
Adaptive Virtual Queue Random Early Detection in Satellite Networks

Do J. Byun and John S. Baras, Fellow, IEEE
Department of Computer Science, University of Maryland at College Park

dbyun@hns.com, baras@isr.umd.edu

Abstract

Due to exponential increases in internet traffic, Active
Queue Management (AQM) has been heavily studied by
numerous researchers. However, little is known about
AQM in satellite networks. A microscopic examination on
queueing behavior in satellite networks is conducted to
identify problems with applying existing AQM methods. A
new AQM method is proposed to overcome the problems
and it is validated with a realistic emulation environment.

1. Introduction

Internet Protocol (IP) over Satellite (IPoS) has been
commercially available for the last few decades. Due to
its high availability and mobility, IPoS has been attractive
to areas where terrestrial services aren’t available as well
as enterprises with scattered branch offices. One big
barrier that IPoS has faced is its high propagation delay
between earth stations and satellite. A typical round trip
time (RTT) for a two-way geosynchronous satellite is
around 600 msec.

Figure 1. IPoS system architecture

Figure 1 illustrates the system architecture of a typical
two-way IPoS system where half of the 600 msec RTT
occurs between the Hub Segment and the Space Segment;
the other half occurs between the Remote Terminal
Segment and the Space Segment. The biggest problem
with such high propagation delay is the TCP performance.

1-4244-0697-8/07/.00 ©2007 IEEE.

One aspect of the problem is the TCP slow start [15]
phase where it takes a long time (RTTxlog2xSSTHRESH)
to reach the maximum congestion window threshold
(maximum rate at which the sender sends traffic); and the
other aspect is that the maximum throughput of
65,535x8/RTT is too low when the TCP Window Scale
option is not supported. Even when the TCP Window
Scale option is supported, unless all nodes support the
option, fair bandwidth sharing becomes an issue. TCP
Spoofing or Performance Enhancing Proxy (PEP) [22]
has been practiced by most of IPoS providers to
overcome this problem with TCP. For consistency, the
term PEP will be used throughout this paper. The basic
idea of PEP is to buffer at least one round trip worth of
data by locally acknowledging the data. Usually buffering
only one round trip worth of data isn’t enough because
one has to account for queueing delays associated with
congestion and bandwidth allocations.

Active Queue Management (AQM) is an algorithm
that detects and reacts to congestion to avoid queue
overflows. There are generally two ways to react to
congestion: signal congestion to traffic sources explicitly
by setting Explicit Congestion Notification (ECN) [20]
bits; or signal congestion to traffic sources implicitly by
dropping packets. ECN is not used in our study due to the
following reasons:
1. The problems that we are trying to solve (see section

4) are not due to packet drops between gateway and
senders.

2. ECN marking after PEP (Transmit Q in Figure 4)
may seem to avoid retransmissions over satellite and
fix the queueing instability problem discussed in
section 4.1, but it is too late to enforce ECN bits
when data are already acknowledged without ECN
bits by PEP.

When applying AQM to satellite networks, the following
need to be considered:
1. The source of congestion is different in satellite

networks. i.e. In satellite networks, congestion
arises mainly due to the satellite link capacity, not
due to the processing capacity. Therefore, gateways
in satellite networks become congested when the
offered load is greater than the allowed transmit rate
whereas gateways in terrestrial networks often

become congested when the offered load is greater
than the processing capacity.

2. Monitoring and marking packets after PEP is not a
good idea because it involves retransmissions over
satellite link.

3. Monitoring (with real-queue-based AQM) and
marking packets before PEP is not a good idea
because the receive queue will never be congested
when the congestion bottleneck is the spacelink
capacity, not the processing capacity. This isn’t true
for virtual-queue-based [21] AQMs such as
Adaptive Virtual Queue (AVQ) [19], but they have
the global synchronization (consecutive packet
drops) problem.

4. Monitoring after PEP and marking packets before
PEP is not a good idea because the high buffering
between congested queue (transmit queue towards
satellite) and receive queue may result in unstable
queueing behavior. This phenomenon is discussed in
more details in section 4.1.

