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The Asymptotic Consensus Problem
on Convex Metric Spaces

Ion Matei and John S. Baras, Life Fellow, IEEE

Abstract—A consensus problem consists of a group of dynamic
agents who seek to agree upon certain quantities of interest.
The agents exchange information according to a communication
network modeled as a directed time-varying graph and evolve in
a convex metric space; a metric space endowed with a convex
structure. In this paper we generalize the asymptotic consensus
problem to convex metric spaces. Under weak connectivity as-
sumptions, we show that if at each iteration an agent updates its
state by choosing a point from a particular subset of the gener-
alized convex hull generated by the agent’s current state and the
states of its neighbors, then agreement is achieved asymptotically.
In addition, we present several examples of convex metric spaces
and their corresponding agreement algorithms.

Index Terms—Agreement, convex metric spaces, distributed
algorithms, time varying graphs.

I. INTRODUCTION

consensus problem consists of a group of dynamic agents
who seek to agree upon certain quantities of interest by
exchanging information among them according to a set of rules.
This problem can model many phenomena involving informa-
tion exchange between agents such as cooperative control of
vehicles, formation control, flocking, synchronization, parallel
computing, etc. Distributed computation over networks has a
long history in control theory starting with the work of Borkar
and Varaiya [3], Tsitsikils et al. [31], [32] on asynchronous
agreement problems and distributed computing. A theoretical
framework for solving consensus problems was introduced by
Olfati-Saber and Murray in [19] and [20], while Jadbabaie et al.
studied alignment problems [9] for reaching an agreement.
Relevant extensions of the consensus problem were done by
Ren and Beard [24], by Moreau [15] or, more recently, by Nedic
and Ozdaglar [17], [18].
Typically agents are connected via a network that changes
with time due to link failures, packet drops, node failures,
etc. Such variations in topology can happen randomly which
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motivates the investigation of consensus problems under a
stochastic framework. Hatano and Mesbahi consider in [7] an
agreement problem over random information networks, where
the existence of an information channel between a pair of
elements at each time instance is probabilistic and independent
of other channels. In [21], Porfiri and Stilwell provide sufficient
conditions for reaching consensus almost surely in the case
of a discrete linear system, where the communication flow is
given by a directed graph derived from a random graph process,
independent of other time instances. Under a similar model of
the communication topology, Tahbaz-Salehi and Jadbabaie give
necessary and sufficient conditions for almost sure convergence
to consensus in [25], while in [26], the authors extend the ap-
plicability of their necessary and sufficient conditions to strictly
stationary ergodic random graphs. Extensions to the case where
the random graph modeling the communication among agents
is a Markovian random process are given in [11] and [12].

A convex metric space is a metric space endowed with a
convex structure. In this paper we generalize the asymptotic
consensus problem to the more general case of convex metric
spaces and emphasize the fundamental role of convexity and in
particular of the generalized convex hull of a finite set of points.
Tsitsiklis showed in [31] that, under some minimal connectivity
assumptions on the communication network, if an agent up-
dates its value by choosing a point (in IR™) from the (interior)
of the convex hull of its current value and the current values
of its neighbors, then asymptotic convergence to consensus is
achieved. We will show that this idea extends naturally to the
more general case of convex metric spaces. The work in [15]
already emphasized the central role played by convexity for
proving convergence to consensus. We show that the same idea
applies beyond the vector space of real numbers, and that the
convex structure provides a systematic way to derive agreement
algorithms. Generalizing the convex property to non-Euclidean
spaces allows for dropping a number of smoothness assump-
tions on the dynamics. For example, unlike [15], no continuity
on the maps generating new states is required. Extensions of
the results shown in [15] and presented in [33], where the
authors consider convexity in metric spaces more general than
the standard Euclidean spaces,! and use orthogonal projections
on geodesic segments to prove convergence, since they are able
to easily characterize contractions of a line segment.

IThe authors consider CAT(0) metric spaces; spaces on which any two points
xz,y in a geodesic triangle (union of three geodesic segments) together with
their comparison points Z, 7 in the comparison triangle (a triangle on IR2 for
which the distances between corners are the same as the distances between the
corners of the geodesic triangle) satisfy d(z,y) < ||z — g||2.
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Our main contributions are as follows. First, after citing
relevant results concerning convex metric spaces, we study the
properties of the distance between two points belonging to two,
possibly overlapping convex hulls of two finite sets of points.
These properties constitute the base for proving convergence of
the agreement algorithm. Second, we provide an upper bound
on the (infinity) norm of the vector of distances between the
values of the agents. We show that the agents asymptotically
reach agreement, by showing that this upper bound asymptoti-
cally converges to zero. Third, we emphasize the relevance of
our framework, by providing several examples of convex metric
spaces and their corresponding agreement algorithms. An initial
version of the concepts presented here were introduced in [10],
where due to space limitations almost all proofs were omitted.
The current paper refines the respective concepts, includes all
the proofs and several new examples of convex metric spaces.
In [13] and [14] we extended our work to the case where
the communication between agents is based on a randomized
gossip algorithm. As a result, the technical approach used for
the convergence analysis is completely different, having to
deal with the underlying stochastic framework of the problem;
namely, stochastic calculus was used to analysis the dynamical
properties of a set of stochastic differential equations driven by
Poisson counters.

The paper is organized as follows. Section II introduces the
main concepts related to convex metric spaces and focuses in
particular on the convex hull of a finite set. Section III formu-
lates the problem and states our main theorem. Section I'V gives
the proof of our main theorem together with some auxiliary
results. In Section V we present several examples of convex
metric spaces and their corresponding agreement algorithms.

Basic Notations: Given W € R™" by [W];; we refer to
the (4,j) element of the matrix. The underlying graph of W
is a graph of order n without self loops, for which every edge
corresponds to a non-zero, non-diagonal entry of 1. We denote
by 1 4} the indicator function of an event A. Given some set X’
we denote by P(X) the set of all subsets of X'.

II. CONVEX METRIC SPACES

The first part of this section presents a set of definitions and
basic results about convex metric spaces. The second part fo-
cuses on the convex hull of a finite set in convex metric spaces.

A. Definitions and Results on Convex Metric Spaces

For more details about the following definitions and results
the reader is invited to consult [29], [30].

Definition 2.1 [30, pp. 142]: Let (X, d) be a metric space.
A mapping ¥ : X x X x [0,1] — X is said to be a convex
structure on X if

d(“ﬂﬁ(% Y, )‘)) < )\d(’LhLL‘) + (1 - )\)d(u, y)

forall z,y,u € X and A € [0,1].

Definition 2.2 [30, pp.142]: The metric space (X,d) to-
gether with the convex structure 1) is called a convex metric
space, and is denoted henceforth by the triplet (X, d, ¢).
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Example 2.1: The most common convex metric space
is IR™ together with the Euclidean distance and convex
structure given by the standard convex combination oper-
ation. Indeed, for any z,y,z € R™ and X € [0,1], it fol-
lows that ||z — (Az + (1 = Ny)|| = Az —2) + (1 = A\)(z —
YIS Allz =z + (1 = A)||z — yl|, where the last inequality
followed from the convexity of the norm operator.

Example 2.2 [30]: Let I be the unit interval [0,1] and X
be the family of closed intervals, i.e., X = {[a,b]|0 <a <
b <1}. For I; = [a;,b;], I; = [aj,b;] and A € I, we define
a mapping ¢ by ¢ (I;, I;,N) = [Aa; + (1 — X)aj, Ab; + (1 —
A)b;] and define a metric d in X by the Hausdorff dis-
tance, 1.€.,

d(1;, Ij) = max {|a; — a;], [b; — b;|}.

