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Abstract—Consider a discrete-time, linear time-invariant
process, two sensors and one controller. The process state is ob-
served in the presence of noise by the sensors, which are connected
to the controller via links that feature erasure. If a link transmits
successfully then a finite-dimensional vector of real numbers is
conveyed from the sensor to the controller. If an erasure event
occurs, then any information conveyed over the link is lost. This
paper addresses the problem of designing the maps that specify
the processing at the controller and at the sensors to minimize
a quadratic cost function. When the information is lost over the
links either in an independent and identically distributed (i.i.d.) or
in a (time-homogeneous) Markovian fashion, we derive necessary
and sufficient conditions for the existence of maps such that the
process is stabilized in the bounded second moment sense. We
also solve the optimal design problem in the presence of delayed
noiseless acknowledgment signals at the sensors from the con-
troller for an arbitrary packet drop pattern. We provide explicit
recursive schemes to implement our solution. We also indicate
how our approach can be extended to situations when more than
two sensors are available and when the sensors can cooperate.
The analysis also carries over to the case when each point-to-point
erasure link connecting the sensors and the controller is replaced
by a network of erasure links.

Index Terms—Control over communication channels, dis-
tributed estimation, linear time-invariant, networked control
systems, sensor networks.

I. INTRODUCTION

R ECENTLY, significant attention has been directed to-
wards networked control systems in which components

communicate over communication channels (see, e.g., [2], [6]
and the references therein). The estimation and control perfor-
mance in such systems is severely affected by the properties of
the channels. Communication links introduce many potentially
detrimental phenomena, such as quantization error, random
delays, data loss and data corruption to name a few, that may
lead to performance degradation or even stability loss.

In this work, we are specifically interested in the problem of
estimation and control across communication links that exhibit
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data loss. We consider a dynamical system evolving in time that
is being observed by two sensors. The sensors need to transmit
the data over communication links to a remote node, which
can either be an estimator or a controller. However information
transmitted over the links is erased stochastically. Preliminary
work in this area has largely concentrated on the case when only
one sensor is present. Within the one-sensor framework, both
stability [33], [41] and performance [21], [33] have been ana-
lyzed. Approaches to compensate for the data loss to counteract
the degradation in performance have also been proposed (see,
e.g., [14], [21], [27], [35] and similar works). Also relevant are
the works such as [3], [18], [31], [32] which look at controller
structures to minimize quadratic costs for systems in which both
sensor-controller and controller-actuator channels exhibit era-
sure. The related problem of optimal estimation across an era-
sure link was considered in [34] for the case of one sensor and
erasures occurring in an i.i.d. fashion, and in [11] for multiple
sensors and more general erasure models.

Most of the above designs aimed at designing a packet-loss
compensator. The compensator accepts those packets that the
link successfully transmits and propagates an estimate of the
state of the process when data sent over the link is lost. If the
estimator is used inside a control loop, the estimate is then used
by the controller. We take a more general approach to the con-
trol of networked control systems by exploring the possibility
of pre-processing (or encoding) information prior to transmis-
sion to improve the performance of a networked control system.
In [13] it was shown that such pre-processing can indeed yield
significant improvements in terms of stability and performance.
Moreover, for a given performance level, it can also lead to a re-
duced amount of communication. The benefits incurred become
even more apparent when the communication link is replaced
by a network of communication links [12], [16]. This effect can
also be seen in the recent works on receding horizon networked
control, in which a few future control inputs are transmitted at
every time step by the controller and buffered at the actuator to
be used in case subsequent control updates are erased [17], [19],
[24], [25].

In this work, we extend this idea to the case when multiple
sensors are present. Suppose a process is observed using two
sensors that transmit the data over erasure links to a controller.
If the sensors can share their measurements, there is effectively
only one sensor. We look at the case when cooperation between
the sensors is either not permitted, or occurs over erasure links.
We obtain necessary and sufficient conditions of stabilizability
in terms of the state-space representation of the process and
the probability of erasure over the links. We also present op-
timal performance achieving algorithms, under the assumption
that the sensors have access to noiseless acknowledgment re-
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garding the erasure process over the links connecting them to
the controller.

The problem involving the presence of multiple sensors trans-
mitting data in an aperiodic fashion is much more complicated
than the problem involving only a single sensor. The problem of
finding optimal encoding algorithms for the multi-sensor case
and analyzing their performance is similar to the problems of
fusion of data from multiple sensors and of track-to-track fu-
sion that have long been open. If the communication topology
is fixed, with a link, if present, being perfect (no erasure), then
some approaches to solve the problem are available in, e.g., [8],
[9], [15], [20], [28], [36], [38]. However, in our case, informa-
tion is lost randomly by the erasure links. This random loss
of information reintroduces the problem of correlation between
the estimation errors of various nodes [4] and renders the ap-
proaches proposed in the literature as sub-optimal [5], [7]. There
are special cases for which the solution is known, e.g., when the
process noise is absent [39] or when one of the sensors trans-
mits data over a channel that does not erase information [13].
However, as stated earlier, in general, the problem is still open.
Owing to a separation principle that we present, our results also
carry over to this problem.