A new virtual-queue-based AQM, Adaptive Virtual
Queue Random Early Detection (AVQRED), is proposed
to address the above concerns. The emulation results for
RED [5], AVQ and AVQRED are compared to validate
the proposed solution.

This paper is organized as follows: Section 2 provides
an overview of PEP. Section 3 provides an overview of
RED and AVQ. Section 4 defines the problems. Section 5
proposes a solution. Section 6 describes the emulation
framework. Section 7 provides the emulation results.
Finally, section 8 concludes the paper.

2. Overview of PEP

Performance Enhancing Proxy (PEP) [22] can be
divided into two layers: application and transport layers.
The application layer is responsible for locally
acknowledging TCP packets and buffering up one+ round
trip worth of data. The transport layer is responsible for
transmitting and acknowledging data over spacelink.
Some of its functionalities are SACK retransmissions,
ACK reduction, traffic classification and compression.

Figure 2. PEP flow diagram

Figure 2 illustrates the end-to-end PEP interactions in a
two-way satellite network and Figure 3 is the ladder
diagram of a simple HTTP transaction over PEP. Note
that ACK(s) for Data 1 ~ Data 2 could be earlier.

Figure 3. HTTP transaction over PEP

To better visualize PEP in a gateway, Figure 4 is provided.
PEP is drawn in a typical gateway structure where PEP
processes packets after the receive queue and the transmit
queue resides after PEP. In Figure 4, the congested queue
is the Transmit Q as discussed in section 1.

Figure 4. Gateway with PEP

It is common that PEP is also implemented in remote
terminals to gain higher upload speed and keep the
implementation symmetric, but congestion avoidance in
the upload direction (from remote terminals to internet) is
not discussed in this paper as it involves different
congestion paths.

3. Overview of RED and AVQ

This section provides a high level overview of two
well known AQM methods: Random Early Detection [5]
and Adaptive Virtual Queue [19] which will be compared
with AVQRED via emulations.

3.1. RED

The RED [5] algorithm computes the marking
probability when the weighted queue size falls between
minth and maxth parameters. The marking probability
becomes higher as the weighted queue size gets closer to
maxth (becomes 1 if it’s greater than maxth), and it also
becomes higher as the distance between each marking
gets larger. Parameter tuning is required for wq and maxp.
wq controls the weighted average queue size which then
determines how quickly the algorithm reacts to
congestion. Reacting too quickly or too slowly may result
in queueing instability. maxp is a scaling factor for the
marking probability which also controls how quickly the
algorithm reacts to congestion.

Initialization:

avg = 0
count = −1

for each packet arrival
if the queue is nonempty

avg =(1−wq)avg+wq.q
else

 m = f(time−q_time)
 avg = (1−wq)mavg

if minth <= avg < maxth
increment count
calculate probability pa:

pb = maxp(avg−minth)/(maxth−minth)
pa = pb /(1−count.pb)

with probability pa:
mark the arriving packet
count = 0

else if maxth <= avg
mark the arriving packet
count = 0

else count = −1
when queue becomes empty

q_time = time

RED algorithm

3.2. AVQ

Gibbens-Kelly Virtual Queue (GKVQ) [21] maintains

a virtual queue whose service rate is the desired link
utilization. When an incoming packet exceeds the virtual
queue limit, it drops or marks the packet. Adaptive
Virtual Queue (AVQ) [19] maintains the same virtual
queue whose capacity is dynamically adjusted. The
virtual capacity is adjusted by adding the number of bytes
that could have been serviced between the last and the
current packets minus the bytes that were just received.
Configured parameters are γ (target utilization), C (real
capacity), and B (virtual queue limit).

