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I. ABSTRACT

The rise of social network and crowdsourcing platforms
makes it convenient to take advantage of the collective
intelligence to estimate true labels of questions of interest.
However, input from workers is often noisy and even ma-
licious. Trust is used to model workers in order to better
estimate true labels of questions. We observe that questions
are often not independent in real life applications. Instead,
there are logical relations between them. Similarly, workers
that provide answers are not independent of each other
either. Answers given by workers with similar attributes
tend to be correlated. Therefore, we propose a novel unified
graphical model consisting of two layers. The top layer
encodes domain knowledge which allows users to express
logical relations using first-order logic rules and the bottom
layer encodes a traditional crowdsourcing graphical model.
Our model can be seen as a generalized probabilistic soft
logic framework that encodes both logical relations and
probabilistic dependencies. To solve the collective inference
problem efficiently, we have devised a scalable joint infer-
ence algorithm based on the alternating direction method
of multipliers. Finally, we demonstrate that our model is
superior to state-of-the-art by testing it on multiple real-world
datasets.

II. INTRODUCTION

In a typical crowdsourcing setting, multiple workers are
solicited to provided answers for each of the questions.
For example, Facebook users volunteer to perform various
annotation tasks on Facebook edit page1, or workers on
Amazon Mechanical Turk2 get paid for solving various tasks
uploaded by task requesters. An example task is to determine
whether a given plaintext headline expresses one or more of
the emotions anger, disgust, fear, joy, sadness, and surprise.
So there are six questions associated with a single headline.
Our observation is that these questions are not independent.
If the system is more confident that a headline exhibits
anger emotion, then the headline is not likely to express
joy. In addition, workers that provide answers for these
questions tend to give similar answers if they share same
attributes. These observations motivate us to ultilize these
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logical constraints, which we call domain knowledge, to more
accurately estimate true labels of questions as well as trust
values of workers.

In this paper, we propose a trust-aware crowdsourcing
with domain knowledge framework (TCDK). It is a two-
layered probabilistic graphical model, where the top layer
encodes the logical relationships using first-order logic rules
and the bottom layer encodes the probabilistic dependen-
cies between random variables in traditional crowdsourcing
graphical models. We show that the dependency between
of the top and bottom layers is equivalent to a special
rule, called cost-function rule with a fixed weight of 1.0.
This two-layered framework can be seen as a generalized
probabilistic soft logic framework that contains both logical
and probabilistic relations while the probabilistic soft logic
in [6] only contains logical relations. TCDK allows users to
integrate high level domain knowledge easily into traditional
crowdsourcing graphical models without having to derive
a whole new model from scratch. More importantly, the
leverage of domain knowledge can help the system better
estimate true labels of questions and at the same time
more accurately estimate the trust values of workers. To
jointly infer the true labels of questions and trust values of
workers, we develop an inference algorithm based on the
alternating direction method of multipliers. More specifically,
the algorithm alternates between optimizing variables in the
lower layer while fixing variables in the upper layer and
optimizing variables in the upper layer while fixing variables
in the bottom layer.

Our contributions are the following:
1) We formulate a novel trust-aware crowdsourcing with

domain knowledge framework that combines domain
knowledge with a traditional crowdsourcing graphical
model. Users can express high level domain knowledge
without having to re-define the model and the frame-
work can be used to integrate multiple data sources.

2) We develop a scalable joint inference algorithm for
estimating true label variables and trust values of work-
ers based on alternating consensus optimization. The
inference algorithm can be easily scaled to multiple
machines.

III. RELATED WORK

To address the issue of noisy and malicious workers
in crowdsourcing systems, many models are developed to
jointly estimate true labels of questions and trust of workers
[4], [7], [11], [8]. All these works are based on the assump-
tion that questions’ true label variables are independent and
the trusts of different workers are independent too. However,
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the assumption is shown to be invalid in the annotation of
headline emotion example in Section II.