Then (X, d, ) is a convex metric space.

More examples can be found in [29] and [30] and the refer-
ences therein. In Section V, we introduce additional examples
of convex metric spaces.

Definition 2.3 [30, pp. 144]: A convex metric space
(X, d, 1) is said to have Property (C) if every bounded decreas-
ing net of nonempty closed convex subsets of X" has a nonempty
intersection.

Fortunately, convex matric spaces satisfying Property (C)
are not that rare. Indeed, by Smulian’s Theorem [5, p. 443],
every weakly compact convex subset of a Banach space has
Property (C).

The following definition introduces the notion of a convex
set in a convex metric space.

Definition 2.4 [30, p. 143]: Let (X, d, ) be a convex metric
space. A nonempty subset K C X is said to be convex if
Y(x,y,\) € K,Ve,y € K and VA € [0, 1].

Let P(X) be the set of all subsets of X'. We define the set
valued mapping ) : P(X) — P(X) as

B(A) 2 {P(@,y,\) | Yo,y € A, YA€ [0,1]}

where A is an arbitrary subset of X

In Proposition 1 [30, p. 143] it is shown that, in a convex
metric space, an arbitrary intersection of convex sets is also
convex and therefore the next definition makes sense.

Definition 2.5 [29, p. 11]: Let (X,d, 1)) be a convex metric
space. The convex hull of the set A C X is the intersection of
all convex sets in X’ containing A and is denoted by co(A).

Another characterization of the convex hull of a set in X
is given in what follows. By defining A,, = (A1) with
Ag = A for some A C X, it is discussed in [29] that the set
sequence {A,, }m>o is increasing and lim sup,,, ., A, exists,
and limsup,,_ . Ay = liminf,, , A, =1limy, 00 Ay =
Uso A

Proposition 2.1 [29, pp. 12]: Let (X,d, ) be a convex
metric space. The convex hull of a set A C X is given by

It follows immediately from above that if A, = A,, for
some m, then co(A) = A,,.
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wy + w, W3
V€4, x5€ A
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w1+ wp wy + w,
x€4 X,€ A

Fig. 1. Decomposition of a point z € Az with A = {x1,z2,23} € R™.

B. On the Convex Hull of a Finite Set

For a positive integer n, let A = {x1, ..., 2, } be a finite set
in a convex metric space (X, d, 1), with convex hull co(A) and
let z belong to co(A). By Proposition 2.1 it follows that there
exists a positive integer m such that z € A,,. But since A,, =
1/;(Am,1) it follows that there exist two parents z1,zo € A1
and A(1 ) € [0,1] such that z = ¢(21, 22, A(1,2)). Similarly,
there exist zs,z4 (parents of z1), and zs, z¢ (parents of z5)
belonging to A, 2, and A(3.4), \(5,6) € [0,1] such that z; =
V(23, 24, A(3,4)) and 2o = (25, 26, A(5,6)). By further decom-
posing zs, z4, 25, and zg and their parents, we obtain a tree
representation of z, which has as leaves the elements of the
set A. Using a graph theory terminology, z can be viewed as
the root of a weighted binary tree with leaves belonging to
the set A. Each node « (except the leaves) has two parents
a1 and a9, and are related through the operator v in the
sense o = Y(a, ag, A) for some A € [0, 1]. The weights of the
edges connecting o with o and a are given by A and 1 — A
respectively.

Remark 2.1: We would like to point out that a point z in
co(A) does not necessarily have a unique tree representation.
Indeed, assuming that A = {x1, x5, 23} € R", any point z
in co(A) can be written as z = wyx1 + waxs + w3y, Where
w; >0, i€{1,2,3} and 32 w; = 1. If in particular we
choose A = {1,5,2} and z = 3, we can find an infinite num-
ber of tree representations of the type shown in Fig. 1, with
weights given by w; = 1/2 — w3/4, we = 1/2 — 3ws/4 and
wsy € [0,2/3], such that wy + bwsy + 2wz = 3.

From the above discussion, we note that for any point z €
co(A) there exists a non-negative integer m such that z is the
root of a binary tree of height m, and has as leaves elements
of A. The binary tree rooted at z may or may not be a perfect
binary tree, i.e., a full binary tree in which all leaves are at the
same depth. That is because not all points in A are necessarily
at the same level in the tree representation.

Consider now a particular tree decomposition of a point z €
co(A) and let m be the height of the respective tree. For this tree
decomposition, let n; denote the number of times x; appears as
a leaf node, with Zfil n; < 2™ and let m;, be the length of
the 4;th path from the root z to the node x;, for [ =1,... n,.
We formally describe the paths from the root z to x; as the set

- A m; m;
Pwi - {({yiz,j}j:é) ) {)‘ihj}j:ll) ‘ I=1,..., ni}

where {y;, ]};n:fj is the set of points forming the i;th path,
with y;, 0 = 2 and y;, ;, = z; and where {)\il,j};ﬁ;ﬁ is the
set of weights corresponding to the edges along the paths, in
particular \;, ; being the weight of the edge (y;, j—1,¥i,,;)-
Definition 2.6: We define the weight of the point x; in the

creation of point z as the quantity

n; My

wz 25 T v

1=1 j=1

It can be checked that the weights corresponding to the points
{x1,...,2,} sum up to one, i.e.,

i=1

Remark 2.2: We would like to emphasize that the weights
corresponding to the points in A depend on a particular tree
representation. A different tree representation implies a dif-
ferent set of weights. The weights definition was inspired by
the convex hull definition in IR™. Indeed, in the case of the
example presented in Fig. 1, it can be noticed that W = w;,
1€{1,2,3}.

Definition 2.7: Given a small enough positive scalar € <
1, we define the following subset of co(A) consisting of all
points in co(A) that have at least one tree representation whose
weights corresponding to the points in A are lower bounded by
g, i.e.,

A .

co:(A) = {z € co(A) | there exists at least one
tree representation of z such that W; > ¢, Va; € A} .
Remark 2.3: By a small enough ¢, we understand a value

such that the inequality W(P, ,,) > ¢ is satisfied for all .
Obviously, for n agents ¢ needs to satisfy

e<

S|

but usually we would want to choose a value much smaller then
1/n since this implies a richer set co. (A).

Remark 2.4: We can iteratively generate points for which
we can make sure that they belong to co.(A), with A =
{z1,...,z,}. Given a set of positive scalars {A1,...,\,_1} €
(0, 1), consider the iteration

Yi+1 = w(yivxi-‘rlv)‘i) fori = 1a n—1 with Y1 = I1-

We note that y,, is guaranteed to belong to the interior of co(A).
In addition, if we impose the condition

S VPl Uelto L ST
1—(n—2)e
and ¢ respects the inequality
1 1—(n—1)€
n—1 < — 7 1
ST 2)e 2
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then y,, € co.(A). We should note that for any n > 2 we can
find a small enough value of ¢ such that inequality (1) is
satisfied.

