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Abstract— In this paper we consider a distributed optimiza-
tion problem, where a set of agents interacting and cooperating
locally have as common goal the minimization of a function
expressed as a sum of (possibly non-convex) differentiable
functions. Each function in the sum is associated with an
agent and each agent has assigned an inequality constraint,
therefore generating an optimization problem with inequality
constraints. In this paper we present a distributed algorithm
for solving such a problem, and give local convergence results.
Our approach is based on solving (in a centralized manner)
an equivalent augmented optimization problem with mixed
constraints. The structure of this augmented problem ensures
that the resulting algorithm is distributed. The main challenge
in proving the convergence results comes from the fact that the
local minimizers are no longer regular due to the distributed
formulation. We present also an extension of this algorithm that
solves a constrained optimization problem, where each agent
has both equality and inequality constraints.

I. Introduction

Multi-agent, distributed optimization algorithms solve
problems where a group of agents has as common goal the
optimization of a cost function under limited information
and resources. The limited information is usually induced
by agents being able to communicate with only a subset of
the total set of agents. The authors of [17] introduced a multi-
agent, distributed optimization algorithm, where the convex
optimization cost is expressed as a sum of functions and each
function in the sum corresponds to an agent. The agents
cooperation is conditioned by a communication network,
usually modeled as an undirected graph. The algorithm
combines a (sub)gradient descent step with a consensus
step; the latter being added to deal with the fact that the
agents have only limited information about the cost function.
Extensions of this initial version followed in the literature.
[15], [18] include communication noise and errors on sub-
gradients, [10], [12] assume a random communication graph,
[15], [20] study asynchronous versions of the algorithm,
[11] considers state-dependent communication topologies,
while [3] assumes directed communication graphs. Another
modification of the algorithm described in [17] was intro-
duced in [8], where the authors change the order in which
the consensus-step and the subgradient descent step are
executed. Algorithms of the same flavor were also used
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to solve convex, constrained, optimization problems where
the agents share a global constraint set [9], [15], [18] or
where each agent has its own set of constraints [16], [20].
Other approaches for obtaining distributed algorithms use
dual decomposition [21], augmented Lagragian [6], [7], or
in particular, distributed versions of the Alternating Direction
Method of Multipliers (ADMM) algorithm [2], [19], [22].

In this paper, we extend nonlinear programming tech-
niques to a distributed optimization setup. In particular, the
objective function expressed as a sum of functions, each
function being associated with an agent. In addition, each
agent has an inequality constraint assigned to it, as well.
We propose a distributed algorithm derived from an algo-
rithm used to solve an augmented constrained optimization
problem in a centralized manner. Our approach is based
on first formulating an equivalent augmented optimization
problem with mixed constraints; a problem that is again
reformulated so that it contains only equality constraints.
Using a centralized first order algorithm to solve the first
order necessary condition for the latter augmented optimiza-
tion problem, we show that in fact we solve the original
constrained optimization problem in a distributed manner. In
our formulation we make no convexity assumptions on the
cost and constraint functions, but we assume they are con-
tinuously differentiable. As a consequence our convergence
results are local, and the main challenge in proving the results
focuses on dealing with the effect of the non-regularity of
the local minimizers, due to the distributed formulation.
Distributed algorithms for solving constrained, non-convex
optimization problems were proposed in [13], [14] and [23].
In particular, [23] solves also a non-convex optimization
problem with inequality constraints. Note however that the
inequality constraints are assumed globally known and their
approach is based on solving an approximate version of the
original problem.

The paper is organized as follows: in Section II we intro-
duce the problem setup. Section III formulates an equivalent
augmented optimization problem with mixed constraints and
presents results concerning the equivalence between the two
problems. In Section IV we re-formulate the augmented
problem into a problem that contains only equality con-
straints. This section introduces also a set of results on
properties of the Lagrangian of the two augmented prob-
lems; properties used for proving the convergence results.
Section V presents the convergence results of a centralized
algorithm for solving the augmented optimization problem
with equality constraints, while Section VI shows how in
fact this centralized algorithm is a distributed algorithm for
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obtaining the solution of the original problem. In addition, in
this section we introduce an extension of the algorithm that
is applied in the case agents have associated both equality
and inequality constraints.