[10] did consider dependency between workers by reveal-
ing the latent group structure among dependent workers and
aggregated information at the group level rather than from
individual workers. Still, their model did not capture the
logical dependencies among questions as in our work. In the
natural language processing literature, a framework called
Fold·All [1] was proposed to integrate domain knowledge
into Latent Dirichlet Allocation (LDA). Their framework can
be seen as an extension of the Markov Logic Network while
the top layer of our framework can be seen as the generalized
probabilistic soft logic [6].

IV. THE TCDK FRAMEWORK

We consider a crowdsourcing task with N questions and
M workers available in total. Each question is answered by
a subset of M workers. Each worker j is modeled by a
random variable βj ∈ [0, 1] that has a Dirichlet prior with
parameter θ. Higher value of βj indicates that the worker is
more trustworthy. The variable zi ∈ {0, 1} is used to denote
question i’s true label. The answer to question i given by
worker j is denoted by lij ∈ {0, 1}.

We first review the graphical model used in [7]:

p (L, z, β|θ) ∝
N∏
i=1

∏
j∈Mi

p (βj |θ) p (lij |zi, βj) (1)

where Mi is the set of workers that give answers to question
i. The task is to infer questions’ true labels zi’s and estimate
workers’ trust values βj’s.

In the above model, the true labels zi’s are assumed to
be independent. In TCDK, we incorporate the logical rela-
tions between questions using first-order logic rule syntax.
Example rules are:

ContainsHappiness(i)⇒ ContainsAnger(i)
Trust(j1) ∧ SimilarBackground(j1, j2)⇒ Trust(j2)

(2)

The first rule states that if text clip i expresses emotion
happiness, then it is unlikely that the text expresses anger
and the second rule states that if the worker j1 is trustworthy
and he has similar background with another worker j2, the
worker j2 tends to be trustworthy too. For each first-order
logic rule ` as defined in (2), we represent the weight of
the rule as λ` and the set of groundings of rule r as R`.
Higher value of λ` indicates that the rule ` is more important
compared to other rules. For each grounded rule r, we
associate a non-negative potential function φr(z, β). We will
discuss the specific definition of φr(z, β) later.

Putting together the domain knowledge expressed using
first-order logic rules as in (2) and the traditional crowd-
sourcing model in (1), our proposed model Crowdsourcing
with Domain Knowledge (TCDK) defines a generative model

z1 z2 z3 zN
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z1 z2 z3 zN

L11 L12 L21 L22

β1 β2 β3 βM

Bottom 
Layer 

Fig. 1. Graphical Model of Trust-aware Crowdsourcing with Domain
Knowledge (TCDK). zi’s are true label variables, βj ’s are workers’ trust
variables, and lij ’s are worker-provided answers. The black-dotted lines in
the bottom layer encode probabilistic dependencies between variables and
the red-dotted lines in the upper layer encode logical dependencies.

expressed as follows:

p (L, z, β|θ) ∝ exp

[
−

R∑
r=1

λrφr(z, β)

]

×
N∏
i=1

∏
j∈Mi

p (βj |θ) p (lij |zi, βj)
(3)

where R is the number of grounded first-order logic rules.
The graphical model in (3) consists of two terms with the
first term encoding the logical relations among variables z, β
and the second encoding probabilistic dependencies among
observed answers L and hidden variables z and β. The
logical dependency encoded in φr(z, β) is very general and
is determined by the specific grounded rule r. For example,
it can be defined over true label variables zi’s or over trust
variables βj’s or over a mixture of both as in (2). Fig. 1
shows an example causal structure of TCDK when φr’s are
defined over z only. In Fig. 1, the statistical layer corresponds
to the first term in (3) and the logical layer corresponds
to the second term. The red dotted lines represent logical
dependencies among z indicated by φr(z).

Note that βj’s are continuously-valued variables and zi’s
are discrete variables. If φr(z, β)’s depend on βj’s only,
the first part in (3) is equivalent to a continuous Markov
random field [6]. If φr(z, β)’s also depend on zi’s, the
first part combined with the second part in (3) can be
viewed as a Hybrid Markov Logic Network (HMLN) [14].
However, HMLN relies solely on first-order logic to express
causal structure among variables, therefore it falls short of
expressing general dependencies as in the second term in (3).