The paper is organized as follows. We begin in the next sec-
tion by describing the problem set-up and our notation. In Sec-
tion III, we present a summary of the stabilizability results for
the case when two sensors transmit data over erasure chan-
nels. In Section IV, we present a separation principle that al-
lows us to consider an alternative estimation problem. For the
case when the sensors have access to acknowledgments from
the controller, we provide a recursive algorithm which is op-
timal with respect to every possible realization of the erasure
process in Section V-A. Stability analysis of this algorithm al-
lows us to prove the necessity of the stabilizability conditions in
Section V-B. In Section V-C, we then prove that the conditions
are sufficient as well, by presenting a sub-optimal algorithm
that stabilizes the system even when acknowledgments from the
controller are not available. Section VI generalizes the results in
various directions, including multiple sensors (Section VI-A),
sensors co-operating over an erasure link (Section VI-B), and
more general models of erasure events (Section VI-C).

II. PROBLEM FORMULATION

sConsider the set-up of Fig. 1 denoted by process , and the
following associated assumptions. The process is described by
a discrete-time state-space representation of the following type:

(1)

where is the process state, is the con-
trol input and is the process noise assumed to be white,
Gaussian, zero mean with covariance . The initial state

is a Gaussian random variable with mean zero and covari-
ance matrix . The process state is observed using two sen-
sors that generate measurements of the form

(2)

Fig. 1. Basic framework for output feedback using two remote sensors, in
the presence of erasure channels. The process and measurement noises at the
process are represented by ���� and � ���, respectively. The erasure
process, in the links connecting the sensors to the controller, is governed by
� ���.

where and . The measurement
noises and are also assumed to be white, Gaussian,
and zero mean with positive definite covariance matrices
and respectively. For ease of notation, we adopt the con-

catenation and denote the covari-
ance matrix of by . Similarly, we define

In addition, we adopt the following assumption for simplicity.
Assumption 1: The pairs and are not observ-

able. In addition, we assume that the overall system is observ-
able, i. e., the pair is observable.

Assumption 1 corresponds to the more difficult scenario
where the controller might have to combine the information
gathered from and . Later we show that the stability
analysis for the case where and (or) are ob-
servable constitutes a particular case of our analysis. Thus, the
assumption is without loss of generality.

Definition II.1 (Erasure Link Model): Consider that
and represent Bernoulli stochastic

processes taking values in the set and characterized by a
probability mass function of the following type:

where . The process governs the
state of the links that connect the sensors to the controller. The
relationship between sensor ’s output and the controller’s
input is described by

if
if

(3)

where we adopt the symbol to represent erasure, i.e., it indi-
cates that the information sent from sensor to the controller
was lost.

Note that, in general, we do not assume that the erasure events
in the channels are independent. However, we presuppose that
the sources of randomness , , and

are mutually independent.
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We consider sensors with the following functional structure:
Definition II.2 (sensor Map Classes and ): For any

given positive integer , define as the set containing all sensor
maps with the following structure:

(4)

where is in the set and takes values in . No-
tice that we assume that is made available to the
sensor via noiseless acknowledgments. In addition, consider the
set of sensor maps with the structure

(5)

where is in the set and takes values in .
is the subset of consisting of the sensor structures that do
not rely on the knowledge of past values of the erasure process

. Equivalently, can be specified as the set of
sensor maps for which the sensor does not have access to ac-
knowledgment signals. In the sequel, we will also refer to sensor
maps as encoding or information processing algorithms, and to
sensors as encoders.

Definition II.3 (Controller Class): Consider stochastic pro-
cesses and taking values in . We define
the controller class as the set of all controllers with the fol-
lowing structure:

where takes values in and is the dimension of the
control input to the process specified in (1).

Given a process and the erasure link statistics, specified by the
probability mass function , we want to minimize a quadratic
cost function using controllers and sensor maps in the classes

or and investigate conditions for the existence of such
controllers and sensor maps that stabilize the process in the fol-
lowing sense.

Definition II.4 (Cost Function and Stability Criterion): Con-
sider the set-up of Fig. 1 and assume that the matrices , , ,

and the erasure link statistics are given. For a given re-
alization of the erasure processes, we wish to find the integer ,
controller and sensor maps and (in the specified class

or ) that minimize the familiar quadratic cost function

(7)

In the above equation, and are positive definite
matrices, is the state of the process and the set

is used to indicate that the
expectation is taken with respect to the initial condition, the
process noise and the measurement noise. For a given statistical
description of the erasure processes, we consider a selection
of controller , integer and sensor maps and to be
stabilizing if and only if

(8)

where indicates that the expectation is further taken with
respect to the erasure events.

We wish to emphasize that the expectation in (7) is not taken
with respect to the erasure processes ; the design we propose
will often be optimal for any realization of the packet dropping
process. Also, we make no claim about the uniqueness of ei-
ther the controller or the sensor map. We will denote the min-
imal cost achieved in (7) by using an optimal controller for a
particular encoding algorithm as . Finally, for a com-
parison between our framework and existing work on stabiliz-
ability of decentralized control under data-rate constraints, see
Section III-A.

III. CONDITIONS FOR STABILITY

In this section, we state the necessary and sufficient condi-
tions for stabilization. The proofs of the results will be con-
structed in several stages, going from the proof of a separation
principle in Section IV to the description of an optimal con-
trol algorithm in Section V. We will use the following result
regarding the state space representation of linear processes of
the form (1)–(2) that is proved in the Appendix.