Notations and definitions: For a matrix A, its (i, j) entry
is denoted by [A]i j and its transpose is given by A′. If A is
a symmetric matrix, A � 0 (A � 0) means that A is positive
(semi-positive) definite. The nullspace and range of A are
denoted by Null(A) and Range(A), respectively. The symbol
⊗ is used to represent the Kronecker product between two
matrices. The vector of all ones is denoted by 1. Let {Ai}

N
i=1

be a set of matrices. By diag(Ai, i = 1, . . . ,N) we understand a
block diagonal matrix, where the ith block matrix is given by
Ai. By S(x;ε) we refer to a neighborhood around x, of radius
ε. Let f :Rn→R be a function. We denote by ∇ f (x) and by
∇2 f (x) the gradient and the Hessian of f at x, respectively.
Let F : Rn ×Rm → R be a function of variables (x,y). The
block descriptions of the gradient and of the Hessian of F
at (x,y) are given by ∇F(x,y)′ =

(
∇xF(x,y)′,∇yF(x,y)′

)
, and

∇2F(x,y) =

(
∇2

xxF(x,y) ∇2
xyF(x,y)

∇2
xyF(x,y) ∇2

yyF(x,y)

)
,

respectively.

II. Problem description

In this section we describe the setup of our problem.
We present first the communication model followed by the
optimization model.

A. Communication model

A set of N agents interact with each other through a
communication topology modeled as an undirected commu-
nication graph G = (V,E), where V = {1,2, . . . ,N} is the set
of nodes and E = {ei j} is the set of edges. An edge between
two nodes i and j means that agents i and j can exchange
information (or can cooperate). We assume that at each time
instant k the agents can synchronously exchange information
with their neighbors. We denote by Ni , { j | ei j ∈ E} the set of
neighbors of agent i. We denote by L ∈RN×N the (weighted)
Laplacian of the graph G, defined as

[L]i j =


−li j j ∈ Ni,∑

j∈Ni li j j = i,
0 otherwise,

(1)

where li j are given positive scalars.
In the next sections we are going to make use of a set of

properties of the matrix L; properties that are grouped in the
following remark.

Proposition 2.1: The matrix L defined with respect to a
connected graph G satisfies the following properties:

(a) The nullspace of L is given by Null(L) = {γ1 | γ ∈R};
(b) Let L = L ⊗ I, where I is the n-dimensional identity

matrix. Then the nullspace of L is given by Null(L) =

{1⊗ x | x ∈Rn}.�

B. Optimization model

We consider a function f :Rn→R expressed as a sum of
N functions f (x) =

∑N
i=1 fi(x), and a vector-valued function

g : Rn → RN where g , (g1,g2, . . . ,gN)′, with gi : Rn → R

and N ≤ n.
We make the following assumptions on the functions f

and g and on the communication model.
Assumption 2.1: (a) The functions fi(x) and gi(x), i =

1, . . . ,N are twice continuously differentiable;
(b) Agent i has knowledge of only functions fi(x) and gi(x),

and scalars li j, for j ∈ Ni;
(c) Agent i can exchange information only with agents in

the set of neighbors defined by Ni;
(d) The communication graph G is connected.

The common goal of the agents is to solve the following
optimization problem with equality constraints

(P1) minx∈Rn f (x),
subject to: g(x) ≤ 0,

under Assumptions 2.1, where the inequality is entry-wise.
Throughout the rest of the paper we assume that problem
(P1) has at least one local minimizer.

Let x∗ be a local minimizer of (P1) and let B(x∗) be the
set of indices corresponding to the active constraints, that is,
B(x∗) = {i |gi(x∗) = 0}, and let ∇gi(x∗) denote the gradient of
gi(x) at x∗. The following assumption is used to guarantee the
uniqueness of the Lagrange multiplier vector ψ∗ appearing
in the Kuhn-Tucker necessary conditions of (P1).