Example 2.3: To give an intuition on the meaning of the
set co:(A), we make a parallel with R". Given that A =
{z1,...,2,} C R", for some positive integer p, the set co. (A)
can be formally deduced to be equal to

P p
co(A). = {ZGIR"lZ:Zwixi7 sz =1, w 28}

i=1 i=1

which basically states that co.(A) is a subset of the
relative interior of the convex hull of A. Indeed, let
Ke(4) 2 {yeR"|z=3"" jwx;, > F jw; =1, w;>e}. From
Definition 2.7, z admits at least one tree representation with
weights W lower bounded by ¢. In addition, from the defi-
nition of the convex structure for X =IR" (see Example 2.1),
the point z can be written as z = lexz with

Wi = 1land Wi > e. Hence, z € K. ( ) and therefore
coE(A) c K. (A). Let now z be a point in K. (A). Then, there
exits w; > e with >.¥_ w; =1, such that z = > 0, w;z;.
Equivalently, the point z can be iteratively written as y; 1 =
Aiyi + (L= Ny fori =1,...,p— 1, withy; = x1, where
z=ypand \; = (w1 + ... +w;)/(w1 + ...+ w;11). But this
implies that z admits a tree decomposition (similar to the one
depicted in Fig. 1), with W} = w;, and therefore z € co.(A).
Thus, o (A) = co:(A).

The next result characterizes the distance between two points
x,y € X belonging to the convex hulls of two (possibly over-
lapping) finite sets X and Y.

Proposition 2.2: Let X = {xy,...,2,, tandY = {yy,...,
Yn, } be two finite sets on A’ and let € < 1 be a positive scalar
small enough.

(@) If z€co(X) and y€co(Y), then there exists

a set of m, xn, non-negative scalars J\;;, with
Sy Yoy Aig = 1, such that

d(z,y) < XT:ZAUd (@i, yj)-

i=1 j=1

2)

(b) If z€co.(X), ye€co(Y), then here exists a

set of n, Xmn, non-negative scalars \;;, with
dory D05 Aij = 1, such that
Ai > eand N\ > €%, Vi, j. (3)
(c) If the assumptions of (b) hold and in addition X NY #
(0, then
DD N, yyye0y < 1 — €2 “)
i=1 j=1

where the coefficients \;; are the same as in (3).
Proof:

(a) Mimicking the idea introduced at the beginning of this
section, since x € co(X) it follows that there exists a
positive integer m such that x € X,,, where X,,11 =
@(Xm) with Xo = X. Further, there exist 21,29 €
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Xom—1and A2 € [O, 1] such that x = w(zl, 22, /\12). Us-
ing the definition of the convex structure, it follows that
the distance between x and y can be upper bounded by:

d(@,y) < Ai2d(z1,y) + (1 = Ai2)d(22, ).
Recursively decomposing z1, zo and their parents, and
applying the convex structure definition, it can be easily
argued that there exists a set of n, positive scalars A;,
summing up to one, such that

d(z,y) <Y Nd(z,y). ©)

i=1

In fact from Definition 2.6, it turns out that the scalars
Ai correspond to the weights Wy, associated to this
particular tree decomposition. We know repeat the above
argument and upper-bound each of the terms d(z;,y)
that appear in the inequality (5). We obtain that for
each i, there exist n,, scalars p; > 0 with Z?il i =1,
so that

Ty

d(wi,y) <> pyd(ws,y;), Vi

j=1

(6)

Combining (5) and (6) it follows that:

Ng Ny

dz,y) <Y Nigd(ws,y;)

i=1 j=1

where A\;; = \jpi; > Oand )" Zn” Aij = 1.

Since x € co.(X) and y € coE(Y) 'the points z and y
admit tree decompositions, where the weights on the
edges are denoted by Wy and WY, respectively. In
addition, the weights satisfy the 1nequalities Wi >e€
and p; = Wy > ¢, for all © and j. But since W‘T

Wy, play the 'role of A; and g, respectively, it follows
that Ai > €and p; > ¢, and consequently \;; > g2

If X NY # () then there exists at least one pair (4, j) )
that d(x;,y;) = 0. But since from part (b) \;; > 2, the
inequality (4) follows. |

(b)

(©

III. PROBLEM FORMULATION AND
STATEMENT OF THE MAIN RESULT

We consider a convex metric space (X, d, 1) and a set of
n agents indexed by ¢ which have states taking values in X.
Denoting by k the time index, the agents exchange information
based on a communication network modeled by a directed, time
varying graph G(k) = (V, E(k)), where V is the finite set of
vertices (the agents) and F(k) is the set of edges. An edge
(communication link) e;;(k) € E(k) exists if node i receives
information from node j. Each agent has an initial value in X
and, at each subsequent time-slot, it is adjusting its value based
on the observations about the values of its neighbors. The goal
of the agents is to asymptotically agree on the same value. In
what follows we denote by z;(k) € X the value or state of
agent ¢ at time k.
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Definition 3.1: We say that the agents asymptotically reach
consensus (or agreement) if

klim d(zi(k),z;(k)) =0, Vi, j, i # j.
—00

Similar to the communication models used in [2], [16], [32],
we impose weak assumptions on the connectivity of the com-
munication graph G(k). Basically these assumptions consist of
having the communication graph connected infinitely often and
having bounded intercommunication intervals between neigh-
boring nodes.

Assumption 3.1 (Connectivity): The graph (V,E,) is
(strongly) connected, where F is the set of edges (i, j) rep-
resenting agent pairs communicating directly infinitely many
times, i.e.,

E. ={(i,7)] (4,4) € E(k) for infinitely many indices %}

Assumption 3.2 (Bounded Intercommunication Interval):
There exists an integer B > 1 such that for every (i,j) € E
agent j sends its information to the neighboring agent ¢ at least
once every B consecutive time slots, i.e., at time k or at time
k+ lor...or (atlatest) at time k + B — 1 for any k£ > 0.

Assumption 3.2 is equivalent to the existence of an integer
B > 1 such that

(i,§) € E(k)UE(k+1)U. . .UE(k+B—1), ¥(i, ) € Ex and Vk.

Let V; (k) denote the communication neighborhood of agent
1, which contains all nodes sending information to ¢ at time
k,ie., N;(k) = {jleij(k) € E(k)} U {i}, which by convention
contains the node ¢ itself. We denote by A; (k) 2 {z;(k),Vj €
N;(k)} the set of the states of agent i’s neighbors (its own
included), and by A(k) 2 {z;(k),i =1,...,n} the set of all
states of the agents.

The following theorem states our main result regarding the
asymptotic agreement problem on a metric convex space.

Theorem 3.1: Let Assumptions 3.1 and 3.2 hold for G(k)
and lete < 1 be a positive scalar sufficiently small. If the agents
update their states according to the scheme

zi(k+1) € coc (Ai(k)), Vi
then they asymptotically reach consensus, i.e.,
klim d(z;(k),zj(k)) =0, Vi, j, i # j.
—00

The above theorem gives sufficient conditions so that the dis-
tances between the state of the agents converge to zero. The next
corollary, introduces an additional condition so that the agents
converge to the same value as well. This additional condition is
similar to the completeness property of metric spaces.

Corollary 3.1: Let Assumptions 3.1 and 3.2 hold for G(k)
and let ¢ < 1 be a positive scalar sufficiently small. If the agents
act on a convex metric space satisfying Property (C) and update
their states according to the scheme

zi(k+1) € coc (A;(k)), Vi
then there exists z* € X such that

lim d (z;(k),z%) =0, Vi.
k—ro0

We will give the proofs for both Theorem 3.1 and Corollary
3.1 in the subsequent section.