Proposition III.1: Consider an -dimensional linear and
time-invariant process satisfying Assumption 1 and let
and , taking values in and , constitute a bi-parti-
tion of the process output. We can always construct a state-space
representation with the structure (1)–(2), where the matrices

, , and are
written in one and only one of the following forms, which we
refer to as type I and type II. The first possibility, denoted as
type I, is given by:

(9)

where , and . The
following is the second possibility (type II):

(10)

where , and .
In the above representations (of types I or II), describes

the dynamics of the state subspace that is not observable from
, while the modes that are not observable by are

dictated by the dynamics of . If the representation is of
type II, then specifies the dynamics of the modes that are
observable by both and . Such representations are
particularly convenient for the purposes of this paper. Alterna-
tive modal decomposition for decentralized processes are also
possible, see, for instance, [1]. Using the representation above,
we can state the necessary conditions for stabilizability of the
process as follows. The proof is provided in Section V-B.

Theorem III.2 (Necessary Conditions for Stabilizability):
Consider the problem set-up of Fig. 1 and let ,
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, and be given matrices
specifying the state-space representation for the process. In ad-
dition, assume that the process satisfies Assumption 1 and that
the statistics of the erasure links is specified by a given proba-
bility mass function , with
that is independent of the time index . Suppose that the
state-space representation can be written as in (9) (type I).
There exists a controller in the class , a positive integer and
sensors in the class such that the closed loop system is stable
only if the following inequalities hold:

(11)

(12)

where represents the spectral radius of the matrix .
If, instead, the state-space representation is of type II, i. e. of
the form (10), then necessary conditions for stabilization also
include the following additional inequality:

(13)

Remark III.1: The case when Assumption 1 does not hold
and the process is observable using only one sensor has already
been considered in the literature [13]. Our results can be applied
to this case if we adopt the convention that the spectral radius of
an empty matrix is 0. Thus, e.g., if the entire state is observable
from , then the spectral radius of is assumed to be 0.
A similar statement can be said about the sufficiency conditions
given below as well. Thus we will assume that Assumption 1
holds in our analysis from now on.

It turns out that the above conditions are also sufficient for
stabilizability for sensors in the class (and hence in the
class ). The following result is proved in Section V -C.

Theorem III.3 (Sufficient Conditions for Stabilizability):
Consider the set-up of Fig. 1 and let , ,

and be given matrices specifying the
state-space representation for the process. In addition, assume
that the process is controllable and that it satisfies Assumption
1. In addition, let the statistics of the erasure link, given by the
probability mass function ,
be given. Consider that the state space representation can be
written as in (9) (type I). There exists a controller of class ,
a positive integer and sensors of class such that the
feedback system is stable, if the following two inequalities hold:

(14)

(15)

where represents the spectral radius of the matrix .
If the state-space representation is of type II, i.e., it is of the form
(10), then stability is assured by requiring that the following
additional inequality also holds:

(16)

Remark III.2: The inequalities in Theorems III.2 and III.3 are
identical. However, Theorem III.3 states that if such inequalities
hold then stabilization is achievable by using sensors of class

, while Theorem III.2 characterizes the necessary condi-
tion for stabilization by allowing sensors of class . The fact

Fig. 2. Log-convex stabilizability region in terms of � � ���� ��� � ��
and � � ���� ��� � ��, under the assumption that � ��� and � ��� are
independent.

that , leads to the interesting conclusion that the use
of acknowledgement signals at the sensors does not
impact stabilizability. The use of is crucial, however,
in an optimal control strategy that will be identified in Section V.

Remark III.3: The stabilizability conditions make intuitive
sense. The quantity measures the rate of increase of
the second moment of the modes that are observable using only
sensor 2. To keep the estimate error covariance of these modes
bounded,weneed the information about these modes from sensor
2 to arrive often enough. Equation (11) formalizes this relation.
Similarly, the inequality in (12) places a constraint on the proba-
bility of erasure of information from sensor 1 in terms of the rate
of increase of the modes that are observable solely through sensor
1.Finally, therelation in(13)placesaconstraintontheprobability
of erasure of information from at least one of the sensors in
terms of the modes that are observable from either sensor.

If the erasure processes and are independent, then
the inequalities in Theorems III.2 and III.3 lead to a log-convex
stabilizability region, in terms of the erasure probabilities (see
Fig. 2).

A. Comparison With Existing Results on Decentralized
Stabilizability Under Data-Rate Constraints

The works [23], [26], [37], [40] have derived necessary and
sufficient conditions under a similar framework, but considering
finite data-rate communication links. It is interesting to note that
[37, Fig 3.] also defines a convex stabilizability region, in terms
of data-rates, which is similar to our Fig. 2. However, we must
stress that our result cannot be derived from the finite data-rate
framework of any of these works because of the following main
reasons:

1) The work of [23], [26], [37], [40] considers communica-
tion links featuring deterministic and finite data-rate con-
strains. Their results are derived based on information the-
oretic ideas and counting arguments. In contrast, our re-
sults cannot be derived using such arguments because our
erasure links have infinite capacity (in the information the-
oretic sense), provided that the probability of erasure at
the links is strictly less than one1. Existing work for fi-
nite data-rate (stochastic) erasure channels addresses only

1We assume that quantization error is not an issue since typically a commu-
nication packet will assign a large number of bits for the data transmitted by the
sensors, see, e.g., [10].
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a single link and it does not provide guarantees of opti-
mality [22], [30].