Assumption 2.2: Let x∗ be a local minimizer of (P1). The
vectors {∇gi (x∗)}i∈B(x∗) are linearly independent.
Under such assumption the Lagrange multiplier vector ψ∗

such that ∇ f (x∗) +
∑N

i=1ψ
∗
i∇gi (x∗) = 0, with ψ∗i ≥ 0 for all

i, and ψ∗i = 0 for all i < B(x∗), is unique (see for example
Section 3.3, page 283 of [1])

Assumption 2.2 is typically used to prove local conver-
gence for several algorithms for solving (P1). As we will
see in the next sections, the same assumption will be used
to prove local convergence for a distributed algorithm used
to solve an augmented optimization problem with inequality
constraints.

As seen later in the paper, the approach chosen for dealing
with the inequality constraints is to transform them into
equality constraints by introducing additional variables:

(P∗1) minx,z f (x),

subject to: gi(x) + z2
i = 0, i = 1 . . . ,N,

where z′ = (z1, . . . ,zN). It can be shown (Section 3.3.2, page
286, [1]) that under Assumptions 2.1-(a) and 2.2, indeed
solving (P∗1) is equivalent to solving (P1).

III. An equivalent optimization problem with mixed
constraints

In this section we define an augmented optimization
problem, from whose solution we can in fact extract the
solution of problem (P1). This approach will allow us to
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use centralized algorithms which result in distributed algo-
rithms for (P1) by leveraging the structure of the equivalent
augmented problem.

Let us define the function F : RnN → R given by F(x) =∑N
i=1 fi(xi), where x′ = (x′1, x

′
2, . . . , x

′
N), with xi ∈R

n. In addi-
tion we introduce the vector-valued functions g :RnN →RN

and h : RnN → RnN , where g(x) = (g1(x),g2(x), . . . ,gN(x))′ ,
with gi : RnN → R given by gi(x) = gi(xi), and h(x)′ =
(h1(x)′,h2(x)′, . . . ,hN(x)′) , with hi : RnN → Rn given by
hi(x) =

∑
i∈Ni li j(xi− x j), with li j positive scalars. The vector

valued function h(x) can be compactly expressed as h(x) =
Lx, where L = L⊗ I, with I the n-dimensional identity matrix
and L defined in (1). We introduce the optimization problem

(P2) minx∈RnN F(x), (2)
subject to: h(x) = 0, (3)

g(x) ≤ 0. (4)

The Lagrangian function of problem (P2) is a function L :
RnN ×RN ×RnN̄ →R, defined as

L (x,µ,λ) , F(x) +µ′g(x) +λ′Lx. (5)

The vectors ∇gi(x) are the gradients of the functions gi(x)
with a structure given by

∇gi(x∗)′ =

0, . . . ,0︸ ︷︷ ︸
n zeros

, . . . , ∇gi(x∗)′︸   ︷︷   ︸
ith component

, . . . ,0, . . . ,0︸ ︷︷ ︸
n zeros

 , (6)

as per definition of the function gi(x).
Remark 3.1: If x∗ is a local minimizer of (P1), then it

follows immediately that if {∇gi(x∗)}i∈B(x∗) is a set of linearly
independent vectors then {∇gi(x∗)}i∈B(x∗) is also a set of lin-
early independent vectors, where x∗ = 1⊗ x∗ and B(x∗) is the
set of active constraints of (P2); that is, B(x∗) = {i | gi(x∗) = 0}.
In addition, it can be easily seen that B(x∗) = B(x∗).

The following proposition states the necessary conditions
that a local minimizer-Lagrange multipliers pair of (P2) must
satisfy.

Proposition 3.1 (first order necessary conditions): Let
Assumptions 2.1 and 2.2 hold and let x∗ = 1 ⊗ x∗ be a
local minimizer for problem (P2) satisfying the constraints
g(x∗) ≤ 0 and h(x∗) = 0. There exist unique vectors µ∗ and
λ∗ ∈ Range(L) so that ∇F(x∗) +

∑N
i=1µ

∗
i∇gi(x∗) + L′λ̃ = 0 for

all λ̃ ∈ {λ∗+λ⊥ | λ⊥ ∈ Null (L′)}. In addition, µ∗i ≥ 0 for all
i, µ∗i = 0 for all i < B(x∗) and y′∇xxL (x∗,µ∗,λ∗)y ≥ 0 for all
y such that Ly = 0 and ∇gi(x∗)′y = 0 for all i ∈ B(x∗).�

Note that due to the fact that L (and consequently L) is not
full rank, the Lagrange multiplier λ verifying the necessary
conditions is no longer unique. Still its particular structure
will be exploited in what follows.

