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Abstract 

Attempts to manage air traffic by either 
decreasing delay or increasing flow can have the 
reverse effect on the other.  In the National Airspace 
System (NAS), flights typically depart at their chosen 
times, and flow management techniques are 
implemented in the air in an effort to maximize flow, 
which could lead to delay for individual aircraft.  
Other areas of the world allow flights to depart only 
at predetermined slot times knowing that there is a 
clear unobstructed path, leading to minimal delays 
but possibly underutilizing airspace. 

We propose a new approach in leveraging the 
highway cell transmission model (CTM) to the 
airspace in the form of a multi-objective optimization 
that trades between maximizing throughput and 
minimizing delay.  The model is posed as a multi-
commodity traffic flow integer program where the 
constraints are relaxed slightly from the CTM to 
examine strategies for achieving optimal throughput 
and delay. 

In practice, the model is envisioned to initially 
run offline to determine a preliminary solution to the 
initial state of the system.  Solutions for subsequent 
changes in actual state can be determined by running 
the model online for the incremental state change.  
Stochastic events such as convective weather clearing 
times or capacities can be included in the model to 
better see the benefits and impacts of pre-positioning 
traffic to take advantage of possible future clearing. 

Introduction 
In this paper we present a traffic flow model that 

is inspired by the Cell Transmission Model (CTM) 
from highway traffic.  Lighthill-Whitham-Richards 
(LWR) initially proposed a set of partial differential 
equations (PDE) that described the dynamics of 
highway traffic flow [1] [2].  This was later used by 
Daganzo [3] [4] to create the Cell Transmission 
Model, in which a series of consecutive cells is used 
to represent increments of a highway.  The traffic 

flow from one cell to the next in the simulation 
model is governed by a discretized approximation of 
the flow concentration curve from LWR.  This model 
has been widely used in highway transportation for a 
variety of purposes, such as recent work on 
networked signal control. [5] 

Recently applications of this model to air traffic 
have included the CTM(L) model which imposes 
capacities on a set of cells. [6]  The model uses as a 
decision variable the amount of flights to retain in a 
cell, and moves other flights to the adjacent cell.  The 
objective function minimizes the usage in the 
network, and the network consists of fixed 
predetermined paths between each origin-destination 
pair. 

We propose a model that dynamically routes 
traffic through congested areas and optimizes for not 
only minimal delay through the system, but also 
trades with maximizing throughput.  The model is 
formulated as a multiobjective integer program with 
similar structure to a multicommodity traffic flow 
program.  The model leverages the framework of the 
Cell Transmission Model, but with routing 
capabilities and two objectives. 

Air traffic flow models typically establish a node 
at the intersection of each link, and identify the 
amount of flow into and out of that node with the 
assumption that the flow is steady between the nodes.  
In reality, a bottleneck at a certain point on a link due 
to weather, heavy traffic, or other reasons can cause 
backups and increased miles in trail restrictions on 
aircraft heading to the area. 

The dynamics of aircraft movement from cell to 
cell would be beneficial for tactical actions.  This 
could be used in combination with higher-level flow 
models that in combination would provide for 
strategic planning of traffic flows around congested 
areas.  While the specific dynamics of individual 
vehicles on a highway are not all the same as those 
for aircraft in the air, we can examine the application 
of the overall framework of the CTM to the air 
without modeling individual aircraft. 
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Application of the CTM would provide more 
intuition into the dynamics of the congestion along 
each segment which would not typically be obvious 
when using a typical flow model that only includes 
nodes at intersections.  Knowledge of where and 
when aircraft would be impacted by the congestion 
downstream, how many would be affected, and their 
speed reductions or vectors are important in the 
management of the traffic. 

CTM Overview 
In the general CTM model, each aircraft is on an 

independent path p (treated as a single commodity) 
from an origin airport to a destination airport. 

Links are broken into cells, numbered from 1 to 
i going in the downstream direction (direction of 
travel).  The length of each cell can be set to be such 
that without congestion, vehicles would travel from 
one cell to the next when the time goes from t to t +1. 