2) Our work considers measurement and process noise while
these works focus on autonomous asymptotic stability.

3) We also derive optimal control strategies, while the work
of [37], [40] addresses solely stabilizability.

IV. A SEPARATION PRINCIPLE

We begin by presenting a separation principle that allows
us to consider an equivalent estimation problem instead of the
control problem formulated above. At any time , define the
time-stamp corresponding to sensor as

The time-stamp denotes the latest time at which transmission
was possible from sensor . Using the time-stamp, we can define
the maximal information set for sensor as

The maximal information set is the largest set of measurements
from sensor that the controller can possibly have access to at
time . For any encoding algorithm , we can also define the
information set corresponding to sensor at time as

where is the output of the sensor at time , when the algo-
rithm is followed at sensor . comprises the time-sam-
ples of which can be recovered at the controller via the
output of the erasure link from sensor . For any encoding algo-
rithm, the inclusion holds, where and

are the smallest sigma algebras (filtrations) generated
by and , respectively.

Consider two encoding algorithms and that guarantee
at every time step

With an optimal controller design for the two algorithms, the
values of cost achieved will satisfy Now
consider an algorithm under which, at every time step the
encoder for sensor transmits the set

Note that the algorithm does not specify valid sensor maps
since the dimension of the transmitted vectors cannot be

bounded by any constant . However, if algorithm is followed,
at any time step , the decoder (and the controller) would have
access to the maximal information sets and .
This implies that for any other encoding algorithm , the cost
function .

Thus, in particular, one way to achieve the optimal value of
is through the combination of an encoding algorithm that

makes the information sets ’s available to the controller

and a controller that optimally utilizes the information set. Fur-
ther, one such information processing algorithm is the algorithm

described above. However, this algorithm relies on the trans-
mission of real vectors whose dimension increases linearly over
time. In the sequel, we show that this difficulty can be avoided
in the presence of noiseless acknowledgments. In particular, we
prove that optimal performance can be achieved by using sen-
sors of the class , where is a finite constant quantifying the
dimension of the transmitted vectors.

To this end, we begin by a statement of the familiar separa-
tion principle when algorithm is used. For a random variable

, denote by the minimum mean squared error
(MMSE) estimate of given the information .

Proposition IV.1 (Separation Principle): Consider the
problem defined in Section II. Suppose that the encoding
algorithm as described above is followed, so that the con-
troller has access to the maximal information sets ’s at
every time step . Then, an optimal control input at time is
calculated by using the relation

where denotes the optimal LQR control law corre-
sponding to the cost function (7) under full state feedback.

Proof: The proof uses standard dynamic programming ar-
guments. We need to choose that mini-
mize . We begin by gathering terms that depend on the choice
of and and writing them as

Utilizing the process dynamics and the fact that the noise
is white and zero mean, we can rewrite as

where

and depends only on the
noise

Thus, the only term affected by the choice of is .
Completing the squares, we can write as

where
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and is the LQR control law corresponding to the cost
function (7) under full state feedback. If the controller had ac-
cess to the entire state, it could have chosen the optimal control
input as . However, that is not possible now. Instead,
the controller needs to calculate to minimize using
the information it has access to. The control problem, thus, re-
duces to an optimal (in the sense of minimum mean squared
error (MMSE)) estimation problem. We can write the optimal
control at time step as

Since all the random variables are Gaussian, the optimal esti-
mator is linear. Denote the estimation error incurred due
to the minimizing choice of by . We have

We can thus write the cost function as

Thus, we now need to choose control inputs for time steps
0 to to minimize . By scanning the terms on the
right hand side of the equation, we see that is inde-
pendent of the choice of control laws from time 0 to .
Similarly, is also independent of all previous control
laws since these control inputs are known while calculating

Thus, the only
term that is dependent on the control inputs till time step
is . But our argument so far was independent of time
index . Thus, we can recursively apply the argument above
for time steps , and so on.

There are two reasons this separation principle is useful:
1) We recognize that an optimal controller does not need

to have access to the information sets ’s at
every time step . The encoders and the decoder only
need to ensure that the controller receives the quantity

, or equivalently,
.

2) If the controller has access to this quantity, the controller
design part of the problem is solved. The optimal controller
is the solution to the LQR control problem.

Our next result allows us to make another simplification in the
problem by separating the dependence of the estimate on mea-
surements from the effect of the control inputs. In the context of
our problem, this is useful since the encoders do not have access
to the control inputs2. Thus, the effect of the previous control
inputs has to be included by the controller that has access to all
previous control inputs. To this end, we state the following re-
sult.

Proposition IV.2 (Separation of Control and Measurement
Effects): Consider the problem as formulated in Section II. The
quantity can be calculated
as the sum of two quantities

2Note that even the cost function may be unknown at the encoders.

where depends only on the information sets ’s
(and not on the control inputs ) and depends
only on the control inputs (but not on the information sets).