The following proposition states that by solving (P2) we
solve in fact (P1) as well, and vice-versa.

Proposition 3.2: Let Assumptions 2.1 hold. The vector x∗

is a local minimizer of (P1) if and only if x∗ = 1⊗ x∗ is a
local minimizer of (P2). �

Remark 3.2: Note that any feasible solution of (P2) must
satisfy constraint (3) and therefore the assumption of a
connected topology makes sure that any solution is of the
form x∗ = 1⊗ x∗. The fact that we search a solution of (P2)

with this particular structure is fundamental for showing the
equivalence between the two optimization problems. �

Under the assumption that {∇gi(x∗)}i∈B(x∗) are linearly
independent, it is well known (see for example Proposition
3.3.1, page 284, [1]) that there exists a unique vector ψ∗ =

(ψ∗i ) satisfying the necessary conditions of (P1), namely
∇ f (x∗) +

∑
iψ
∗
i∇gi(x∗) = 0. Without much effort it can be

shown that this vector can be directly recovered from the
solution of (P2), as stated in the following proposition.

Proposition 3.3: Let Assumptions 2.1 and 2.2 hold, let
x∗ = 1⊗ x∗ be a local minimizer of (P2) and let ψ∗ = (ψ∗i )
and µ∗ = (µ∗i ) be the unique Lagrange multiplier vectors
corresponding to the first order necessary conditions of (P1)
and (P2), respectively. Then ψ∗ = µ∗.�

Assume without loss of generality that B(x∗) =

{1,2, . . . ,N1} for some N1 ≤ N. The next result characterizes
the null space of the Jacobian of the active constraints,
namely the matrix [∇g1(x∗), . . . ,∇gN1 (x∗),L′] and its trans-
pose.

Proposition 3.4: Let Assumptions 2.1 and 2.2 hold. The
nullspaces of the matrices [∇g1(x∗), . . . ,∇gN1 (x∗),L′] and
its transpose are given by

{
(0′,v′)′ | v ∈ Null (L′)

}
and{

(1⊗ v)′ | v ∈ Null
([
∇g1(x∗), . . . ,∇gN1 (x∗)

]′)}
, respectively. �

IV. An equivalent optimization problem with equality
constraints

In this section we re-formulate (P2) so that the resulting
problem contains only equality constraints, by introducing
additional variables. By applying a first order method for
solving the first order necessary conditions of this new
optimization problem, we in fact derive a distributed algo-
rithm for solving (P1). Consider the following constrained
optimization problem:

(P3) minx,z F(x), (7)
subject to: h(x) = Lx = 0, (8)

gi(x) + z2
i = 0. (9)

Remark 4.1: Following a similar avenue as in Section
3.3.2, page 286 of [1], it can be shown that if (x∗,µ∗,λ∗)
is a pair of local minimizer-Lagrange multipliers of (P2),
(with λ∗ ∈ Range(L)) then (x∗,z∗,µ∗,λ∗) is a pair of local
minimizer-Lagrange multipliers for (P3). In particular, z∗i =

−gi(x∗)1/2.�
Let us now define the augmented Lagrangian for (P3),
namely

L̃c (x,z,µ,λ) , F(x) +

N∑
i=1

µi
(
gi(x) + z2

i

)
+λ′Lx +

+
c
2

N∑
i

(
gi(x) + z2

i

)2
+

c
2

x′Lx, (10)

where we sometimes denote L̃c (·) for c = 0 by
L̃0 (·). For notational simplification, let us introduce
the notations x̃′ = (x′,z′) and let g̃i(x̃) , gi(x) + z2

i .
The gradient of L̃c(x̃,µ,λ) with respect to x̃ is
given by ∇x̃L̃c(x̃,µ,λ)′ = [∇xL̃c(x̃,µ,λ)′,∇zL̃c(x̃,µ,λ)′],
where ∇xL̃c(x,µ,λ) = ∇F(x) +

∑N
i=1µi∇gi(x) + L′λ +

c
∑N

i=1

(
gi(x) + z2

i

)
∇gi(x) + cLx and ∇zL̃c(x̃,µ,λ)′ =
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[
2µ1z1 + 2cz1

(
g1(x) + z2

1

)
, . . . ,2µNzN + 2czN

(
gN(x) + z2

N

)]
.