 
There is only one-way travel on each section of 

cells.  This is acceptable since in the National 
Airspace System (NAS) the routes are one-way for 
particular altitude levels. 

The state variable is ( )in t ,  the number of 
vehicles contained in cell i at time t.  The flow is 
controlled by ( )iy t , the number of aircraft that is to 
flow into cell i in the time interval (t, t +1).  The state 
transition equation can be written simply as 

1( 1) ( ) ( ) ( )i i i in t n t y t y t++ = + −  

In the CTM, the relationship between the flow 
rate and traffic density is derived from a discretized 
version of the PDEs from the LWR model. [4]  The 
flow rate is approximated by a trapezoidal function of 
the traffic density.  When there is free flow, the total 
flow is proportional to the number of vehicles in the 
cell.  When the traffic density increases, the flow 
levels off and is capped at a certain maximal flow 
amount.  As traffic further increases beyond the 
amount that yields the maximum flow, the flow 
begins to decrease.  Air traffic is not as elastic a 
highway traffic in the way that the flow cannot reach 
to zero as traffic levels increase.  However, there are 
small speed controls that can be implemented to 

slightly lower aircraft speed during areas of high 
congestion.  Alternatively, effective speed reduction 
or holding within a cell can be viewed as aircraft 
vectoring to reduce the speed component along the 
direction of travel. 

The inflow ( )iy t  is thus expressed as  

{ }1( ) min ( ), ( ), ( ) ( )i i i i iy t n t Q t N t n t−= −  

where the parameters used are: 

( )iN t   max number of vehicles that can be 
present in cell i at time t 

( )iQ t   max number of vehicles that can flow 
into cell i when the clock advances from 
t to t+1 

The two equations above describe the density of 
flights in the cells and how flights flow from one cell 
to the next. 

Application to Air Traffic Routing 
Here we apply the CTM to an optimization form 

for use with aircraft in the air.  The intent is to model 
the aircraft flow rather than optimal ground holding 
strategies.  However, results to improve network flow 
will inherently lead to certain amount of flights being 
held on the ground in order to optimize delay and 
throughput in the air. 

The flow equation from the CTM has a min{ } 
operator that requires the flow to be no greater than 
any of the three terms, and also equal to one of the 
three terms.  In order to optimize the delay and 
throughput, we relax the min{ } operator to allow 

( )iy t  to take on values less than all of the terms.  In 
doing so, flights can take a cautious approach and not 
advance as quickly if there is a possibly of a decrease 
in capacity downstream.  Flights can even remain out 
of the airborne network and remain on the ground 
without incurring high costs.  This minimizes the 
airborne delay by not having planes take off and wait 
in the air at bottleneck points. 

To construct the network for the model, the main 
flows of traffic in the airspace can first be determined 
via a clustering method.  These paths are then 
converted into a network of cells which can model 
the movement of aircraft along each route and 
propagate delays due to weather or other flow 
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constrained areas to determine the effects different 
control methods have on throughput and delay. 

The network is set up such that each aircraft is 
destined for a particular destination airport, and may 
take different paths to reach the destination to avoid 
congestion and delays.  Figure 1 shows a sample 

network with two origins and two destinations.  A 
bottleneck exists in cell 3, and causes the majority of 
traffic from Origin 1 to Destination 1 that would 
ordinarily travel along cells 2 3 5 to instead travel 
along the path 2 8 4 5. 
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Figure 1. Sample Network Setup 

 

Repository cells are included in front of the 
origin airports to provide a source of aircraft.  As 
flights are scheduled to depart, they are sent from the 
repository cells to the departing airport by setting 

, ( )d
i jy t  to be the number of flights scheduled to 

depart for destination d during the time period t to 
t+1. 

At the origin airport, they could be delayed on 
the ground before taking off if congestion exists in 
the network.  The origin airport is assumed to have 
infinite capacity for aircraft to incur delay prior to 
departure.  Similarly, a sink cell can be added after 
each destination for the flights to move away from 
the destination once they arrive. 

For the problem with multiple commodities and 
routing, the state and flow variables are redefined as: 

( )d
in t  number of vehicles contained in cell i 

at time t going to destination d 

, ( )d
i jy t  flow from cell i to cell j in the time 

interval (t,t+1) that are destined for d.   