Proof: The proof follows from the linearity of the Kalman
filter. Assume, without loss of generality that .
The effect of the measurements can be included using the fol-
lowing modified Kalman filter:

Measurement Update for the modified Kalman Filter

Time Update for the modified Kalman Filter

The initial conditions are given by
and . We calculate the quantity

using the measurements
from both sensors from time 0 to and only the sensor 2
from time to according to the above filter. The
effect of the control inputs can be calculated through the term

that evolves as

where

otherwise

and the initial condition is . To complete the proof, we
simply identify

For brevity of notation, in the sequel, we will denote

Remark IV.1: It is important to emphasize that is
not the estimate of based only on measurements from
sensor 1 till time and from sensor 2 till . Moreover, as long as

is stabilized (e.g., by using the algorithm described in the
next section), the measurements , and hence the quantity

will remain stable.
Consider an additional open loop process that evolves as

(17)
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The process state is observed by two sensors of the form

where and the noises have the same value at every
time step as those appearing in the description of the process

(and the corresponding sensors). The encoders now have ac-
cess to the measurements and transmit over analog erasure
channels to an estimator that needs to calculate the MMSE es-
timate of based on information it receives. The cost
function is to minimize the mean squared error based cost func-
tion

(18)

Either of the communication links suffers an erasure at time
if and only if the corresponding communication link in the

original problem for the process suffers an erasure. Any al-
gorithm that ensures that the estimator in process has ac-
cess to would ensure that the controller for

has access to . Note that for process ,
the quantity is precisely the MMSE estimate of
given the measurements .
For the process , denote by the error between the state

and the estimate . Denote for the
process , the error between the state and the estimate
at the controller by .
By Proposition IV.2, at every time step . Note
that the estimates for the two processes are not the same; only
the errors are. Now, because of Proposition IV.1, it is simply the
error that determines the stability and performance of the
process . Thus, to provide the optimal algorithm and to an-
alyze the stability and performance for the closed-loop system,
we can simply look at the open-loop process . We will denote
this estimation problem as . From this point on, we will con-
centrate on the problem and exploit the equivalences noted
above. In particular, the stability criterion presented in Defini-
tion II.4 for the process corresponds to the condition that

(19)

V. OPTIMAL ALGORITHM AND STABILIZABILITY

In this section, we will first present a recursive encoding al-
gorithm for sensors in the class that allows the estimator to
calculate the estimate and is, thus, op-
timal. We will then analyze the stability of the algorithm which
shall prove Theorem III.2. Finally, we shall prove that the condi-
tions required for stability using an optimal algorithm are suffi-
cient for a particular algorithm in the sensor class , which
shall prove Theorem III.3.

A. A Recursive Algorithm For Optimal Performance

We begin with the following result.
Proposition V.1: Consider the problem . Let de-

note the MMSE estimate of based on all the measurements

of sensor up to time . Denote the corresponding error covari-
ance by . The estimate of the state based on
measurements from sensor 1 till time and sensor 2 till time
can be calculated using a relation of the form

where does not depend on sensor 2’s measurements
and does not depend on sensor 1’s measurements.

Proof: Proof is based on the algorithm proposed in [13].
Assume, without loss of generality, that . The quantity

is calculated using the following algorithm. For the
algorithm given below, we will abuse notation a bit, and consider

(equivalently, sensor 1 did not take any measurements)
for time steps greater than , and for time steps larger
than for these calculations. At each time step ,

1) Use a Kalman filter to obtain and .
2) Calculate

3) Calculate global error covariance matrices and
using the relation

4) Obtain

5) Finally calculate

(20)

with .
The quantity is calculated by a similar algorithm ex-
cept using the local estimates and covariance .
Finally, the estimate is calculated using the relation

(21)

where is calculated as above. That is indeed
the MMSE estimate given all the measurements from sensor 1
till time and from sensor 2 till time can be proved by utilizing
the block diagonal structure of the matrix as in the proof of
Theorem 2 in [13].

The above result identifies quantities that need to be trans-
mitted by the two sensors to calculate the MMSE estimate of

. The quantities depend only on local measurements at the
sensors; however, an implicit assumption is that each sensor is
informed about the times and .

Definition V.1 (Algorithm ): We now provide an optimal
encoding algorithm, denoted for future reference as the algo-
rithm , for the sensor class . Let denote the
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error covariance of the MMSE estimate of the state cal-
culated using measurements from sensor 1 till time and from
sensor 2 till time . At each time step

• Encoder for Sensor 1: Because of the noiseless ac-
knowledgments, sensor 1 can calculate the time stamp

. Encoder 1 calculates and transmits two quanti-
ties: and . Note that in both cases,
measurements only from sensor 1 till time are used.

• Encoder for Sensor 2: Sensor 2 calculates and transmits
and .

• Decoder at the Estimator: The estimator maintains three
quantities.
— the estimate with the initial value

,
— a vector for the contribution from sensor 1 with

the initial value
— a vector for the contribution from sensor 2 with

the initial value .
At every time step , the decoder faces one of four situa-
tions.

1) : The decoder calculates

2) : The decoder calculates

3) : The decoder calculates

4) : The decoder calculates

We can state the following result.
Theorem V.2: In the algorithm

where ’s are the maximal information sets defined
earlier.

Proof: The proof is straight-forward given Proposition
V.1. At any time step , the term equals

and equals . For any of the four possibil-
ities of channel outputs, it can be verified that the estimate is
calculated according to (21).

Note that the algorithm is optimal, yet involves a constant
amount of transmission and processing. Each sensor can calcu-
late the terms it transmits using a recursive algorithm of the form
outlined in (20).

