the Adversary — The adver-
sary has full control over the probability mass
function f1 and the backoff values it generates.
In addition, we assume that the adversary is
intelligent (he/she knows everything the detec-
tion agent knows and can infer the same conclu-
sions as the detection agent).

Goal of the Adversary — The objective of the
adversary is to design an optimal access policy
with the resulting probability of channel access
PA, while maximizing the detection delay EE1[N].
The above policy results in generation of backoff
sequences according to the pmf f1*(x).

We assume an intelligent attacker is aware
that an IDS is using the SPRT as a detection
strategy and will stop misbehaving before it is
detected. Although this may seem to be a disad-
vantage, it is actually not. The optimal IDS
forces an adversary to either:
• Occasionally follow the protocol rules and

shift below the threshold
• Apply a mild misbehavior strategy that is

below the threshold at all times
• Relocate as soon as the threshold is

approached
In the first two the attacker has to stop misbe-
having or compromise by achieving a very mild
advantage over other participants. In the third
case the deployment of an optimal IDS forces an
adversary to relocate frequently, therefore
increasing the cost of launching an attack. It is
important to note that the relocation space of an
adversary is not infinite (a greedy user has to
send packets to another node). Unless there is a
set of collaborating adversaries, an adversary
that chooses to employ aggressive misbehavior
policy is quickly detected.

Although the access policy f1*(x) of the adver-
sary was derived under the assumption that the
detection algorithm is known, f1*(x) is a good
adversarial policy against any detector. Namely,
it is easy to see that the detection delay is
inversely proportional to the Kullback-Leibler
divergence between f0 and f1. It is known that
bounds on the probability of detection and false
alarm for an optimal detector can be expressed
in terms of the Kullback-Leibler divergence
between the distribution of the two hypotheses
[6]. Applying the results from information theo-
ry, the probability of detection of the optimal
decision algorithm is lower bounded by 1 –
2–nD(f1||f0).

It is now clear thatan adversary that tries to
minimize the probability of detection will

attempt to minimize the distance between distri-
butions f0 and f1, leading to the same f1*(x)
already obtained. It is essential to emphasize
that by employing this adversarial strategy (i.e.,
choosing a class of attacks rather than a single
access strategy), the adversary can easily adapt
to the environment and maximize detection time
against any IDS, not only the optimal one.

SPRT OPTIMALITY FOR ANY ADVERSARY IN F
Let Φ(D, f1) = EE1[N]. We note that the solution
for f1*(x) was obtained in the form

(1)

That is, we first minimized Φ(D, f1) with the
SPRT (minimization for any f1) and then found
the f1* that maximized Φ(SPRT, f1*).

However, an optimal detector needs to mini-
mize all losses due to the worst case attacker.
That is, the optimal test should be obtained by
the following optimization problem:

(2)

The proposed solution also satisfies this opti-
mization problem since it forms a saddle point
equilibrium, and we can claim that for every D ∈
Ta,b and every f1 ∈ F: Φ(D*, f1) ≤ Φ(D*, f1*) ≤
Φ(D, f1*). More specifically, the existence of a
saddle point ensures that for the attack f1* any
detection rule D other than D* has worse perfor-
mance.  D* is the optimal detection rule for
attack f1* in terms of minimum (average) number
of required observations. In addition to that, it
ensures that for the detection rule D*, any attack
f1 from the uncertainty class, other than f1*, gives
better performance (the detection rule D* has its
worst performance for attack f1*).

As a consequence of the existence of a saddle
point, no incentive for deviation from (D*, f1*)
for any of the players is offered.

EXPERIMENTAL RESULTS
We now proceed to experimental evaluation of
the analyzed detection schemes. In this work we
assume the existence of an intelligent adaptive
attacker that is able to adjust its access strategy
depending on the level of congestion. In order to
minimize the probability of detection, the attack-
er chooses legitimate over selfish behavior when
the congestion level is low and an adaptive self-
ish strategy otherwise. Therefore, we assume
that all stations have packets to send at any
given time. We assume that the attacker employs
the least favorable misbehavior strategy for our
detection algorithm, enabling us to estimate the
maximal detection delay. This setting also repre-
sents the worst case scenario with regard to the
number of false alarms per unit of time because
the detection algorithm is forced to make a max-
imum number of decisions per unit of time (the
number of alarms should be smaller in practice).
The backoff distribution of an optimal attacker
was implemented in the Opnet network simula-
tor, and tests were performed for various levels
of false alarms. The simulations were performed
with nodes that followed the IEEE 802.11 access
protocol. The corresponding scenario is present-
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ed in Fig. 1. We consider the scenario where one
adaptive intelligent adversary competes with two
legitimate stations for channel access. Conse-
quently, in a fair setting each protocol partici-
pant is allowed to access the medium for 33
percent of the time under the assumption that
each station is backlogged and has packets to
send at any given time slot. The detection agent
was implemented such that any observed back-
off value Xi > W was set up to be W.