The parameters are: 

( )iN t  max number of vehicles that can be 
present in cell i at time t 

( )iQ t   max number of vehicles that can flow 
into cell i when the clock advances 
from t to t +1 

( )l d  Index of the cell at destination d. 

sG  Set of sinks (the cells that are 
immediately after the destination cells). 

iR  Set of cells adjacent to cell i from 
which flights can flow into cell i. 

iS  Set of cells adjacent to cell i that flights 
can move to from cell i. 

dA  Total no. of arrivals for destination d. 
,i ja  Indicates whether there is a valid path 

from cell i to an adjacent cell j. 

The capacity values for aircraft density and flow 
are allowed to vary by location and time in order to 
model changes in weather patterns, special use 
airspace, or other congestion. 
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We desire to minimize the delay while also 
maximizing the throughput.  A measure of delay can 
be expressed as the total amount of time the aircraft 
spend in the system.  Throughput can be determined 
by the number of aircraft that exit the system.  
Several options exist for optimizing several objective 
functions.  In this model we use the weighting factor 

fw
 
for the throughput function and combine the two 

functions into the single objective.  The total usage is 
minimized minus a weighted factor of the total 
throughput.  We could instead maximize throughput 
minus the usage, but the values for usage tend to be 
large and could result in negative objective values. 

The model is formulated as follows: 

( ), ( ) 1min ( ) ( )
d

d d
i i f l d l d

i Gs d t d t j R
c n t w y t+

≠ ∈

−∑ ∑∑ ∑∑∑
 

Subject to: 

, ,( 1) ( ) ( ) ( )
i i

d d d d
i i k i i j

k R j S
n t n t y t y t

∈ ∈

+ = + −∑ ∑
 

, ,d i t∀
  

(1) 

, ( ) ( )
i

d d
i j i

j S
y t n t

∈

≤∑
  

, ,d i t∀   (2) 

( ) ( )d
i i

d
n t N t≤∑   ,i t∀   (3) 

, ( ) ( )
i

d
j i i

d j R
y t Q t

∈

≤∑∑
 

,i t∀   (4) 

,( ), ( )d d
i i jn t y t ∈  

A cost factor ic can be included in the delay 
function for each cell if certain routes are desired 
more than others.  In addition, a higher cost can be 
applied to all cells except the origin cells on the 
ground to encourage flights remain on the ground to 
reduce air delay. 

The flow conservation equation for each 
destination and cell is captured in Constraint 1.  This 
shows that the number of aircraft in the next time 
increment is equal to the number currently in the cell, 
plus the amount coming in from various cells, minus 
the amount exiting. 

Constraints 2-4 essentially correspond to the 
terms in the min{} function in the CTM model.  

Constraint 2 ensures that the amount of flow leaving 
a cell cannot be greater than that currently in the cell. 

Up to now, each destination, or commodity, is 
handled independently. Constraint 3 provides a 
capacity for the flights in a particular cell, across all 
destinations.  An similar capacity constraint (4) can 
be included to limit the amount of flow into a 
particular cell for all commodities. 

Additional constraints need to be added to 
ensure that flights only go to their intended 
destination.  This could be done by forcing the total 
number of arrivals at each destination over all time to 
be equal to the departures as follows: 

 ( )( )d d
l d

t
n t A=∑  d∀   (5a) 

This constraint requires that there be enough 
time for all flights to reach their destination, and 
would fix the throughput.  Alternatively, this could 
be done by restricting flights from arriving at 
destinations that are not intended for them. 

 ( )( ) 0h
l d

t h d
n t

≠

=∑∑  d∀   (5b) 

This constraint does not restrict all flights to 
actually reach the destination in the time allotted, 
thus allowing for variations in throughput based on 
the amount of time available in the model.  The 
constraint, though, may cause flights to wander 
around taking the path of least resistance in any 
direction if it can’t reach the destination within the 
modeling time, but the minimal usage / delay 
objective should limit that. 