Remark 3.1: A procedure for generating points that
are guaranteed to belong to co.(A;(k)) is described in
Remark 2.4. The idea of picking z;(k + 1) from co.(A;(k))
rather than co(A;(k)) is in the same spirit as the assump-
tion imposed on the non-zero consensus weights in [2], [16],
and [31], i.e., they are assumed lower bounded by a posi-
tive, sub-unitary scalar. Setting x;(k 4+ 1) € co(A;(k)) may not
necessarily guarantee asymptotic convergence to consensus.
Indeed, consider the case where X = IR with the standard
Euclidean distance. A convex structure on IR is given by
(z,y,A) = Az + (1 — Ny, for any 2,y € R and X € [0,1].
Assume that we have two agents which exchange information at
all time slots and therefore A (k) = {z1(k),z2(k)}, Aa(k) =
{z1(k),z2(k)}, VE > 0. Let z1(k + 1) = Mk)z1(k) + (1 —
A(k))xo(k), where A(k) =1—0.1e* and let xy(k +1) =
pu(k)xy (k) 4+ (1 — p(k))z2(k), where p(k) = 0.1e . Obvi-
ously, z;(k + 1) € co(A;(k)), i = 1,2 for all k£ > 0. It can be
easily argued that

d(z1(k+1),z2(k+1)) < (AKk) (1 — p(k))
+ u(k) (1= A(K))) d (21 (K, z2(K))) . ()

We note that limg o [Tr_o (k) (1— p(k)) + (1= A(k)) (k) =
lim e o0 [Tho(1 — 0.2¢7% 4+ 0.02¢72¥) = 0.73 and therefore
under inequality (7) asymptotic convergence to consensus is not
guaranteed. In fact it can be explicitly shown that the agents do
not reach consensus. From the dynamic equation governing the
evolution of z;(k), i = 1,2, we can write

x(k+1)= (283 1 - 222;) x(k), x(0) = xo

where x(k)T = [x1(k), 72(k)], and we obtain that

lim x(k) =

k—o0

0.8540 0.1451
0.1451 0.8540 ) *°

and therefore it can be easily seen that consensus is not reached
for any initial states.

IV. PROOF OF THE MAIN RESULT

This section is divided in three parts. In the first part we use
the results of Section II-B regarding the convex hull of a finite
set and show that the entries of the vector of distances between
the states of the agents at time k 4 1 are upper bounded by
linear combinations of the entries of the same vector but at time
k. The coefficients of the linear combinations are the entries of a
time varying matrix for which we prove a number of properties
(Lemma 4.1). In the second part we analyze the properties
of the transition matrix of the aforementioned time varying
matrix (Lemma 4.2). The last part is reserved for the proof of
Theorem 3.1 and Corollary 3.1. In what follows, in addition to
indices referring to agents, we introduce indices that refer to
pairs of agents. To differentiate between them, we depict the
later with a bar on top.
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Lemma 4.1: Given a small enough positive scalar ¢ < 1,
assume that agents update their states according to the scheme
2i(k +1) € coc(A;(k)), for all i. Let d(k)2 (d(z:(k),
x;j(k))) for i # j be the N dimensional vector of all distances
between the states of the agents, where N = n(n — 1)/2. Then,
there exists a time varying N x N matrix W (k), such that

d(k+1) < W(k)d(k), d(0) = do (8)

where the matrix W (k) has the following properties:

(a) W (k) is non-negative and there exists a positive scalar
n € (0, 1) such that

(W) =n, Vi, k
(W (k)55 >0,V [W(k); #£0, i # ], Vk.

(b) If N;(k) NN;(k) # 0 then the elements of row i of
W (k), corresponding to the pair of agents (7, ), have
the property

hE

W(k)l;; <1-1n
1

<.l
I

where 7 is the same as in part (a).

(c) If Ni(k)NN;(k) =0 then the elements of row i of
W (k), corresponding to the pair of agents (7,7), sum
up to one, i.e.,

In particular if G(k) is completely disconnected (i.e.,
agents do not send any information), then W (k) = I.
Proof: Given two agents 7 and j, by part (a) of
Proposition 2.2 the distance between their states can be upper
bounded by

< Y wERdak) k) i ©)
peN; (k),qeN; (k)
for some w;fq(k) > () with ZpeM( k), qeN (k) W (k) =1. By

defining W (k) 2 (wi (k)) for i # j and p 7é g (where the
pairs (7, 7) and (p, q) refer to the rows and columns of W (k),
respectively), inequality (8) follows. We continue with proving
the properties of matrix W (k).
(a) Since all wi (k) >0 for all i # j, p € Ni(k) and q €
N (k) we obtain that W (k) is non-negative. By part
(b) of Proposition 2.2, there exists 7 2 22 such that
w?l (k) > 1 for all non-zero entries of W (k). Also, since
i € Ni(k) and j € Nj(k) for all k> 0 it follows that
the term w}? (k)d(w;(k), z;(k)), with w; (k) > 7, will
always be present in the right-hand side of the inequality
(9), and therefore W (k) has positive diagonal entries.
(b) Follows from part (c) of Proposition 2.2, with np = 2.
(c) If N;(k)NN;(k)=0 then no terms of the form

wi (k)d(xy(k),zp(k)) will appear in the sum
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of the right hand side of inequality (9). Hence
D peN; (k).qeN; (k) Wy (k) = 1 and therefore

If G(k) is completely disconnected, then the sum of the

right hand side of inequality (9) will have only the term

wij (k)d(zi(k), z;(k)) with w; (k:) =1, for all 4,5 =
1,...,n. Therefore W (k) is the identity matrix. |

Let G(k) = (V, E(k)) be the underlying graph of W (k) and
let 7 and j refer to the rows and columns of W (k), respectively.
Note that under this notation, index i corresponds to a pair (4, §)
of distinct agents. It is not difficult to see that the set of edges

of G(k) is given by

E(k)={(G4),(p,9)) |(G,p) € E(k), (j,9) € E(k), i#], p#q}-

(10

Proposition 4.1: Let Assumptions 3.1 and 3.2 hold for G/(k).
Then, similar properties hold for G(k) as well, i.e.,

(a) the graph (V, E..) is (strongly) connected, where
Eoo = {({’j) | (gv
(b) there exists an integer B > 1 such that every (i, ) € Ex

appears at least once every B consecutive time slots, i.e.,

at time k or at time k + 1 or ... or (at the latest) at time
k+ B — 1 forany k > 0.

Proof: Ttis not difficult to observe that similar to (10), E.
is given by

Ew={((4,7), (p,q) | (i,p) € Ex, (j,p) € Ex,p# 4,15} .
(11)

(a) Showing that (V, E.) is (strongly) connected is equiv-
alent to showing that for any (i, 7), all other pairs (p, ¢) have
paths connecting to it. Let N o, be the inward neighborhood
of node i in the graph (V, E ) e, Niw ={jl(4,i) € Ex}.
We can also refer to M,oc as the set of nodes connected to ¢ in

one hop. The nodes connected to nodes ¢ in ¢ hops are given by
the set N} = Ujent—1. where N} = Ni . Since (V, Ex)

is assumed strongly connected, M”;l ={1,2,...,n},foralli.

The one hop inward neighborhood of an arbitrary node
(i,7) in the graph (V,EL) is given by N(; ) e = N0 X
N oos Where N oo X Njoo = {(p,@)|p € Nioo,q € Njioo, 0 #
} The nodes connected to (i,7) in ¢ hops are given by
=Upgert—t Npg)oo- But A, ) | canbe equiv-

(Z 9),00 (i,3),00
alently written as ./\/'(LJ)’C>c =N, x ./\/'jt,OO
1 hops (i,7) is connected to all the nodes {(p,q)|p,q €
{1,2,...,n},p # q}, which corresponds to all nodes in the
graph (V EL). But since (i, ) was chosen arbitrarily, it fol-
lows that (V, E.) is strongly connected.