V. INFERENCE

We are interested in the maximum a posteriori probability
(MAP) estimates of true label variables zi’s and trust vari-
ables βj’s given answers L in TCDK. The MAP estimates
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are the solution to the following optimization problem:

argmin
z,β

R∑
r=1

λrφr(z, β)−

N∑
i=1

∑
j∈Mi

log p (lij |zi, βj)−
M∑
j=1

log p (βj |θ)
(4)

It is challenging to solve the above optimization problem due
to the large data size and possibly exponential groundings of
first-order logic rules. One can relax the discrete variables to
take continuous values and resort to Alternating Optimization
with Mirror Descent to avoid fully grounding first-order logic
rules [1]. However, their algorithm still can not scale because
a single machine is processing all the sampled groundings
and the algorithm is not easily scaled to multiple machines.
[2] proposed a scalable solution to constrained continuous
Markov random fields based on the consensus optimization
framework. However, it can not be directly applied to our
problem because their optimization objective is based on
hinge loss only.

In what follows, we propose a scalable inference algorithm
based on the alternating direction method of multipliers
(ADMM). First, we relax true label variables zi’s to the
interval [0, 1] so that the potential functions φr(z, β)’s are
defined over continuous variables taking values from interval
[0, 1]. The algorithm can be seen as generalized probabilistic
soft logic (GPSL) because it contains special cost-function
rules besides first-order logic rules. We briefly review the
basics of probabilistic soft logic (PSL) below.

A. Definitions in PSL

Probabilistic soft logic declares first-order logic rules:

λ : A(i, j) ∧B(j, k)⇒ C(i, k) (5)

where A, B and C are predicates and i, j, k are variables.
Each ground predicate is an instantiation of predicates with
instatiated values for i, j, k and takes a soft-truth value from
[0, 1]. The logical connectives (AND, OR, NOT) are relaxed
using Lukasiewicz t-norm and its corresponding co-norm:

p ∧ q = max (0, p+ q − 1) ,

p ∨ q = min (1, p+ q) ,

¬p = 1− p
(6)

Any grounded first-order logic rule has the form rbody →
rhead. An interpretation I is defined as an assignment of soft
truth values to a set of ground predicates. PSL calculates a
potential function for any grounded rule r under interpreta-
tion I through the following:

φr(I) = max{0, I(rbody)− I(rhead)} (7)

B. Scalable ADMM-Based Inference

ADMM is utilized to optimize objectives by iteratively
solving local subproblems and finding consensus to the
global objective [3]. We observe that zi’s and βj’s are
coupled through the term log p (lij |zi, βj). Therefore we can

iteratively optimize (4) while fixing zi’s and vice versa.
When βj’s are fixed, (4) becomes:

argmin
z

R∑
r=1

λrφr(z, β)−
N∑
i=1

∑
j∈Mi

log p (lij |zi, βj) (8)

The first term in (8) corresponds to weighted summation
of potential functions of grounded first-order logic rules
while the second term is the summation of logarithms of
conditional probabilities. We show next that we can put the
two parts into a unified framework GPSL.

ϕ(zi, βj) = − log p (lij |zi, βj)
= −1{lij = zi} log βj − 1{lij 6= zi} log(1− βj)
= − (zilij + (1− zi)(1− lij)) log βj
− (1− zilij − (1− zi)(1− lij)) log(1− βj)

(9)
Substituting (9) into (8), we have:

argmin
z

R∑
r=1

λrφr(z, β) +

N∑
i=1

∑
j∈Mi

ϕ(zi, βj) (10)

The second term in (10) is equivalent to the summation of
potential functions introduced by N grounded special cost-
function rules with weight 1.0. They encode the dependency
between upper and bottom layer shown in Fig. 1. Next we
present how to optimize βj’s while fixing zi’s. (4) becomes:

argmin
β

R∑
r=1

λrφr(z, β)+

M∑
j=1

∑
i∈Nj

ϕ(zi, βj)− log p (βj |θ)


(11)

where the first term corresponds to the summation of poten-
tial functions for grounded first-order logic rules that involve
β while the second term can be viewed as the summation of
potential functions introduced by M grounded special cost-
function rules with weight 1.0.