At each packet arrival epoch do

/* Update Virtual Queue Size */
VQ = max(VQ – C’(t - s), 0)
If VQ + b > B

Mark or drop packet in the real queue
else
 /* Update Virtual Queue Size */

VQ = VQ + b
endif
/* Update Virtual Capacity */
C’ = max(min(C’+α*γ*C*(t-s),C) – α*b, 0)
/* Update last packet arrival time */
s = t

Variables:

B = buffer size
s = arrival time of previous packet
t = current time
b = number of bytes in current packet
VQ = number of bytes currently in the virtual
queue
C’ = virtual capacity
C = actual capacity

AVQ algorithm

4. Problems

The main objective we are trying to achieve is to avoid
retransmissions over satellite, maintain queueing stability
and avoid global synchronization (consecutive packet
drops) while preserving high link utilization. To avoid
retransmissions over satellite, the option of dropping
packets after PEP was not considered. Because real-
queue-based AQMs such as RED can detect congestion
only if it monitors the congested queue, RED monitoring
is done in the transmit queue while the packet marking is
done in the receive queue to avoid retransmissions over
satellite. Because virtual-queue-based AQMs such as
AVQ can detect congestion regardless of the location of
monitoring, both monitoring and marking are done in the
receive queue to best synchronize packet marking and
congestion detection by senders. Therefore, the following
configurations are used throughout the emulations:

Table I. AQM Q and marking Q configuration

AQM method Monitor queue Marking queue
RED Transmit queue Receive queue
AVQ Receive queue Receive queue
AVQRED1 Receive queue Receive queue

4.1. Asynchronous queueing behavior

The problem with real-queue-based AQMs such as
RED in satellite networks is synchronization between the
monitored queue and the traffic senders. Synchronizing
them is very difficult due to the high buffering that occurs
between them. i.e. Dropping a packet at the receive queue
due to congestion in the transmit queue does not
immediately reduce the congestion level of the transmit
queue resulting in unwanted packet drops until the PEP
buffers are all transmitted. These packet drops then result

1 Details of AVQRED are discussed in section 5.

in less queue occupancy until senders’ congestion
windows evolve causing oscillatory queueing behavior.
Figure 5 illustrates how an asynchronous queueing can
occur. Note that the packets are consecutively dropped
from T1 through T6 because the transmit queue is always
occupied by the packets from the PEP layer. After PEP
buffers are all used up, the transmit queue becomes
almost empty and the PEP starts building up its buffers at
T7. Until there are enough PEP buffers, the transmit
queue does not drop packets at the receive queue causing
oscillatory queueing behavior.

Figure 5. Asynchronous queueing behavior

4.2. Global synchronization

The problem with AVQ is global synchronization

where consecutive packet drops occur due to its tail-drop
nature of packet marking. When packets are dropped
consecutively, multiple TCP connections will react to the
drops simultaneously resulting in global oscillatory link
utilization amongst multiple TCP connections.

This problem is severer with RED due to its oscillatory
queueing behavior described in section 4.1. When the
transmit queue congestion level and the senders
congestion windows are not synchronized, the RED
region will likely be exceeded resulting in tail-drop
behavior.

5. Solution

A new AQM algorithm, Adaptive Virtual Queue
Random Early Detection, is proposed to address the
problems mentioned in section 4 (asynchronous queueing
behavior and global synchronization).

Initialization:
count <- -1
last_measure <- curr_time

 prev_tx_bytes <- bytes_tx

for each packet arrival
/* Calculate virtual queue size */
delta_time <- curr_time - last_measure
if delta_time > 1

/* Compute actual output rate in bps */
tx_bytes <- bytes_transmitted
output_rate <- (tx_bytes – prev_tx_bytes)*

8000 / delta_time
prev_tx_bytes <- tx_bytes

/* Smoothen virtual capacity */
v_capacity <- alpha * output_rate +

(1.0 - alpha) * v_capacity

/* Update virtual capacity */
v_capacity <- MAX(MIN(max_capacity,

v_capacity),
min_capacity)

/* Compute the number of bytes that could
* have been processed and transmitted.
*/
serviced_bytes <- v_capacity / 1000 / 8 *

 delta_time

if VQ > serviced_bytes
VQ <- VQ - serviced_bytes

 else
 VQ <- 0
 q_time <- curr_time

last_measure <- curr_time
q_size <- VQ / 1500

/* Feed VQ size to the RED algorithm */
if minth < q_size < maxth

count <- count + 1
 pb <- (q_size - minth) /(maxth - minth)
 pa <- pa / (1 - count * pb)
 With probability pa:
 Mark the arriving packet
 count <- 0
else if maxth <= q_size