In order to illustrate the power of the adver-
sary that applies the backoff policy f1*, we intro-
duce absolute gain, defined as η/n+1 for 1 < η
< η+1, where η represents the level of misbe-
havior (η = 1 represents legitimate behavior),
and n represents the number of legitimate users
competing for channel access. We observe that
the maximum value of the absolute gain is equal
to 1 and corresponds to the DoS attack, and the
minimum value is equal to 1/n+1 and corre-
sponds to legitimate behavior of the observed
node. To illustrate the effect of the worst case
MAC layer attack, we observe the average num-
ber of data packets sent by each node as a func-
tion of absolute gain. The effects of the
adversary on the performance of a legitimate
node are presented in Fig. 2. With the increase
of aggressiveness of the selfish node, the legiti-
mate nodes are denied access to the channel by
choosing larger backoff values and are not able
to send data, since the selfish node gains a high-
er percentage of channel access. If the proposed
SPRT-based detection system is employed, mis-
behavior is almost instantly detected. We repre-
sent the effects of the detection scheme on an
adversary that attempts to access the channel 60
percent of time (instead of 33 percent, which
corresponds to legitimate behavior) in Fig. 3.
We now observe that misbehavior is detected
almost instantly, and once the adversary is
removed from the environment, the legitimate
nodes resume their normal operation (we
assume that the misbehaving node was replaced
with a legitimate node).

The consequence of Wald’s theorem is that
no other detection strategy can do better than
the SPRT, and the consequence of the min-max
formulation is that the worst SPRT performance
is exhibited when misbehavior strategy f1*(x) is
employed (i.e., any other attack will be detected
faster). To illustrate this, we implement the
attack distributions f1

D(x) and f1*(x) from [3, 5] in
the OPNET network simulator and collect a cor-
responding sequence of backoff values for each
scenario. We test the performance of the SPRT
(sequential) and DOMINO (nonsequential)
detection schemes against both attacks. We per-
form our evaluation in the form of trade-off
curves between Td (mean time between detec-
tions) and Tfa (mean time between false alarms)
for both algorithms. Figure 4 confirms that the
backoff distribution f1* is indeed least favorable
since the detection delay of such attack strate-
gies is larger than the corresponding detection
delay for other strategies such as the DOMINO
attack, f1D(x), for any sensitivity of an IDS scheme
(i.e., for any Pfa). Figure 5 compares the perfor-
mance of the sequential (SPRT) and nonsequen-
tial (DOMINO) schemes for detection of least
favorable attacks. Again, the sequential nature

n Figure 1. Simulation scenario: two legitimate participants compete with the
adversary.
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of our scheme enables the quickest detection;
consequently, the detection delay for the DOMI-
NO scheme is up to 12 times higher than for the
SPRT scheme. This confirms our claim that if a
scheme is constructed for detection of a specific
class of attacks, its performance against any
other class of attacks becomes suboptimal. On
the other hand, since the SPRT scheme was
optimized for performance under the least favor-
able attack, it detects any other class of attacks
within a shorter time period.

CONCLUSIONS
This article emphasizes the importance of deriv-
ing optimal detection schemes and establishing
strict performance bounds for an IDS of interest
for a given set of security requirements. In the
case of IEEE 802.11 MAC, the detection scheme
that provides the best performance for any class
of attacks is of a sequential nature. However,
using the proposed framework, it is possible to
derive an optimal detection strategy for any
other scenario and protocol.

It is also important to point out that the
SPRT is a parametric statistic, while DOMINO
belongs to the class of nonparametric statistics.
Nonparametric statistics are easier to apply since
they do not require exact models of distribu-
tions. They only require knowledge of some
parameters (e.g., nominal backoff in DOMINO).
Since such tests consider only certain parts of a
distribution, they allow a very large class of
probability distributions. The advantage of such
tests is that they let us deal with unknown proba-
bility distributions, but at the same time they
throw away a lot of information about the prob-
lem. A parametric statistic, on the other hand,
needs a model for the distributions. If it has
both models, it should perform better than the
corresponding nonparametric statistic. Due to
the fact that using the wrong distribution f1 sig-
nificantly deteriorates the performance of detec-
tion schemes, we used robust statistics, where
the basic idea is to find the least favorable distri-
bution f1*, which guarantees that any other distri-
bution f1 ≠ f1* results in a suboptimal adversarial
strategy and is detected with smaller detection
delay.

The SPRT not only exhibits the best perfor-
mance over all sequential and nonsequential
tests, but it is also highly efficient since no
observation vectors need to be stored. The
only storage complexity is the one needed for
f1 and f0, thresholds a and b, and the current
statistics Sn. The SPRT algorithm is time-effi-
cient since in order to compute the log-likeli-
hood we only need to compute the ratio of two
functions and add this value to Sn. The over-
head is low and can be calculated by adding
the two previously mentioned values. Conse-
quently, the proposed approach can be used
for online detection.
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