Remark V.1 (Optimality for Any Drop Sequence and the
‘Washing Away’ Effect): So far, we have made no assumptions
on the realization of the erasure process nor on the knowledge
of the statistics of the erasure events at any of the nodes. The
algorithm provides the optimal estimate for an arbitrary realiza-
tion of the erasure process, irrespective of whether the erasure
process can be modeled as i.i.d. or as a more sophisticated
model like a Markov chain. The algorithm results in the optimal
estimate at every time step for any realization of the erasure
process, not merely in the optimal average performance. Also
note that if data is received from sensor at any time step ,
the effect of all previous erasures from that sensor is ‘washed
away’. The estimate at the receiving node becomes identical to
the case when all measurements , were
available, irrespective of which previous data had been erased.

Remark V.2: If the closed loop process is stable,
, and hence the quantities transmitted by the

sensors, remain stable. If the state becomes unstable, of
course, these quantities will also become unbounded. However,
the optimality of the algorithm implies that, in such a case,
no other quantity transmitted by the sensors would stabilize
the process. Note that the quantities being transmitted for the
problem may not be stable. However, this problem has only
been posed for technical convenience. Of course, problem
may be of individual interest. Estimating an open-loop unstable
process has been studied by many researchers recently for
analog erasure channels under a variety of settings. It may be
noted that the quantity transmitted in all these works (e.g., the
measurements) is unstable.

B. Necessary Conditions for Stabilizability

By analyzing the stability of the optimal algorithm , we
can obtain necessary conditions for stability for any encoding
algorithm in the class (and, in turn, ). We shall need
the following result.

Proposition V.3: Consider the process in (17) being observed
by a sensor of the form

where is white Gaussian noise with zero mean and covari-
ance . Let denote the Riccati recursion corresponding
to this sensor as applied on the matrix , thus

(22)
Further, let denote the above Riccati recursion applied

times on the matrix , i.e.

(23)
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Finally, let be a scalar. Then, the sum

(24)

is bounded as if and only if

where is the spectral radius of the unobservable part of
when the pair is put in the observer canonical form. In
particular, if , so that is given by the Lyapunov
recursion

then the sum (24) converges if and only if where
is the spectral radius of matrix .

Proof: The proof follows along the lines of Theorem 4 in
[11] by considering the evolution of estimate error covariance
for the modes that are unobservable from . Details are omitted
for space constraints.

Proof of Theorem III.2: As discussed above, the stability
conditions for process are identical to those for . Define
the Riccati operators , and in a fashion similar to
(21) when sensor 1, sensor 2 and no sensor is used, respectively.
Also define , and analogously. Finally, define

to be the error covariance of the MMSE estimate of
when all the measurements from sensors 1 and 2 till time step
are available. Because of the assumption on observability of

, converges exponentially to a steady-state value
denoted by .

Let denote the expected error covariance of the
estimate of the state as calculated at time . The
conditions required for stabilizability of the error covariance

are identical to those required for stabilizability of
the expected error covariance of the estimate of the state
calculated at time . Define the events as follows.
The event denotes that at time , the last transmission
was successfully received from sensor 1 at time and from
sensor 2 at time . Moreover, we allow the indices to attain
the value -1. For or , the event
denotes the event when transmission from the corresponding
sensor was never possible till time . Thus .
Denote the error covariance conditioned on the event
happening by . Due to Theorem V.2, is the
error covariance for the MMSE estimate of based
on measurements from sensor 1
and from sensor 2. Let be the
(time-invariant) probability of the event occurring. We
can thus write

Since each term in the summation is positive semi-definite, a
necessary condition for the sum to be bounded is that any sub-

sequence in the sum is bounded. We will consider three partic-
ular sub-sequences and show that the conditions in (11)–(13) are
necessary for stabilizability. First consider the sequence

Since converges exponentially to as , we can
substitute for the conditional error covariances to study the
convergence. Thus, we obtain

Thus, using Proposition V.3, we can prove that this sum con-
verges only if (11) holds In a similar fashion, we can prove that
the condition in (12) is necessary by considering the sub-se-
quence

Finally, the sub-sequence

yields the necessary condition

(25)

Since , there are two cases.
1) If , (25) reduces to (13) and the proof is

complete.
2) If either or , (25) is

subsumed by either (12) or (11). Moreover, (25) implies
(13). Thus, the proof is complete in this case as well.

C. Sufficient Conditions for Stabilizability

We now present the proof of Theorem III.3 by considering a
particular algorithm in the class . Even though Proposi-
tion IV.1 considers only the case when the controller can esti-
mate the state given the maximal information sets ’s,
we note that:

1) For any sensor map and estimator that guarantees that the
state of the process evolving as in (1) can be esti-
mated with bounded error covariance, a controller of the
form with will guarantee
stability of the closed loop system.

2) Since all the previous control inputs are known to the con-
troller, the encoding algorithm only needs to ensure that
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the state of the process can be estimated with a
bounded error covariance using sensors of the form .

We now propose such an algorithm, denoted by . Due to
Proposition III.1, we can consider the process to be either of
type I or of type II. We can also partition the state space of
the process in one of two ways.

1) If the process is of type I, denote

(26)

2) If the process is of type II, denote

(27)

Now consider the following algorithm. At each time step
• Encoder for Sensor 1:

— If the process is of type I, sensor 1 calculates
and transmits the estimate of the modes

of the process using its local measurements
.