 Mark the arriving packet
 count <- 0
 else
 count <- -1
 /* b = number of bytes in current packet */
 VQ <- VQ + b

AVQRED algorithm

The AVQRED algorithm constructs a virtual queue
and feeds the virtual queue size to the RED algorithm
instead of feeding the weighted average queue size to it.
AVQRED reshapes the incoming traffic according to the
desired link utilization because the RED algorithm reacts
to the congestion level of the virtual queue which is

serviced by the desired link utilization. The AVQRED
Algorithm above highlights the AVQRED parameters in
bold. Note that wq and maxp are no longer in the algorithm
because their functionalities are replaced by the desired
link utilization in AVQRED. alpha is a low-pass filter for
the actual capacity calculation. min_capacity and
max_capacity define the range of processing capacity.
For satellite networks where processing capacity is
greater than spacelink capacity, min_capacity should be
equal to max_capacity and alpha can be any value.

Figure 6. AVQRED flow diagram

As Figure 6 illustrates, RED monitors a virtual queue

which is constructed based on the configured capacity
and arrival packets, and marks packets in the real queue.
This scheme essentially moves the transmit queue to the
receive queue (before the PEP layer) in Figure 4 and
produces better synchronization between the transmit
queue and the traffic sources.

5.1. Asynchronous queueing behavior

AVQRED solves the asynchronous queueing behavior

problem mentioned in section 4.1 by both monitoring and
marking at the receive queue. Monitoring and marking at
the receive queue is possible because AVQRED
constructs a virtual queue which can be placed anywhere.

5.2. Global synchronization

AVQRED solves the global synchronization problem
by preserving global synchronization avoidance of the
RED algorithm. Emulation results are provided in section
7 to illustrate this point.

6. Emulation framework

The actual gateway software, IP Gateway, from
Hughes Network Systems was used to evaluate the AQM
methods. The three AQM methods were implemented
according to Table I. The emulation environment was
constructed using two IP Gateways (one serves as the
actual IP Gateway that faces the internet and the other

serves as the satellite terminals for N different users) and
a traffic generator called Spirent®. A high level
illustration of the gateway internal structures is shown in
Figure 4. Both server and client IP Gateways have the
same PEP code and some modifications to the software
were done to resolve address translation and routing
issues created by the client IP Gateway. Details of the
modifications are not discussed here as they are not
relevant to the interest of this research. Spirent® was used
to best emulate real life traffic characteristics.

Figure 7. Emulation flow diagram

Figure 7 illustrates the connectivity of the emulation setup.
All links are lossless and 100 Mbps full duplex. A delay
simulator was inserted between the two gateways to
simulate satellite delays with uniform distribution
between 300 ~ 400 msec each way. The round trip time
(RTT) between the client IP Gateway and the Spirent is 4
msec, the RTT between the client IP Gateway and the
server IP Gateway is 600 ~ 800 msec, and the RTT
between the server IP Gateway and the Spirent is 40~80
msec resulting in an end to end RTT of 644~884 msec.
400 HTTP connections were generated between 200
clients and 60 servers with the following attributes.
1. At the startup, there are 20 new HTTP connections

every 5 seconds with 5 second sleep time between
each ramp up until 400 HTTP connections are
established.

2. When a connection is closed, a new connection is
created to fill the gap to maintain 400 HTTP
connections.

3. Each web page contains 250Kbytes ~ 550Kbytes of
data with 10 seconds user think time.

4. The maximum download speed of each TCP
connection is 5Mbps.

5. Average birth and death rate of the connections is
about 20 connections per second (approximately 5%
of the total population).

6.1. Evaluation methodologies

The following performance metrics were used for

comparisons:
1. Link utilization – The purpose of this metric is to

make sure the proposed solution produces
comparable link utilizations.

2. Queue size –The purpose of this metric is to
compare queue size and queueing stability of each
AQM method.

3. Packet drop – The purpose of this metric is to
compare consecutive packet drops of each AQM
method.

The measurements were taken after all 400 HTTP
connections are established to best emulate a loaded
scenario.

6.2. Parameter settings

The following system parameters are used throughout

the emulations:
 20 Mbps downlink bandwidth (hub to terminal

direction).
 1 Mbps uplink bandwidth (terminal to hub direction).