Let zr, r = 1, . . . , R be a local copy of the variables in
Z that are used in potential function φr(z, β) and zi+R be
a local copy of the variables in Z that are used in potential
function

∑
j∈Mi

ϕ(zi, βj). Let Zi, i = 1, . . . , R +N be the
global version of the local copies in zi. Similarly, we define
br, r = 1, . . . , R as a local copy of the global variables in
B that are used in φr(z, β) and bj+R, j = 1, . . . ,M as a
local copy of the variables in B used in

∑
i∈Nj

ϕ(zi, βj)−
log p (βj |θ) , j = 1, . . . ,M. The ADMM-based inference
algorithm is shown in Algorithm 1. It is scalable in nature
because each grounded rule is a subproblem and can be run
in parallel over multiple machines.

VI. EXPERIMENTS

In order to evaluate the performance of our proposed TCDK
framework, we performed experiments on two real datasets.
In what follows, we describe each of the datasets, define
first-order logic rules and special cost-function rules, and
present experimental results. For each of the two datasets,
we consider the following models for comparison:
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Algorithm 1: Consensus optimization for z and β
Input: φ, λ, L, Z, B, θ, ϕ, ρ > 0
Output: MAP estimates for zi’s and βj’s
while not converged do

/* Optimize zi’s while fixing βj’s */
Initialize zi as a copy of the variables in Z that appear in φr, r = 1, . . . , R
Initialize zi+R as a copy of the variables in Z that appear in

∑
j∈Mi

ϕ(zi, βj), i = 1, . . . , N
Initialize dual variable yk = 0, k = 1, . . . , |R|+N
while not converged do

for k = 1, 2, . . . , R,R+ 1, . . . , R+N do
yk = yk + ρ (zk − Zk)

end
for r = 1, 2, . . . , R do

zr ← argminzr∈[0,1]nr λrφr(z, β) +
ρ
2

∥∥∥zr − Zr +
1
ρyr

∥∥∥2
2

end
for i = 1, 2, . . . , N do

zi+R ← argminzi+R∈[0,1]
ni+|R|

∑
j∈Mi

ϕ(zi, βj) +
ρ
2

∥∥∥zi+R − Zi+R + 1
ρyi+R

∥∥∥2
2

end
Set each entry zi in Z to the average of the all the local copies.

end
/* Optimize βj’s while fixing zi’s */
Initialize br as a copy of the variables in B that appear in φr, r = 1, . . . , R
Initialize bj+R as a copy of the variables in B that appear in

∑
i∈Nj

ϕ(zi, βj)− log p (βj |θ) , j = 1, . . . ,M
Initialize dual variables vk = 0, k = 1, . . . ,M,M + 1, R+M
while not converged do

for k = 1, . . . , R,R+ 1, R+M do
vk = vk + ρ(bk −Bk)

end
for r = 1, 2, . . . , R do

br ← argminbr∈[0,1]nr λrφr(z, β) +
ρ
2

∥∥∥br −Br +
1
ρvr

∥∥∥2
2

end
for j = 1, 2, . . . ,M do

bj+R ← argminbj+R∈[0,1]
nj+|R|

∑
i∈Nj

ϕ(zi, βj)− log p (βj |θ) + ρ
2

∥∥∥bj+R −Bj+R + 1
ρvi+R

∥∥∥2
2

end
Set each entry bj in B to the average of the all the local copies.

end
end

1) TCDK: our proposed trust-aware crowdsourcing with
domain knowledge.

2) TC (trust-aware crowdsourcing without domain knowl-
edge): same as TCDK except that we omit domain
knowledge by setting zero weights to first-order logic
rules and special cost-function rules defined for each
dataset.

3) MV (majority vote): a true value variable is estimated to
be 1 if more than half workers answer 1 and is estimated
to be 0 if less than half workers answer 0. Ties are
broken randomly.