(b) Let ((i,7),(p,q)) be an edge in E,, or equivalently
(i,p) € Ex and (j,q) € Ex. By Assumption 3.2, we have that
forany k > 0

(i,p) € E(k) U
(4,9) € E(k) U

Jj) € E(k) infinitely many indices &} ;

. Therefore, inn—

Ek+1)u...U
Ek+1)U...U

E(k+ B —1)
E(k+ B —1)
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where the scalar B was introduced in Assumption 3.2. But this
also implies that

(i,/)€EE(k)UE(k+1)U...UE(k+ B —1), Y(i,j) € E.

Choosing B 2 B, the result follows. |

Let &(k,s) 2 W (k—1)W(k—2) - W(s), with ®(k, k) =
W (k) denote the transition matrix of W (k) for any k >
s. From the properties of W(k), it follows that ®(k,s)
is a non-negative matrix with positive diagonal entries and
|®(k, s)||oo <1 for any k > s. The following result, whose
proof can be found in the Appendix section, introduces a
property of the entries of ®(k, s) used in the proof of the main
result.

Lemma 4.2: Let W(k) be the matrix introduced in
Lemma 4.1. Let Assumptions 3.1 and 3.2 hold for G(k). Then
there exists a row index i* such that

N
O(s+m,s).: <1—n"Vs,m>B-1
]
/:1

where 7 is the lower bound on the non-zero entries of
W (k) and B is the positive integer from the part (b) of
Proposition 4.1.

Corollary 4.1: Let W (k) be the matrix introduced in
Lemma 4.1 and let Assumptions 3.1 and 3.2 hold for G (k). We
then have

[@(s+ (N -1)B—1,5)] . > 9™ DB vs i j

ij
where 7 is the lower bound on the non-zero entries of W (k)
and B is the positive integer from the part (b) of Proposition 4.1.
Proof: By Proposition 4.1 and Lemma 4.1 all the assump-
tions of Lemma 2, [16] are satisfied, from which the result
follows. |
We are now ready to prove Theorem 3.1 and Corollary 3.1.

A. Proof of Theorem 3.1

From Lemma 4.1, there exists a non-negative matrix W (k)
such that the vector of distances between the states of the agents
respects the inequality

d(k+1) < W(k)d(k)

where the properties of W (k) are described by Lemma 4.1.
It immediately follows that:

[k + Dl < [ld(k)[l , for k> 0. (12)

Let By 2 (N —1)B — 1, where B is the positive integer
from part (b) of Proposition 4.1. In the following we show that
the sums of the elements of each of the rows of ®(s + 2By, s)
are upper-bounded by a positive scalar, strictly less than one.

Indeed since ®(s+2By,s)=®(s+2By, s+ By)®(s+ By, s),
we obtain that
N

[®(s + 2By, s)]
=1

i

<

I
] =
NE

[‘P(S + 230, s+ Bo)]—

i

[®(s + B, s)];,—l , Vi.
1

>
I

1

<
I

By Lemma 4.2, we have that there exists a row j* such that

N
[(I>(s + Bo,s)]f,*ﬁ <1-—nPo, Vs
=1

>

and since S0 [®(s + By, s))55 < 1 forany j, we get

N
[(D(s + 2By, s)]

i

[@(s + 2By, s + Bo) . (1 - ")

+
N
:Z[CI)(S—F?B(),S-FB())] [@(84-230,8—‘,—30)]5* nBO.

i
By Corollary 4.1, it follows that:

[®(s +2Bo, s + Bo)|:= > 1P+, Vi, j,s

ij
and since Zf;l [®(s + 2By, By)];; < 1 we get that

N

[®(s + 2By, 3)];3 <1—p?Botlyi s,
=1

<.

Therefore
|®(s + 2By, S)HDO <1—pPBotlyg,
It follows that:

Jall, < (1-725) o)., vE=0  (3)
where t, = 2kB, which shows that the subsequence
{l|d(tx)|o0 } x> asymptotically converges to zero. Combined
with inequality (12), we further obtain that the sequence
{|d(k)|ls},>o asymptotically converges to zero. Therefore
the agents asymptotically reach consensus.

B. Proof of Corollary 3.1

The main idea of the proof consists of showing that the set
co(A(k)), where A(k) = {x;(k),i =1,...,n}, converges to a
set containing one point.

We first note that since A;(k) C A(k) it can be easily
argued that co(A;(k)) C co(A(k)), for all ¢ and k. Also,
since co(A;(k)) C co(A;(k)) it follows that co.(A;(k)) C
co(A(k)) and consequently x;(k + 1) € co(A(k)). Therefore,



914

we have that co(A(k + 1)) C co(A(k)) for all k and from the
theory of limits of sequences of sets, it follows that:

lim inf co (A(k)) =limsup co (A(k)) =lim co (A(k))= A

where A
A(k) by

= (k=0 co(A(k)). We denote the diameter of the set

5 (A(k)) = sup{d(z,y) | z,y € A(k)}
and by Proposition 2 of [29], we have that
d (co(A(k))) = 0 (A(k)).

From Theorem 3.1 we have that

lim d (z;(k),z;(k)) =0, Vi # j

k—o0

and consequently

lim § (A(k)) = lim 0 (co(A(k))) =0

k—o0 k—o0

which also means that
3(Ax) = 0.

But since the convex metric space on which the algorithm
operates satisfies Property (C), and the sets A(k) are bounded
(they have bounded diameter) and closed (by construction), it
follows that the set A, is non-empty. That is, A, contains only
one point, say z* € X, or A, = co(z*), or

klgrolc co (A(k)) = co(x™).

But since x;(k+ 1) € co-(A;(k)) C co(A(k)) for all i,k it
follows that:

lim d (z;(k), z

k—o0

) =0, Vi

i.e., the states of the agents converge to the same point z* € X.

V. EXAMPLES OF CONVEX METRIC SPACES
AND THEIR CONSENSUS ALGORITHMS

In this section, we introduce a number of convex metric
spaces on which we define consensus algorithms based on
their convex structure mappings. The following examples show
how the generalized notion of convexity provides the means
to design agreement algorithms that go beyond the standard
linear consensus algorithms studied in the literature. Numerical
simulations of the agreement algorithms described in what
follows are shown at the end of this section. As in the previous
sections, we assume that a group of IV agents, indexed by i
takes values in the set X

A. Consensus on the Set of Positive Real Vectors

The first example concerns a subset of the vector space of
real numbers, namely the cone defined by vectors with positive
entries. It was inspired by a consensus algorithm defined on
a loglinear system introduced in [33]. The particular metric
space in this example is a CAT(0) (see the the first section
for the definition), and interestingly it is also a convex metric
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space. Let X be the set of positive real vectors, that is, X' =
{x € R"|x; > 0,l =1...n}, where the subscript [ refers to
the I/th entry of vector x. We define the metric d(x,y) =
[ In(x/y)]l, - || denotes the standard Euclidean norm,

x/y = (z;/y;) and In(x) = (In(z;)). In addition, we consider
the mapping ¢ : X x X’ x [0,1] — X defined by

Y(x,y,\) =xy!