This link is assumed to be non-congested link
because the application is downlink-oriented web
browsing.

 5 msec transmit rate regulator latency in the server
IP Gateway.

 Target transmit queueing delay of 33 msec.
 Average packet size is 1500 bytes for the downlink

direction.

For RED, there are four parameters to configure: minth,
maxth, maxp, and wq. 60 and 120 are configured for minth
and maxth respectively. minth is set slightly higher than 55
(= 20Mbps / 8 / 1500 x 0.033 from the above system
parameters) to ensure full utilization of 20 Mbps
bandwidth. minth is set to at least twice minth as [5]
recommends. Several permutations of maxp, and wq were
emulated as these parameters need to be fine-tuned
according to traffic characteristics as shown in Table II.

For AVQ, the target utilization, γ, is set to 100%, the
buffer size, B, is set to 123,750 bytes where 123,750 =
82,500 (= 20Mbps / 8 x 0.033) + 82,500 / 2. Half of the
buffer required for 20Mbps (82,5000 / 2) is added to
ensure full utilization. The α is set to an arbitrary number
as our optimal virtual capacity is pre-determined.

For AVQRED, 60 and 120 are chosen for minth and
maxth respectively with the same reason as RED; alpha is
set to an arbitrary number as our optimal virtual capacity

is pre-determined. Target utilization is set to 100% by
setting min_capacity = max_capacity = 20Mbps.

7. Emulation results

Each of the following AQM setting was emulated for
20 minutes with the traffic described in section 6.

Table II. AQM settings
AQM Parameters
 minth maxth wq maxp
RED 1 60 120 0.02 0.5
RED 2 60 120 0.05 0.7
RED 3 60 120 0.10 0.5
RED 4 60 120 0.10 0.7
 γ B
AVQ 100% 123,750 Bytes
 minth maxth min_cap max_cap
AVQRED 60 120 20 Mbps 20 Mbps

As discussed in 6.1, the link utilization, queue size and
consecutive packet drop are measured during the
emulations. The measurements were taken once every
100 msec and the following subsections discuss the
results for each of the measurement metrics.

7.1. Link utilization

Figure 8. Link utilization comparison

As Figure 8 and Table III show, the utilization of

AVQRED is comparable with the utilization of RED.

Although there is 0.5% loss in the mean utilization, there
is 0.25% gain in the stability (the standard deviation).

Table III. Link utilization mean and stdev

AQM Mean Stdev
RED 1 19.8 Mbps 135 Kbps
RED 2 19.8 Mbps 117 Kbps
RED 3 19.8 Mbps 108 Kbps
RED 4 19.8 Mbps 107 Kbps
AVQ 19.5 Mbps 49 Kbps

AVQRED 19.7 Mbps 47 Kbps

Utilization loss and stability gain can be explained by the
queueing behavior of RED and AVQRED which is
discussed more in the next section. Basically, AVQRED
maintains just enough data to fill up the 20Mbps pipe
whereas RED’s utilization is oscillatory and unstable due
to its asynchronous queueing behavior which is discussed
in section 4.1 and 7.2. Furthermore, RED’s high
utilization and low stability indicate that it tends to accept
more data than the gateway capacity.

Although AVQ’s algorithm is similar to AVQRED’s
in terms of approximating the virtual capacity, its
utilization is lower than AVQRED. This result is
consistent with the fact that AVQ has more consecutive
packet drops (discussed in section 7.3) because
consecutive packet drops cause multiple senders to shrink
their congestion windows synchronously resulting in
lower link utilization.

7.2. Queue size

Figure 9 and Figure 10 show the transmit queue size of

RED, AVQ and AVQRED. The queue size of RED is
higher than AVQ and AVQRED because of its tendency
to exceed the RED region (60 ~ 120) due to its oscillatory
queueing behavior. To provide a better visualization of
this point, Figure 11 through Figure 14 magnify Figure 9 and
Figure 10 between 50th and 150th seconds (500th ~ 1500th
points according to the x axis’ scale).