The Hessian of L̃c(x̃,µ,λ) with respect to x̃ is given by

∇2
x̃x̃L̃c(x̃,µ,λ) =

[
∇2

xxL̃c(x̃,µ,λ) ∇2
xzL̃c(x̃,µ,λ)

∇2
zxL̃c(x̃,µ,λ) ∇2

zzL̃c(x̃,µ,λ)

]
,

where

∇2
xxL̃c(x̃,µ,λ) = ∇2F(x) +

N∑
i=1

µi∇
2gi(x) + c

N∑
i=1

∇gi(x)∇gi(x)′ +

+ c
N∑

i=1

(
gi(x) + z2

i

)
∇2gi(x) + cL, (11)

∇2
xzL̃c(x̃,µ,λ) = ∇2

zxL̃c(x̃,µ,λ)′ =
[
2cz1∇g1(x), . . . ,2czN∇gN (x)

]
and ∇2

zzL̃c(x̃,µ,λ) = 2diag(µi + 2cz2
i ). Note that the La-

grangian Hessians for both problems (P2) and (P3) are
independent of λ.

In the following a correspondence between the properties
of the Hessians of problems (P2) and (P3) Lagrangian
functions is stated.

Proposition 4.1: Let Assumptions 2.1 and 2.2 and let
(x∗,µ∗,λ∗) be a local minimizer-Lagrange multipliers pair
of (P2) and assume that the Hessian of the Lagrangian
of (P2) satisfies the property: y′∇2

xxL (x∗,µ∗,λ∗)y > 0 for
all y such that Ly = 0 and ∇gi(x∗)′y = 0, with i ∈ B(x∗).
Then for the corresponding local minimizer-Lagrange mul-
tipliers pair (x̃∗,µ∗,λ∗) of (P3), with x̃∗ = (x∗,z∗), the
Hessian of the Lagrangian of (P3) satisfies the property:
ỹ′∇2

x̃x̃L̃0 (x̃∗,µ∗,λ∗) ỹ > 0 for all ỹ such that [L,0] ỹ = 0 and
∇g̃i(x̃∗)′ỹ = 0 for all i.�
The following proposition, which is an adaptation of a result
in [4], states that if the Hessian of the Lagrangian satisfies a
property as in Proposition 4.1, the Hessian of the augmented
Lagrangian of (P3) can be made positive definite at the local
minimizer-Lagrange multiplier pair for large enough c.

Proposition 4.2 ([4]): Let Assumptions 2.1 and 2.2 and
let (x̃∗,µ∗,λ∗) be a local minimizer-Lagrange multipliers pair
of (P3) and assume that ỹ′∇2

x̃x̃L̃0 (x̃∗,µ∗,λ∗) ỹ > 0 for all ỹ
such that [L,0] ỹ = 0 and ∇g̃i(x̃∗)′ỹ = 0 Then there exists a
positive scalar c̄, such that the Hessian ∇2

x̃x̃L̃c(x̃∗,µ∗,λ∗) � 0
for all c ≥ c̄.�

The first order necessary conditions for (P3) expressed in
terms of the augmented Lagrangian can be expressed as:

∇xL̃c(x̃∗,µ∗,λ∗) = 0, (12)
∇zL̃c(x̃∗,µ∗,λ∗) = 0, (13)

gi(x∗) + z∗i
2

= 0, ∀i (14)
Lx∗ = 0. (15)

A first order iterative algorithm that can be attempted to
solving the necessary conditions, denoted henceforth as
Algorithm 1, takes the following form:

xk+1 = xk −α∇xL̃c(xk,zk,µk,λk), (16)
zk+1 = zk −α∇zL̃c(xk,zk,µk,λk), (17)

µi,k+1 = µi,k +α
(
gi(xk) + z2

i,k

)
,∀i (18)

λk+1 = λk +αLxk. (19)

for some positive scalar α small enough.