— If the process is of type II, sensor 1 calculates and trans-
mits the estimate and of the modes

and of the process using its local measure-
ments .

• Encoder for Sensor 2:
— If the process is of type I, sensor 2 calculates

and transmits the estimate of the modes
of the process using its local measurements

.
— If the process is of type II, sensor 2 calculates and trans-

mits the estimate and of the modes
and of the process using its local measure-

ments .
• Decoder:

— If the process is of type I, the decoder maintains an esti-
mate of the modes and of the modes

. At every time step , the decoder takes the fol-
lowing actions.
1) If , , else

.
2) If , , else

.
It then constructs the estimate by stacking the
estimates and .

— If the process is of type II, the decoder maintains es-
timates , and of the modes ,

and respectively. At every time step , the
decoder takes one of the following actions:
1) If

2) If

3) If

4) If

It then constructs the estimate by stacking the
estimates , and .

We shall now prove that under the conditions (14)–(16), the
estimate of the state is stable in the sense of (19).

Proof of Theorem III.3: We give the proof if the process
is of type II. The proof for type I is similar. By construction,
the estimates , , and are
stable. Denote the corresponding error covariance matrices by

, , and respectively.
1) For the modes , the error covariance evolves as

w.p.
w.p.
w.p.

where is covariance matrix of the process noise en-
tering the evolution of the modes . Thus if (16) holds,
the error for the modes will remain stable.

2) For the modes , the error covariance in estimating the
modes can thus be considered as additive noise with
bounded covariance. The error covariance for these modes
evolves as

w.p.
w.p.

where is the covariance of noise and error incurred
through the estimation of modes . Thus if (15) holds,
the error for the modes will be stable.

3) A similar argument shows that if (14) is satisfied, the error
for the modes will be stable.

Remark V.3 (Presence of Delays): We can consider the esti-
mation problem when the communication channels impose
a stochastic delay. The above stability conditions are not altered
by the imposition of such delays, as long as they are finite. This
can be seen from the following three facts:

1) Stability conditions for the case of no delay are necessary
for stability for the case when delay is present.
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2) For the case when a stochastic delay upper bounded by a
finite value is present, sufficient conditions for sta-
bility can be obtained by replacing the time-varying delay
by a constant delay of value equal to .

3) If the algorithm is used when the communication
channel introduces a constant delay, the stability conditions
are not altered. This is because our analysis will carry over
directly to the case when is being estimated at
time . Moreover, if an algorithm yields a stable estimate
for , it will yield a stable estimate for
simply through a time update.

Note that the above argument works even if data packets from
the sensors are re-arranged because of the delay. Also, note that
infinite delays are equivalent to erasures and can, thus, be treated
in our framework.

VI. EXTENSIONS AND GENERALIZATIONS

A. Case of Multiple Sensors

It is fairly obvious that Theorems III.2 and III.3 can be gen-
eralized to the case when sensors are present. We present the
following stability result while omitting the proof.

Proposition VI.1: Consider the process in (1) being observed
by sensors, such that the -th sensor generates measurements
according to the model

The sensors transmit data over erasure channels, with the event
of erasure in the -th channel being denoted by . Consider
the possible ways of choosing out of the sensors, for
all values of between 0 and . For the -th such way, let the
sensors chosen be denoted by and sensors not
chosen by . Denote by the matrix formed
by stacking the matrices . Finally, denote
by the spectral radius of the unobservable part of when the
pair is put in the observer canonical form. A necessary
and sufficient condition for the existence of a positive integer
, an encoding algorithm of either the type or and

a controller that stabilize the process is that the following
inequalities for be satisfied:

B. Communication Over Networks of Erasure Channels

We can also consider the case when sensors transmit informa-
tion not over erasure channels, but over networks, in which each
link is modeled using the erasure model described above. It is
fairly obvious that the algorithms used for proving the necessity
of the stabilizability conditions in Theorem III.2 and for proving
the sufficiency in Theorem III.3 can be generalized to this case,
provided there is a provision for time-stamping the transmitted
vectors. As an example, consider the algorithm used to prove
sufficiency.

• If the networks connecting the two sensors to the controller
are disjoint, each link in the two networks carries two quan-
tities as above.

1) Sensor 1 calculates and transmits the estimates
and at every time step. Simi-

larly, sensor 2 calculates and transmits the estimates
and at every time step. The

time-stamps correspond to the latest measurements
used in calculating these estimates.

2) Every node in the network checks the time-stamp of
data received over the incoming edges and the estimate
in its memory. It chooses the data with the latest time-
stamp, transmits it along outgoing links and stores it in
the memory for the next time step.

3) The controller constructs the estimate in the same way
as in the two-channel case.

• If the networks share links, however, each link carries four
quantities. While the sensors calculate and transmit local
estimates, each node in the network transmits data corre-
sponding to the latest received values of all the four es-
timates: , , and . Using
this data, the controller can calculate the estimate.

Note that the intermediate nodes in the network do not need
acknowledgments from the controller.

We can also use the techniques from [12] for the case when
only one sensor is present and extend the stability conditions to
this case. We state the following result without proof.