Figure 9. RED transmit queue

Figure 10. AVQ and AVQRED transmit queue

This oscillatory queueing behavior is the asynchronous
queueing behavior described in section 4.1 which is
resulted from high PEP buffering between the transmit
queue and the receive queue. Therefore, we can conclude
that AVQRED and AVQ solve the asynchronous
queueing problem by both monitoring and dropping at the
receive queue. As discussed in section 1, monitoring the
receive queue with a real-queue-based AQM such as
RED can’t be done because the receive queue will never
be congested when the bottleneck is the transmit queue by
the spacelink bandwidth limitation.

Figure 11. RED queue size (50th ~ 100th seconds)

Figure 12. RED Q size (100th ~ 150th seconds)

Figure 13. AVQ and AVQRED Q size (50th~100th sec)

Figure 14. AVQ and AVQRED Q size (100th~150th sec)

7.3. Packet drop

Because 20 minutes worth of the packet drop
histogram is too long to present, only the first 3000
packets are presented to show how packet drops are
distributed. This illustration is valid because AVQRED
has the least number of packet drops as shown in Table IV.

Table IV. Total packet drops

AQM Total packet drops
RED 1 486,932
RED 2 491,798
RED 3 492,025
RED 4 492,999
AVQ 484,639

AVQRED 484,582

Figure 15, Figure 16 and Figure 17 show packet drops for the
first 3000 packets. Given that AVQRED has the least number of
packet drops, having the least clustered packet drops proves that
AVQRED has the least global synchronization level. RED
packet drops are more clustered than they should be due to the
queueing oscillation discussed in section 7.2.

Figure 15. Packet drops for 1st ~ 1000th packets

Figure 16. Packet drops for 1000th ~ 2000th packets

Figure 17. Packets drops for 2000th ~ 3000th packets

From the data shown in this section, we can conclude

that AVQRED solves the global synchronization problem
of AVQ and RED by dropping packets more uniformly.

8. Conclusion and future work

In an effort to improve the gateway performance of
satellite networks, AQM was applied to satellite networks.
This study found that applying existing AQMs such as
RED and AVQ has unwanted side effects such as
queueing instability (asynchronous queueing behavior)
and global synchronization (consecutive packet drops).
The queueing instability problem is caused by real-queue-
based AQM methods such as RED due to high PEP
buffering and its inability to monitor the receive queue
when the congested queue is the transmit queue. The

global synchronization problem is caused by both real-
queue-based and virtual-queue-based AQM methods due
to queueing instability of real-queue-based AQMs and
tail-drop nature of virtual-queue-based AQMs. To solve
these two problems, a new AQM method, AVQRED, was
developed.

Emulations were conducted to validate the solution.
The emulation environment was constructed with the real
gateway software used in Hughes Network Systems and a
traffic generator called Spirent®.

The emulation results in section 7 confirmed that the
problems are solved by AVQRED. AVQRED solves the
queueing instability problem by synchronizing the
congested (transmit) queue and the traffic sources.
AVQRED solves the global synchronization problem by
preserving the global synchronization avoidance of the
RED algorithm.

In our future work, we plan to develop per-flow aware
AVQRED to improve Quality of Service (QoS) for
satellite networks. It is envisioned that implementing per-
flow AVQRED does not require complex changes to the
AVQRED algorithm because it only requires increasing
the dimension of the algorithm by creating N different
virtual queues.

9. References

[1] P. Lassila and J. Virtamo, “Modeling the dynamics of the

RED algorithm,” in Proceedings of QofIS’00, pp. 28-42,
September 2000.

[2] C. Long, B. Zhao, X. Guan, and J. Yang, “The yellow
active queue management algorithm,” Computer Networks,
vol. 47, no. 4, pp. 525–550, 2005.

[3] P. Kuusela, P. Lassila, J. Virtamo and P. Key, “Modeling
RED with idealized TCP sources,”
http://research.microsoft.com/~peterkey/Papers/ifipredtcp.p
df, 2001.

[4] S. Athuraliya, V. H. Li, S. H. Low, and Q. Yin, “REM:
Active queue management,” IEEE Network, vol. 15, no, 3
pp. 48-53, May/June 2001.