(14)

where x* £ (z) and xy = (z,9).
Proposition 5.1: The mapping v defined in (14) is a convex
structure on (X, d).
Proof: Let z be a point in X. Using the definition of the
mapping v together with the four operations defined above, we
obtain

ln(M):(ln(W)):(ln(zl) In((z)y: )
—<)\ln<;ll> (1) ln<Z>) - Aln(z)ﬂl—m 1n<;>

and the result follows from the convexity property of the
standard Euclidean norm. |
Using Remark 2.4, we obtain the following agreement

algorithm:
H wa (k)

JEN; (k)

i(k+1) 5)

where >y i) wij(k) =1 for all i, k. Assuming that the
weights w;; are uniformly lower bounded, Theorem 3.1 ensures
that by following iteration (15), the agents converge to the same
value. The above agreement algorithm is rather an academic
example since agreement can be obtained using the standard
convex combination operator as a convex structure. It is how-
ever an interesting nonlinear agreement algorithm based on the
generalized notion of convexity.

B. Consensus on the Set of Discrete Random Variables

Let s be a positive integer, let S = {1,2,...,s} be a finite
set and let (£, F,P) be a probability space. We consider the
set X’ to be the space of discrete measurable functions (random
variables) on (2, F, P) with values in S. We choose as metric
the expected value of the discrete metric, that is

d(X,Y) =E[p(X,Y)] (16)

where p : R x IR — {0, 1} is the discrete metric given by

o) ={g 277

and where the expectation operator is defined with respect to
the probability space ({2, F,P). Since for all X,Y, Z € X, the
mapping d satisfies the following properties:
(a) d(X,Y) = 0if and only if X = Y with probability one;
(b) d(X,2) +d(Y,Z) = d(X,Y);
© d(X,Y) =d(Y,X),
(X,Y)

@ d(X,Y) > 0:

)
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it is indeed a metric on X’. Note that an equivalent definition
fordis d(X,Y) = E[ljx+y}] = Pr(X #Y), where I;x .y}
is the indicator function of the event {X # Y}. We now
introduce the convex structure on X. Let 6 € {1,2} be an
independent random variable defined on the probability space
(Q, F,P), with probability mass function Pr(6 = 1) = X and
Pr(0 =2)=1-— X, where A € [0, 1]. We define the mapping
P X x X x[0,1] — X given by

(X1, Xo, A) =11} X1+ =0y X2, VX1, Xo € X, A €0, 1].
(17)

The following proposition shows that the mapping 1 is in fact
a convex structure, and therefore (X', d, ) is a convex metric
space.
Proposition 5.2: The mapping v is a convex structure on
(X,d).
Proof: Forany U, X1, X5 € X and X € [0, 1] we have

d (U, (X1, Xa,N))
= Ep(U,¥(X1,X2,M))]
=E[E[p(U,¥(X1,X2,))) |U, X1, Xs]]
=E[E [p (U =1y X1 + Lg_0y X2)] |U, X1, X2
= E[M(U, X1) + (1 = AN)p(U, X2)]
= MU, X1) + (1 — Nd(U, X3).

|
We showed so far that the set of discrete random variables
together with the metric (16) and the mapping (17) form a
convex metric space. This would be enough to derive an agree-
ment algorithm. As it turn out, we can give more insight into
the convex sets defined on this particular convex metric space.
The next theorem (whose proof can be found in the Appendix
section) characterizes the convex hull of a finite set in X'.
Theorem 5.1: Let n be a positive integer and let A =
{X1,..., X, } be aset of points in X'. Consider an independent
random variable 6 defined on the probability space (Q, F,P)
and taking values in the finite set {1,...,n}, with probabil-
ity measure given by Pr(w : 6(w) = i) = w;, for some non-
negative scalars w;, where Zf\; 1 w; = 1. Then the convex hull
of the set A is given by

co(A)= {Z EX[Z=) -y Xi, Yu; >0, Zwi=1}.

i=1 i=1

The next corollary characterizes the interior of the convex hull
of aset A of X.

Corollary 5.1: Let n be a positive integer and let A =
{X1,...,X,} be aset of points in X'. Consider an independent
random variable 6 taking values in the finite set {1, ..., n}, with
probability measure given by Pr(w : 6(w) = i) = w;, for some
non-negative scalars w;, where Zf\il w; = 1. Then

coE(A):{ZeX | 2= Njp_iyX;, Yw; >e, Zwi:1}.
i=1 i=1

Proof: Follows immediately from Definition 2.7 and
Theorem 5.1. ]

Using the above corollary, the agreement algorithm on the set
of discrete random variables can be written as

Xi(k+1)= Z Lo, (k)=51 X, (k)
JENi (k)

(18)

where each 6;(k) is an independent random variable tak-
ing values in the set A;(k), with probability mass func-
tion Pr(0;(k) = j) = w;;(k) for all j € N;(k). In addition,
> jen (k) Wij (k) = 1 and w;; > ¢ for all i and k.

Note that above algorithm ensures that X,;(k+1) €
co:(A;(k)) for all ¢ and k, and therefore, by virtue of
Theorem 3.1 we have that

lim Pr(X,(k) # X, (k)= lim d(X;(k), X; (k) =0, ¥i, ]
(19)

Remark 5.1: Using a probability theory terminology, (19)
shows that the random sequences { X; (k) }x>0 and {X; (k) } x>0
converge to the same value in probability, for all 7 # j. Indeed,
defining the set By (e) 2 {w : max;+; | X;(k) — X; (k)| > €},
we have

Pr(Bi(e) =Pr | [ J{w: |Xi(k) = X;(k)| > ¢}

£
<Y Pr(Xi(k) — X;(k)| > €)
i#]
< Z Pr(X;(k) # X;(k)) (20
i#j

and convergence in probability follows. It turns out, that con-
vergence is achieved in the almost sure sense, as well. This
follows from the Borel-Cantelli Lemma [6], by recalling that
d(X;(k), X;(k)) = Pr(X;(k) # X,;(k)) converge at least ge-
ometrically to zero for all 4, j, and therefore

ZPr (Bi(e)) < o0.

k>0

The above algorithm can be applied to problems, where the
agents’ goal is to agree on a value in a discrete set. Examples
of such problems can be found in social networks, where
individuals try to agree on the fit of potential new hires or
the merits of politicians. The agreement algorithm (18) may
appear to be connected with the randomized gossip algorithms
studied in [4] and [28]. There are however some important
differences between (18) and the respective algorithms. In our
case, the randomization comes from applying the convex struc-
ture operator, rather than from picking agents at random or from
the random clocks associated to the agents. Also, the gossip
algorithms are defined on the set of real numbers, rather than
discrete sets. Using similar notations as in the case of algorithm
(18), a synchronous version of a randomized gossip algorithm
(where at each time instant the agents pick randomly one of its
neighbors and exchange information) can be expressed as

Xi(k+1) = > Ng,m=5y Py Xa(k) + (1= Xij) X; (k)]
JeNi(k)
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In this case, X;(k) take real values, 6;(k) is an independent
random variable taking values in the set \;(k), with probabil-
ity mass function Pr(6;(k) = j) = w;;(k), where w;; is the
probability of agent ¢ to choose agent j at time k. In the case
S ={0,1}, algorithm (18) is more in the spirit of the binary
influence model algorithm, studied in [1].

C. Consensus on the Collection of Convex, Compact Sets

In this subsection we present a consensus algorithm based
on Minkowski sums between convex, compact sets in IR".
For this example we draw inspiration from the analysis of
linear dynamics driven by compact, convex sets studied in
[22] and [23]. Let X = ComConv(IR™) denote the collection
of convex, compact sets in IR". Given two sets X € R" and
Y € IR", the Minkowski sum between the two sets is given

by X ®Y 2 {z+vy:2z € X,y € Y}. The multiplication of a

set X by a scalar is defined as A\X 2 {A\r:2z € X}. It can
be easily checked that for any X,Y € X, we have that A\ X &
(I-NY eXand AX (1 — X)X =X forall A €0,1]. It
is well-known that X = ComConv(IR") endowed with the
Hausdorff distance is a complete metric space [27], where the
Hausdorff distance is defined as

H(L,X,Y)=min{fa | X CY GaL Y C X@aL} 2

with L € X a symmetric, non-empty set containing the origin.
Let us now define the mapping (X, Y, \) = AX @& (1 — \)Y,
where X, Y € X and A € [0, 1]. Using the above observations
it should be clear that any set produced by the mapping v
belongs to X'. The following proposition shows that ¢)(X, Y, \)
is indeed a convex structure:

Proposition 5.3: The mapping @ is a convex structure on X',
with respect to the Hausdorff distance.