A. Affective Text Evaluation

This dataset was produced by crowdsourcing task [13]
where each worker was given a headline and asked to give a

rating (ranging from 0 to 100) about the degree of emotions
that the headline expresses. Six emotions were considered:
anger, disgust, fear, joy, sadness and surprise. We use the
dataset provided by [12], where 100 pieces of headlines
were selected and 10 answers were solicited for each of the
six emotions from workers on Amazon Mechanical Turk.
Note that each headline-emotion pair might be answered by
a different group of workers.

We represent a headline Q expressing emotion X as
predicate tl(Q,X), where Q = 1, . . . , N and
X ∈ {Anger,Disgust, Fear, Joy, Sadness, Surprise}.
The grounded predicate tl(Q,X) takes value from [0, 1]. Our
domain knowledge tells us that among those six emotions,
there exists two types of relations between emotions X and
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TABLE I
EMOTIONS RELATIONS

Relations Emotion pairs

Opposite (Anger, Joy), (Anger, Fear), (Anger,
Sadness),(Anger, Surprise) (Disgust, Joy), (Disgust,
Sadness), (Fear, Joy), (Sadness, Joy), (Surprise,
Joy), (Surprise, Sadness)

Similar (Fear, Sadness)

TABLE II
PERFORMANCE OF ALGORITHMS ON AFFECTIVE TEXT

Model precision recall F1 accuracy

TCDK 31.91 75.00 44.48 93.83%
TC 34.04 51.61 41.03 92.33%
MV 34.04 47.06 39.51 91.83%

Y , one is similar relation which we define as predicate
simRel(X,Y ) and the other is opposite relation which we
define as predicate oppRel(X,Y ). Y takes values from the
six emotions as X does. We define the following first-order
logic rules to represent our domain knowledge:

tl(Q,X) ∧ oppRel(X,Y )→ ¬tl(Q,Y ), w : 5.0

tl(Q,X) ∧ simRel(X,Y )→ tl(Q,Y ), w : 1.0
(12)

The first rule states that if a headline expresses emotion X
and the two emotions X and Y are opposite, it is unlikely
that the headline expresses emotion Y whereas the second
rule states that if X and Y are similar, there is a chance that
a headline expresses emotion Y if it expresses emotion X .
The weights for the two first-order logic rules are assumed to
be known and set to 5.0 and 1.0 respectively. Higher weight
of the first rule indicates it is a more important rule than the
second. The values of grounded predicates oppRel(X,Y )
and simRel(X,Y ) are assumed to be part of our domain
knowledge. The details of these two grounded predicates are
shown in Table I. For example, we believe that a headline can
not express Anger and Joy at the same time. In addition to
the first-order logic rules, we define the cost-function rules:

LinearLoss(β, tl(Q,X)), w : 1.0 (13)

The rule corresponds to the second term in (10). The pred-
icate is called LinearLoss because the potential function
associated with this rule is linear in tl(Q,X) as can be
observed from (9) and (10).

We conducted coarse-grained experiments on Affective
Text dataset, i.e. each rating is mapped to 0 if the original
value is smaller than 50 and 1 if larger or equal to 50. We
calculate the precision, recall, F-measure and accuracy of
all emotions for the TCDK model. The results are reported
in Table II. The highest scores in all the measures are in
bold format. We observe that our model TCDK obtained
best results with respect to recall, F1 score, and accuracy.
This demonstrates the advantage of taking into consideration
domain knowledge compared to TC that ignores it.

B. Fashion Social Dataset Evaluation

The dataset [9] contains 4711 images crawled from Flickr
and along with each image, metadata are available such
as the fashion topic used to query the image, title of the
image, tags and comments made by Flickr users, etc. In this
annotation task, a worker is presented with two questions
for each image: Is the image fashion related? Is the image
showing a specialty clothing item? Therefore we have in total
9422 questions. For each image, a number of workers from
Amazon Mechanical Turk (AMT) provide their answers.
Each answer takes values from {Y es,No,NotSure}. If
a worker answers NotSure, we treat it as if the worker
does not provide an answer for this question. We filter out
questions that receive less than three answers and we are
left with N = 8538 questions, each of which receives equal
to or more than three answers from workers. We have in
total M = 201 workers available for this annotation task. To
generate ground truth, three trusted experts were recruited
to give high-quality annotations. We take the majority vote
from the three trusted experts as the ground truth and use it
for evaluation of our models.