Proposition VI.2: Consider the set-up of Fig. 1 with the era-
sure links being replaced by networks in which each link is
modeled as a erasure link with given probability of erasure. Let

, , and be
given matrices specifying the state-space representation for the
process. In addition, assume that the process is observable and
controllable and that its state-space representation is of type I or
type II. If the state space representation is of type I, then there
exists a controller of class , a positive integer and sensors of
class or such that the feedback system is stable if and
only if the following inequalities hold:

(28)

(29)

where represents the spectral radius of the matrix .
If the state-space representation is of type II then the necessary
and sufficient conditions for stabilizability include the following
additional inequality:

(30)

In the above inequalities, the terms denote the max-cut
probabilities of the network. For the case when the erasure over
distinct links are independent events, they can be calculated as
follows:

1) To calculate , form a cut by partitioning the node
set of the network connecting sensor 1 and the network
into two sets: the source set containing the sensor 1 and
the sink set containing the controller. For this cut, calculate
the cut-probability by multiplying the erasure probabilities
for the edges going from the source set to the sink set.
The maximum such cut-probability over all possible cuts
is .
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2) To calculate , proceed as above. However, the
source set now contains sensor 2 instead of sensor 1.

3) To calculate , proceed as above. However, the
source set now contains both sensor 1 and sensor 2.

A special case of the network arises when each sensor trans-
mits data over a single link to the controllers. However, in ad-
dition, the sensors can cooperate by communicating with each
other over a link. If the link does not exhibit erasure, then the
two sensors, in effect, form one sensor and the results of [13]
apply. However, if this link also exhibits erasure, then we ob-
tain the following stability conditions:

Corollary VI.3 (Sensors Cooperating Over a Erasure Link):
Consider the set-up of Fig. 1 with an additional bidirectional
link connecting the two sensors. Let the event of erasure over
the link connecting the two sensors by . Denote

If the state space representation is of type I, then there exists a
controller of class , a positive integer and sensors of class
or such that the feedback system is stable if and only if
the following inequalities hold

where represents the spectral radius of the matrix .
If the state-space representation is of type II then the necessary
and sufficient conditions for stabilizability include the following
additional inequality:

(31)

C. Markov Drops

While the algorithm was optimal for arbitrary realiza-
tions of the erasure process, the stability analysis so far assumed
that erasure events were i.i.d.. This condition can be relaxed.
A popular model for the bursty nature of packet drops in a
wireless channel is according to a Markov chain. The simplest
such model is the classical Gilbert-Elliot channel model. In this
model, the channel is assumed to exist in one of two possible
modes: state 0 corresponding to a packet drop and state 1 corre-
sponding to no packet drop. The channel transitions between the
two states according to a Markov chain. We have the following
result.

Proposition VI.4 (Necessary and Sufficient Conditions for
Stabilizability for Markovian Packet Drops): Consider the
set-up of Fig. 1. Let the statistics of the erasure links 1 and 2 be
described by Markov chains. For the link , let denoting
the conditional probability of an erasure at time given an
erasure at time . Finally, let the erasures over the two channels
be independent. If the state space representation is of type I,
then there exists a controller of class , a positive integer and
sensors of class or such that the feedback system is
stable if and only if the following inequalities hold:

(32)

(33)

where represents the spectral radius of the matrix .
If the state-space representation is of type II then stability is
assured if and only if the following inequality also holds:

(34)

VII. CONCLUSION

In this paper, we considered the problem of controlling
a process using measurements from multiple sensors. The
information from the sensors to the controller is transmitted
over links where erasure (data loss) is governed by a stochastic
process. We identified necessary and sufficient conditions for
the stabilizability of a linear and time-invariant process, in the
second moment sense. The allowable stabilization policies at
the sensors are constrained to place vectors of constant dimen-
sion for possible transmission over the erasure links. Under the
assumption that the controller is able to transmit acknowledg-
ments back to the sensors, we identified an encoding algorithm
that minimizes a quadratic cost. We also considered various
extensions to the basic set-up.

APPENDIX

PROOF OF PROPOSITION III.1

Consider that we are given a linear and time-invariant process
with the properties specified in the statement of the Proposition
and whose state-space representation is specified by matrices

, , and .
Here and represent a bipartition of the output and
stands for stage zero . Below we outline a procedure, comprising
three stages, that will lead to an equivalent state-space of type I
or type II, as defined in the statement of the Proposition.

First Stage: Since, from Assumption 1, the process is
not observable from alone, or equivalently the pair

is not observable, we can use the canon-
ical structure theorem [29, page 340, eq. (22)] to conclude
that there exists a transformation such
that the matrices and

have the following structure:

(35)

(36)

where , and .
Notice that is a strictly positive integer because the pair

is not observable. The remaining matrices
defining the new state-space representation are given by

and .

Second Stage: We start by partitioning in the fol-
lowing way:

(37)
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where . We can now apply, once again, the
canonical structure theorem [29, page 340, eq. (22)] to show
the existence of a transformation such that
the matrix features one of the fol-
lowing structures:

if

otherwise (type I)
(38)

where and . Similarly, for

the matrix the following
holds:

(39)

where and . Recall that ac-
cording to Assumption 1 the process is not observable from
alone, implying that is a nonzero positive integer.

Third Stage: Consider the following state transformation:

(40)

We can now use the previous analysis to show, by inspec-
tion, that the state-space representation given by the matrices

, ,

and is in the form specified by (9) if the
process is type I and that otherwise the matrices will have the
structure (10).
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