V. Convergence results for Algorithm 1

In this section we give conditions under which Algorithm
1 converges to a local minimizer. The convergence results
are based on the spectral properties of a particular matrix;
spectral properties presented in the following lemma.

Lemma 5.1: Let Assumptions 2.1 and 2.2 hold and let
(x̃∗,µ∗,λ∗) with x̃∗ = (x∗,z∗) and λ∗ ∈ Range(L), be a local
minimizer-Lagrange multipliers pair of (P3). In addition,
assume that ∇2

x̃x̃L̃c(x̃∗,µ∗,λ∗) � 0 for some c > 0. Then the
eigenvalues of the matrix Mc(x̃∗,µ∗,λ∗) have negative real
parts, where

Mc(x̃∗,µ∗,λ∗) =

 ∇
2
x̃x̃L̃c(x̃∗,µ∗,λ∗) ∇g̃(x̃∗) L̃′
−∇g̃(x̃∗)′ 0 0
−L̃ 0 1

αJ

 (20)

with

∇g̃(x̃∗) =


∇g1(x∗) · · · ∇gN (x∗)

2z∗1 · · · 0
...

. . .
...

0 · · · 2z∗N

 ,
and L̃ = [L 0], and where J is the projection operator on
Null (L′) and α is a positive scalar.

Proof: Let β be an eigenvalue of Mc(x̃∗,µ∗,λ∗) and
let (u′,v′,w′)′ , 0 be the corresponding eigenvector, where
u, v and w are complex vectors of appropriate dimensions.
Denoting by û, v̂ and ŵ the conjugates of u, v and w,
respectively, we have

Re(β)
(
‖u‖2 + ‖v‖2 + ‖w‖2

)
=

Re
{

û′∇2
x̃x̃L̃c(x̃∗,µ∗,λ∗)u + ŵ′

1
α

Jw
}
.

Since J is a semi-positive definite matrix and
∇2

x̃x̃L̃c(x̃∗,µ∗,λ∗) is positive definite (as per our assumption),
we have that Re(β)

(
‖u‖2 + ‖v‖2 + ‖w‖2

)
> 0, as long as u , 0

or w < Range(L) and therefore Re(β) > 0. In the case u = 0
and w ∈ Range(L), we get

Mc(x̃∗,µ∗,λ∗) [0,v,w]′ = β [0,v,w]′ ,

from where we obtain

∇g̃(x∗)v + L′w = 0,

which can be explicitly written as[
∇g1(x∗), . . . ,∇gN(x∗)

]
v + L′w = 0 (21)

and 
2z∗1 · · · 0
...

. . .
...

0 · · · 2z∗N

v = 0. (22)

Since z∗i =−gi(x∗)1/2 it follows that z∗i > 0 for all i <B(x∗) and
hence, from (22) we have that vi = 0 for all i <B(x∗). Assume
without loss of generality that B(x∗) = {1,2, . . . ,N1}. Equation
(21) becomes

[
∇g1(x∗), . . . ,∇gN1 (x∗)

] [
v1, . . . ,vN1

]′
+L′w = 0.

But from Proposition 3.4, we have that v = 0 and w ∈Null(L′)
and since w ∈Range(L) as well, it must be that w = 0. Hence
we have a contradiction since we assumed that (u′,v′,w′) ,
0′ and therefore the real part of β must be positive.
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We are now ready to present conditions under which local
convergence is achieved by iteration (16)-(19).