In addition, another constraint needs to be added 
to force arrivals to move to the adjacent sink at each 
destination so they don’t linger at the destination over 
time to satisfy arrival constraint. 

 ( ), ( ) 1 ( )( ) ( )d d
l d l d l dy t n t+ =  ,d t∀   (6) 

For execution in a solver program, the model 
may be modified with additional parameters and 
modifications in the set of indices for the various 
terms as follows: 

, , , ,( 1) ( ) ( ) ( )d d d d
i i k i k i i j i j

k j i

n t n t a y t a y t
≠

+ = + −∑ ∑
    , ,d i t∀  (7) 
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, , ( ) ( )d d
i j i j i

j i

a y t n t
≠

≤∑  , ,d i t∀  (8) 

( ) ( )d
i i

d
n t N t≤∑   ,i t∀   (9) 

, , ( ) ( )d
j i j i i

d j

a y t Q t≤∑∑  ,i t∀   (10) 

Results & Discussion 
The model provides a means to tradeoff between 

reducing delay and maximizing throughput.  By 
adjusting the weighting factor in the objective 
function, numerous solutions can be obtained with 
varying degrees of delay and throughput. 

Figure 2 shows a sample output showing the 
resulting delay (represented as usage in the system) 
and throughput for varying values of the weighting 
factor fw . 
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Figure 2. Delay vs Throughput Tradeoff 

The usage/delay vs flow curve shows a tradeoff 
between the two objectives, with the desired direction 
being towards greater flow and lower usage.  The 
“knee” in the curve indicates a tuning in the model 
that possibly provides an optimal balance between 
the two objectives.  Decision makes can use this to 
tailor the model to the desired tradeoff. 

This model provides the initial framework for 
inclusion of additional features such as stochasticity, 
possibly in the form of parameters.  It would be ideal 
if an integer solution could be obtained in an efficient 
manner in order to handle additional complexities 
later.  Models that have a constraint matrix that is 

totally unimodular will have relaxations that yield 
integer solutions and can be solved quickly. 

Typical multicommodity flow models usually do 
not have constraint matrices that are totally 
unimodular, with the exception of those that have 
either two or less sources or sinks [7].  The constraint 
matrix for this problem has the following form: 

1 1

2

2

ϒ⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥ϒ⎣ ⎦

N
A N 0

0
 

All elements ija in A have { }1,0, 1ija ∈ − + . 1Ν  

and 1ϒ  have columns that either have all 0’s or have 
exactly one +1 and one -1.  With just these two 
submatrices, the constraint matrix would be totally 
unimodular.  However, 2N and 2ϒ  are also included, 
and correspond to the flow capacity constraints 
across the multiple destinations.  While a single 
identity submatrix below the flow constraints would 
preserve the total unimodularity of A, these two 
submatrices have the form[ ]...I I I .  However, 
not satisfying the usual sufficient condition for total 
unimodularity does not mean that the problem cannot 
yield integer solutions.  It is possible that in some 
cases the linear program relaxation may produce 
integer solutions.  This would be an ideal situation 
for computational efficiency.  This model, while 
similar to a multicommodity flow model, has more 
structure that may lead it to yield integer solutions 
from the relaxation.  The solutions derived thus far 
on a small number of samples used seem to indicate 
some optimism for integer solutions for the model. 

The actual computational efficiency for a small 
sample is shown in Figure 3.  The increase in 
computation time relative to the network size is 
shown along with the respective number of airports 
used in the scenario.  The computation time appear to 
yield well with the network size and airport size.  
However, this may vary greatly depending on the 
specific network structure. 
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Figure 3. Computation Time 

Conclusions & Future Work 
A model has been developed that models the 

movement of flights across a network and provides 
for a tradeoff between minimal delay and maximal 
throughput.  Inspired by the Cell Transmission 
Model, this model captures the movement of aircraft 
from cell to cell within a network, and determines the 
optimal routing of aircraft through congested areas. 

Ongoing work on the model include determining 
efficient integer solutions to the problem, as well as 
making the model stochastic with inclusion of 
parameters to model randomness in flight departure 
times and its effect on delay and throughput. 
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