[5] S. Floyd and V. Jacobson, “Random early detection
gateways in congestion avoidance,” IEEE/ACM
Transactions on Network, vol. 1 no. 3, pp.397-413, 1993.

[6] V. Misra, V. Gong , and D. Towsley, “A fluid-based
analysis of a network of AQM routers supporting TCP
flows with an application to RED,” in Proceedings of ACM
SIGCOMM, August 2000, pp. 151-160.

[7] S. Floyd et al., “Discussions on setting parameters,”
http://www.aciri.org/floyd/REDparameters.txt, November
1998.

[8] S. Floyd, R. Gummadi, S. Shenker, and ICSI. Adaptive
RED: An algorithm for increasing the robustness of RED’s
active queue management, Berkeley, CA.
http://www.icir.org/floyd/red.html.

[9] W. Feng. D. Kandlur, D. Saha, and K. Shin, “Blue: A new
class of active queue management algorithms,” Tech. Rep.,
UM CSE-TR-387-99, 1999.

[10] W. Feng, D. Dilip D. Kandlur, Debanjan Saha, and Kang G
Shin, “A self-configuring RED gateway,” in Proceedings
of IEEE/INFOCOM, 1999.

[11] D. Clark and W. Fang, “Explicit allocation of best-effort
packet delivery service,” IEEE/ACM Transactions of
Networking, vol. 6 no. 4 pp. 362-373, August 1998.

[12] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose.
“Modeling TCP throughput: A simple model and its
empirical validation,” in Proceedings of ACM/SIGCOMM,
1998.

[13] T. J. Ott, T. V. Lakshman, and L. H. Wong, “SRED:
stabilized RED,” in Proceedings of IEEE INFOCOM,
March 1999.

[14] W. Stevens. TCP/IP Illustrated, Vol. 1 The Protocols.
Addison-Wesley, 1994.

[15] W. Stevens, “TCP slow start, congestion avoidance, fast
retransmit, and fast recovery algorithms,” RFC2001, Jan
1997.

[16] W. Stevens, “TCP congestion control,” RFC2581, Apr
1999.

[17] M. May, T. Bonald, and J. Bolot, “Analytic evaluation of
RED performance,” in Proceedings of IEEE IFOCOM,
March 2000.

[18] C. Hollot, V. Misra, D. Towsley, and Wei-Bo Gong, “On
designing improved controllers for AQM routers
supporting TCP flows,” in Proceedings of
IEEE/INFOCOM, April 2001.

[19] S. Kunniyur and R. Srikant, “Analysis and design of an
adaptive virtual (AVQ) algorithm for active queue
management,” in Proceedings of ACM/SIGCOMM, August
2001.

[20] K. K. Ramakrishnan and S. Floyd, “A proposal to add
explicit congestion notification (ECN) to IP,” RFC 2481,
Jan. 1999.

[21] R. J. Gibbens and F. P. Kelly, “Distributed connection
acceptance control for a connectionless network,” in
Proceedings of the 16th Intl. Teletraffic Congress, June
1999.

[22] J. Border, M. Kojo, J. Griner, G. Montenegro and Z.
Shelby, “Performance enhancing proxies intended to
mitigate link-related degradations,” RFC3135, Jun 2001.

[23] K. Ramakrishnan, S. Floyd and D. Black, “The addition of
explicit congestion notification (ECN) to IP,” RFC3168,
Sep 2001.

[24] R. Pan, B. Prabhakar, and K. Psounis, “CHOKe: A
stateless AQM scheme for approximating fair bandwidth
allocation,” in Proceedings of IEEE INFOCOM, March
2000.

[25] H. Lim, K.-J. Park, E.-C. Park, and C.-H. Choi, “Virtual
rate control algorithm for active queue management in TCP
networks,” IEE Electronics Letters pp. 873-874, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /Batang
 /BatangChe
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Dotum
 /DotumChe
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Impact
 /Kartika
 /Latha
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MingLiU
 /MonotypeCorsiva
 /MonotypeSorts
 /MS-Gothic
 /MS-Mincho
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MVBoli
 /NSimSun
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PMingLiU
 /Raavi
 /Shruti
 /SimHei
 /SimSun
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