Theorem 5.1: Let Assumptions 2.1 and 2.2 hold and let
(x̃∗,µ∗,λ∗) with x̃ = (x∗,z∗), and λ∗ ∈ Range(L), be a local
minimizer-Lagrange multipliers pair of (P3). Assume also
that ỹ′∇2

x̃x̃L̃0 (x̃∗,µ∗,λ∗) ỹ > 0 for all ỹ such that [L,0] ỹ = 0
and ∇g̃i(x̃∗)′ỹ = 0. Then there exists c̄ > 0 so that for all
c > c̄ we can find ᾱ(c) such that for all α ∈ (0, ᾱ(c)], the set
(x∗,z∗,µ∗,λ∗+ Null (L′)) is an attractor of iteration (16)-(19).
In addition, if the sequence {xk,zk,µk,λk} converges to the set
(x∗,z∗,µ∗,λ∗+ Null (L′)), the rate of convergence of ‖xk−x∗‖,
‖zk − z∗‖, ‖µk −µ

∗‖ and ‖λk − [λ∗+ Null (S′)]‖ is linear.
Proof: Using the Lagrangian function defined in (15),

iteration (16)-(19) can be equivalently expressed as
xk+1
zk+1
µk+1
λk+1

 =


xk −α∇xLc(xk,zk,µk,λk)
zk −α∇zLc(xk,zk,µk,λk)
µk +α∇µLc(xk,zk,µk,λk)
λk +α∇λLc(xk,zk,µk,λk)

︸                                 ︷︷                                 ︸
T(α,xk ,zk ,µk ,λk)

(23)

It can be easily checked that (x∗,z∗µ∗,λ∗+ Null (L′)) is a set
of fixed points of T. Let us now consider the transformation
λ̃ = (I−J)λ, where J is the orthogonal projection operator
on Null(L′). This transformation extracts the projection of λ
on the nullspace of L′ from λ and therefore λ̃ is the error
between λ and its orthogonal projection on Null (L′). Under
this transformation, iteration (23) becomes

xk+1
zk+1
µk+1
λ̃k+1

 =


xk −α∇xLc(xk,zk,µk, λ̃k)
zk −α∇zLc(xk,zk,µk, λ̃k)
µk +α∇µLc(xk,zk,µk, λ̃k)

(I−J)λ̃k +α∇λLc(xk,zk,µk, λ̃k)

︸                                          ︷︷                                          ︸
T̃(α,xk ,zk ,µk ,λ̃k)

where we used the fact that (I − J)λ̃ = (I − J)λ, (I −
J)Lx = Lx, since Lx ∈ Range(L), and L′λ = L′(λ̃ + Jλ) =

L′λ̃. Clearly (x∗,z∗,µ∗,λ∗) is a fixed point for T̃ and
if

(
xk,zk,µk, λ̃k

)
converges to (x∗,z∗,µ∗,λ∗), this implies

that (xk,zk,µk,λk) converges to (x∗,z∗,µ∗,λ∗+ Null (L′)). The
derivative of the mapping T̃

(
α,x,z,µ, λ̃

)
at (x∗,z∗,µ∗,λ∗) is

given by ∇T̃ (α,x∗,z∗,µ∗,λ∗) = I−αMc (x∗,z∗,µ∗,λ∗), where
Mc (x∗,z∗,µ∗,λ∗) was defined in (20). Proposition 4.2 tells
us that there exists a c̄ so that ∇2

x̃x̃L̃c(x̃∗,µ∗,λ∗) � 0 for all
c ≥ c̄. Therefore, for all such c, by Lemma 5.1 we have
that the real parts of the eigenvalues of Mc (x∗,z∗,µ∗,λ∗) are
positive. Consequently, using a continuity argument, we can
find an ᾱ (which depends on c) so that for all α ∈ (0.ᾱ(c)],
the eigenvalues of ∇T̃ (α,x∗,z∗,µ∗,λ∗) are strictly within
the unit circle. Using a similar argument as in Proposition
4.4.1, page 387, [1], there exist a norm ‖ · ‖ and a sphere
Sε =

{
(x′,z′,µ′,λ′)′ | ‖(x′,z′,µ′,λ′)′−

(
x∗′,z∗′,µ∗′,λ∗′

)′
‖ < ε

}
for some ε > 0 so that the induced norm of ∇T̃ (α,x,z,µ,λ)
is less than one within the sphere Sε . Therefore, using
the mean value theorem, it follows that T̃ (α,x,z,µ,λ) is a
contraction map for any vector in the sphere Sε . By invoking
the contraction map theorem (see for example Chapter 7 of
[5]) we get that

(
xk,zk,µk, λ̃k

)
converges to (x∗,z∗,µ∗,λ∗) for

any initial value in S ε .