Proof: All we have to show is that the following inequality

holds:

H(L,UYX,Y,\) <AH(L,U,X)+(1-NH(L, U, X)
(22)
forall U, X, Y € X and X € [0, 1]. To simplify the proof, we
use the fact that the Hausdorff distance can also be represented
in terms of the support function of a closed, convex set. Given
that the support function at a point z € IR" is given by

s(X,z) =sup{Zz|re X}

the Hausdorff distance between two closed and convex sets X
and Y can be equivalently expressed as

H(LvXaY) = ||S<X,)—S(Y,)|| (23)

o]

where || - || is the uniform norm on the unit sphere, that is,
I/ llc =sup,{f(z)|z'z < 1}. Therefore, we have that

H (LU (X, Y, A) = [s(U,-) = s (4(X, Y, A), )| - (24)
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Observing that the support function of a set AX @ (1 — \)Y
can be expressed as

sAX e (1-NY,z2)
=sup{Az+(1-N)zy|y,z€ X,yeY}

= As(X,2) + (1= N\)s(Y, 2)
we have that (24) can be further expressed as
H(L,U,(X,Y,\)
=[s(\Ue(1L-NU,") —s(AX&(1-NY,)l,
=AM [s(U,") = s(X, )] + (1 = A) [s(U,) = s(Y, ]|
< As(U, ) = s(X, )l +

o0

(=N s@,-) = s(Y;)

oo

= AH(L,U,X) + (1 = N)H(L,U,Y)

where the last equality followed from (23), and the result
follows. |

The next result, whose proof can be found in the Appendix
section, characterizes the convex hull of a finite collection of
compact, convex sets in terms of the Minkowski sum operator.

Proposition 5.4: Let n be a positive integer and let A =
{X1,...,X,} be a finite collection of sets in ComConv(IR").
Then the convex hull of the set A is given by

i=1 i=1

A description of an arbitrarily accurate approximation of
co(A) that it is guaranteed to belong to its interior is given in
the next corollary.

Corollary 5.2: Let n be a positive integer and let A =

{X1,..., X, } be aset of points in ComConv(IR"). Then
COE(A)Z{Z eX| Z:@wiXi, Yw; > ¢, Zwizl} .
i=1 i=1

Proof: Follows immediately from Definition 2.7 and

Proposition 5.4. |

Using the above corollary, the agreement algorithm on the
collection of compact, convex sets is given by

Xi(k+1)= @ w;; (k) X; (k)
JEN; (k)

(25)

where w; ; (k) are positive scalars summing up to one, and lower
bounded by e.

D. Numerical Examples

In this subsection, we present instances of executions of three
of the algorithms described in the previous section. The graph
that constrains the communication between agents has sixty
nodes and its structure is shown in Fig. 2.

Each of the considered algorithms are implemented using
the approach described in Remark 2.4, that is, by repeatedly
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Fig. 2. Network of sixty agents.

applying the convex structure operator on the neighbors of the
agents. We show numerical simulations for two values of the
parameter A used in the convex structure, namely A = 0.3 and
A = 0.7. For each algorithm we show the evolution of the states
and of the distances between agents, for the two values of A.

The Fig. 3(a)—(c) present numerical simulations of the agree-
ment algorithm in the case of the set of vectors with positive
entries. The initial values of the agents are uniformly distributed
in the interval [0, 9], and are the same for the two values of \.

Simulation results of the agreement algorithm applied on
a discrete set of numbers are depicted in Fig. 4(a)—(c), in
which the initial conditions are uniformly chosen from the set
{0,1,...,9}. Note that since the distance on this space is de-
fined as an expectation, the convergence speed of the distances
between agents does not necessarily reflect the convergence
speed of particular realizations of the algorithm as shown in
Fig. 4(a) and (b).

Finally, Fig. 5(a)—(c) show the behavior of the generalized
randomized gossip algorithm applied on the collection of com-
pact, convex sets.

The initial values of the states are polytope approximations
of circles with radiuses uniformly chosen from the interval
[0.8, 4.8] and number of edges uniformly picked from the
set {3,...,7}. The figures shows how the shape of the sets
corresponding to the agents change as the agents interact. For
executing the numerical simulation of the agreement algorithm
on compact, convex sets, we used the Multi-Parametric toolbox
[8] that provides efficient numerical algorithms for computing
Minkowski sums of convex sets. In all three examples the
agents converge to the same value and the distances between
the states of the agents converge to zero, as well. Note also the
for the smaller value of A the rate of convergence was higher
compared to the larger value, suggestion that a selfish attitude
from the part of the agents does not favor rapid convergence.

VI. CONCLUSION

In this paper, we emphasized the importance of the convexity
concept and in particular the importance of the convex hull
notion for reaching consensus. We did this by generalizing the
asymptotic consensus problem to the case of convex metric

2=0.3

states

60 80 100 120 140 160 180
iterations
(a)

A=0.7

states

o 20 40 60 80 100 120 140 160 180
iterations

(b)

0.9

0.8

max distances between agents

80 100 120 140 160 180
iterations

©

Fig. 3. Agreement Algorithm on the set of Positive Real Vectors: (a) states
evolution for A = 0.3; (b) states evolution for A = 0.7; (c) (upper bounds on
the) maximum of the distances between the states of the agents.

spaces. For a group of agents taking values in a convex metric
space, we introduced an iterative algorithm which ensures
asymptotic convergence to agreement under some minimal
assumptions for the communication graph. In addition, we gave
several examples of convex metric spaces and their correspond-
ing agreement algorithms. They show that apparently very
different algorithms belong to the same class of algorithms;
algorithms defined on convex metric spaces.
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Fig. 4. Agreement algorithm on Discrete Finite Sets: (a) states evolution for
A = 0.3; (b) states evolution for A = 0.7; (c) (upper bounds on the) maximum
of the distances between the states of the agents.
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APPENDIX A
PROOF OF LEMMA 4.2
Let (i*,j*) € E be a pair of agents. By Assumptions 3.1
and 3.2, there exists a positive integer s’ € {s,s+1,...,5+B—
1} such that agent j* sends information to agent i* at time s’.
This implies that N;-(k) NN (k) # 0 and by part (b) of
Lemma 4.1, we have that
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Fig. 5. Agreement Algorithm on Compact, Convex Sets: (a) states evolution
for A = 0.3; (b) states evolution for A = 0.7; (c) (upper bounds on the)
maximum of the distances between the states of the agents.

where 7* is the index corresponding to the pair (i*, j*). The sum
of the elements of row ¢* of the transition matrix ® (s’ + 1, s)
can be expressed as

j=1 h=1
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But since || ®(k,$)|lo <1 for any k> s, we have that

S8 5)]55 < 1 for any j, and therefore
N
Z [@(s" +1,5)]7.5 < L —n.
j=1

We can write ®(s' + 2, s) = W(s' + 1)®(s' + 1, s) and it fol-
lows that the i* row sum of ®(s’ + 2, 5) can be expressed as
N N N
[(I)(S/+2, S)]gg:
-1 j=1

(]

Since 35, [®(s' + 1, 5)]55 < 1 for any j it follows that

N
p [@(S/ + 2, 8)];*5
Jj=1 N

<[W(s' + Dlie; Y [®(s'+ 1,5)]

h=1
+ Y W+ D
=130
SW('+ D M=)+ Y [W(' + D)5

=140

since [W (s’ 4 1)];.7+ > 1. By induction, it can be easily ar-
gued that

N
Z (s’ +m,s)] Sl—nm,VmEO.