The question ”Is the image related to fashion?” for im-
age Q is denoted by predicate fashion(Q), where Q ∈
{1, . . . , N} and the question ”Is the image related to cloth?”
for image Q by predicate cloth(Q). One piece of the domain
knowledge we have is that if an image is related to cloth,
the image is more likely to be related to fashion. This is
illustrated in Fig. 2. Knowing that the probability of the
image being cloth-related is conducive to estimating whether
the image is fashion-related. This observation is captured in
the following rule:

cloth(Q)→ fashion(Q), w : 5.0 (14)

Another observation, as shown in Fig. 3, is that if two
questions are similar in terms of the metadata, then the true
labels of the two questions are likely to be the same. The
following rules capture the observation:

sim(Q1, Q2) ∧ fashion(Q1)→ fashion(Q2), w : 1.0

sim(Q1, Q2) ∧ cloth(Q1)→ cloth(Q2), w : 1.0
(15)

where Q denotes an image and the predicate sim(Q1, Q2)
represents a question-question similarity metric. Each spe-
cific similarity metric creates an instance of the two rules in
(15).

We propose to use a context-based similarity metric. An
image context refers to a group photo pool or a photoset. One
of the example contexts is Artistic Photography. An image
can be associated with one or more contexts. The intuition is
that if two pictures are more likely to be in the same context,
then they tend to have the same label as well. We denote C1

as the context set for Q1 and C2 as the context set for Q2.
The context-based similarity score sim(Q1, Q2) is defined
as:

sim(Q1, Q2) =
|C1 ∩ C2|
|C1 ∪ C2|

(16)
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TABLE III
PERFORMANCE OF ALGORITHMS ON FASHION DATASET

Model precision recall F1 accuracy

TCDK 87.83 89.84 88.82 89.27%
TC 86.79 83.6 85.20 85.39%
MV 86.55 83.73 85.11 85.32%

Fashion	
  
related	
  

1.0 Cloth	
  
related	
  

?

Fig. 2. Estimated true labels for ”cloth related” questions can be used for
prediction of ”fashion related” questions.

To avoid quadratic groundings of sim(Q1, Q2), for each
question Q1 we only keep pairs (Q1, Q2)’s whose similarity
scores in (16) rank at the top 10 as in [5]. Similar to the
model for the Affective Text dataset, the special cost-function
rules that bridge the gap between the top and the bottom
layers are:

LinearLoss(β, fashion(Q)), w : 1.0

LinearLoss(β, cloth(Q)), w : 1.0
(17)

We perform ten-fold cross validation with each fold leav-
ing out 10% of data. We estimate values of fashion(Q) and
cloth(Q) on the held-out fold and then map them to 0 or
1 using threshold 0.5. The results are shown in Table III.
Again, results show that TCDK achieves better performance
in all criteria with integrated domain knowledge than TC
alone (without the leverage of domain knowledge).

The weights of first-order logic rules defined for both
datasets in Section VI-A and Section VI-B are assumed to
be known and given as part of domain knowledge in this
paper. Though weights can be auto-tuned using maximum-
likelihood estimation [6], we leave this problem for future
work and aim to demonstrate the power of our model with
fixed yet not fine-tuned values set by users of our model.

VII. CONCLUSION

We presented trust-aware crowdsourcing with domain
knowledge (TCDK), a unifying framework that combines the
power of domain knowledge and traditional crowdsourcing
graphical model. It allows users to express domain knowl-
edge using first-order logic rules without redefining the
model. To estimate questions’ true labels and workers’ trust
values, we develop a scalable inference algorithm based on
alternating consensus optimization. We demonstrate that our
model is superior to the state-of-the-art by testing it on two
real datasets.

Fashion	
  
related	
  

0.86 

? 

1.0 

Cloth	
  
related	
  

0.95 

? 

Fig. 3. Estimated true labels for questions can be used for prediction of
other questions using image similarity.
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