(26)

Note that by Assumption 3.2, a pair (4, j) can exchange infor-
mation at s’ = s the earliest or at s’ = s + B — 1 the latest.
From (26), we obtain thatfor s’ = s+ B — 1

N

Y @(s+B-1+ms)l;<1-n",Vm>0 (27
Jj=1
and for s’ = s
N
Z [D(s + m, s)];*3 <1-n",Vm>0
j=1
or
N
D [@(s+B—1+4m,s)l; <1—n"TF7 ¥m > 0. (28)

1
From (27) and (28), we get

<l
Il

[@(s+B—1+m,s)): <1—n"B1 Vsm>0

J

-

<.l
Il
—_

or equivalently
N

(s +m, )]
=1

jgl—nm,VmZB—l

<.

and the result follows.

APPENDIX B
PROOF OF THEOREM 5.1

We recall from Proposition 2.1 that the convex hull of A is
given by

co(A) = n%lgnoo Ay = ul A
where A,, = @(Am,l), with A; = 1[)(14) Also, since 4,,, is an

increasing sequence, clearly A C A,, for all m > 1. We define
the set

/C(A)é{z EX[Z=) -y Xi, Yuw; >0, Zwi=1} .

i=1 i=1

The proof consists of two parts. In the first part, we show that
any point in JC(A) belongs to the convex hull of A, while in the
second part we show that any point in co(A) belongs to K(A)
as well.

Let Z € K(A), ie., Z=3N, Ijp—n X; where Pr( =
1) = w;, for some w; > 0, Zivzl w; = 1. The random vari-
able 0 is defined such that 0(w;) =i and Pr(w;) = w;. Let
{61, ...,0,_1} be aset of independent random variables taking
values in {1, 2}, defined on the probability space (22, F,P),
with probability mass functions given by

w1 w2
Pr(,=1)=——, Pr(th =2)= ———
(61 ) w1 + w2 (6 ) w1 + W2
Prifo=1)= 12 prg o= W3
w1 +wa+ws w1 +wa+ws
Pr(f, 1=1)= wit. . '+w"_1,Pr(9n,1:2): W, _
Wi+ . .+wy wi1t. . .+wy,
(29)

We also make the assumption that

wp ={w: 6y 1(w) =2}
w1 ={w:b0,1(w)=1,0, 2(w) =2}
Wpo={w:0,1(w)=1,0,2w) =1,0,_3(w) =2}
we={w: b 1(w)=1,...,05(w)=1,0,(w)=2}
wi={w: b 1(w)=1,...,03(w)=1,0,(w)=1}. (30)

The above assumptions make sense, since for each row of
(30), the measures of the right and left hand sides are equal.
This follows from the independence of 6;s and from the def-
initions of their probability mass functions. Consider now the
following iterative expression

Yi=1,=1yYi1+ Ljg,=01 Xi1

fort =1,...,n —1,with Yy = X;. By using the independence
assumption on 6;s together with (29) and (30), it can be easily
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X

Fig. 6. Example of a tree representation of a point Z € Ap with A =
{Xl,XQ,Xg} € X.

checked that Y,, 1 = Z. But since Y; € A;,i=1,...,n—1
it follows that Z € A, or Z € co(A) which implies that
K(A) C co(A).

We now begin the second part of the proof and show that any
point in co(A) belongs to K(A) as well. If Z € co(A), from
Section II-B we have that there exists a positive integer m such
that Z € A,, and therefore Z is the root of a binary tree of
height m with leaves from the set A. To simplify the notations
and make the argument more clear, we will assume particular
values for m and n and a particular tree decomposition. How-
ever, as the reader will notice, the principle of the proof used in
this particular example can be easily generalized for any value
of m and n and any tree representation.

In the following we consider a point Z € A,, with a tree
representation given in Fig. 6. We have that there exist the
independent random variables 6; € {1,2}, for i =1, 2, 3,
defined on the probability space (€2, F,P) and with prob-
ability distributions Pr(6; = 1) = Ay, Pr(6; =2) =1— )y,
PT’(02 = ].) = )\2, PT‘(02 = 2) =1 7A2 and P’I"(Qg = 1) =
A3, Pr(03 = 2) = 1 — A3, such that

Y1 =1, =13 X1 + Ljp, =01 X
Yo =1g,—1; X2 + 1(p,—0y X3
Z =lp,—11 Y1 + yp,—2, Ya.
From above, we have that Z can be alternatively written as
Z = Nyg,—13 Nyo, =11 X1 + Tyg, =1y Nyg, —2) Xo
+ 1yg,=21 Lo, =13 X2 + Lyp =2y Lyg,—2) X5.
We now define the following sets:
wi={w:03w)=1,0;(w) =1}
wr = {w: 3(w) =1, 01 (w) =2}U{w : O3(w) =
ws= {w: 03(w) = 2,02 (w) =2}

and define the random variable 6 on the probability space
(Q, F,P), taking values in {1, 2, 3} such that (w;) =1,
O(w2) = 2, and O(w3) = 3. The probability mass function of 6
is given by

Pr(

Pr(
Pr(6

2,0,(w) =2}

1) =MAs = WE,
2) = (1= A1)z + Ao(1 — A3)
3)=(1-A2)(1—A3) = WX..

0
0 = W%,
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Therefore, from the independence of #; 65 and 03, Z can be
expressed as

Z = lp=13 X1 + Ljp—2y Xo + 153, X3

and hence Z € K(A) with w; = W)Z<1, Wy = VV)Z(2 and wz =
W)Z(3. Noticing that the approach presented above can be easily

generalized for any tree representation of a point Z, we have
that co(A) C K(A), and the result follows.

APPENDIX C
PROOF OF PROPOSITION 5.4

The proof follows that same lines as the proof of the previous
theorem. We define the set

K(A) = {Z € ComConv(R") | Z = @x X,

Yw; > 0, Xn:wizl}.

i=1

We can easily note that any element Z € KC(A) can be repre-
sented using the iteration

Yi=XNYii @ (1 — X)Xt

fort=1,...,n — 1, with Y, = X;. Recalling the definition of
the convex hull from Proposition 2.1, it follows that Y; € A;,
i=1,...,n—1 and therefore Z € co(A) since Z =Y, €
Anq.

We now show that an element Z € co(A) belongs to K(A)
as well. If Z € co(A), from Section II-B we have that there
exists a positive integer m such that Z € A,,, and therefore Z
is the root of a binary tree of height m with leaves from the set
A, and weights in the interval [0, 1]. Recall that each node X
in the tree can be expressed as X = AY @ (1 — \)Z, where Y
and Z are two nodes in the tree at one level lower than X and
A € [0, 1]. Therefore, by recursively representing the top node
Z in terms of lower level nodes, we find that Z is given by
Z = @ _, w; X;, where w; are non-negative scalars summing-
up to one, collecting the contribution of all the weights of the
tree. Consequently, Z € IC(A) and the result follows.
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