VI. Distributed algorithm

In what follows we connect the convergence results for
(P3) (and consequently (P2)) to the solution of (P1). First
let us re-write Algorithm 1 by emphasizing each ith n-
dimensional component of xk. As a result, we obtain the
following iteration, that we refer to as Algorithm 2:

xi,k+1 = xi,k −α
{
∇ fi(xi,k) +µi,k∇gi(xi,k)

+
∑
j∈Ni

li j(λi,k −λ j,k) + c
(
gi(xi,k) + z2

i,k

)
∇gi(xi,k)

+ c
∑
j∈Ni

li j(xi,k − x j,k)

 (24)

zi,k+1 = zi,k −2α
{
µi,kzi,k + czi,k

(
gi(xi,k) + z2

i,k

)}
(25)

µi,k+1 = µi,k +α
(
gi(xi,k) + z2

i,k

)
(26)

λi,k+1 = λi,k +α
∑
j∈Ni

li j(xi,k − x j,k) (27)

In the above iteration we used the fact that L is assumed
symmetric and therefore L′λ = Lλ. It can be easily observed
that the algorithm is distributed (assuming the scalars α and
c are globally known). Indeed iteration (24)-(27) corresponds
to the operations each agent i executes at each time instant;
operations for which only local information, or information
from neighbors is used. The following corollary gives the
conditions under which Algorithm 2 ensures convergence
to a local minimizer of (P1).

Corollary 6.1: Let Assumptions 2.1 and 2.2 hold and let
(x∗,ψ∗) be a local minimizer-Lagrange multiplier pair of
(P1). Assume also that y′

∑N
i=1

[
∇2 fi(x∗) +ψ∗i∇

2gi(x∗)
]
y > 0

for all y such that ∇gi(x∗)′y = 0, with i ∈ B(x∗). Then there
exists c̄> 0 so that for all c≥ c̄ we can find ᾱ(c) such that for
all α ∈ (0, ᾱ(c)], (x∗,ψ∗) is a point of attraction for iteration
(24)-(27), for all i = 1, . . . ,N. In addition, if the sequence{
xi,k,µi,k

}
converges to (x∗,ψ∗), then the rate of convergence

of ‖xi,k − x∗‖ and ‖µi,k −ψ
∗‖ is linear.

Proof: By Proposition 3.2 we have that x∗ = 1⊗ x∗ is a
local minimizer of (P2) with corresponding Lagrange multi-
pliers (µ∗,λ∗+ Null (L′)), with λ∗ ∈Range(L). In addition, by
Proposition 3.3 we have that µ∗ = ψ∗. Using the definition of
the Lagrangian function of (P2) introduced in (5), we have

∇2
xxL

(
x∗,µ∗,λ∗

)
= diag

(
∇2 fi(x∗) +ψ∗i∇

2gi(x∗), i = 1, . . . ,N
)
.

Recalling the assumption that y′
∑N

i=1

[
∇2 fi(x∗)+

ψ∗i∇
2gi(x∗)

]
y > 0 for all y such that ∇gi(x∗)′y = 0,

with i ∈ B(x∗), by Proposition 3.4 this is equivalent to
y′∇2

xxL (x∗,µ∗,λ∗)y > 0 for all y such that Ly = 0 and
∇gi(x∗)′y = 0, with i ∈ B(x∗). Furthermore, applying
Proposition 4.1 we have that the Hessian of the Lagrangian
of (P3) satisfies ỹ′∇2

x̃x̃L̃0 (x̃∗,µ∗,λ∗) ỹ > 0 for all ỹ such that
[L,0] ỹ = 0 and ∇g̃i(x̃∗)′ỹ = 0 for all i. All conditions of
Theorem 5.1 are satisfied, and the result follows.

A. Distributed algorithm for mixed constraints

In this section we show how the previous algorithm can be
extended to the case where each agent has also an equality
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constraint in addition to the inequality one. Consider the
following optimization problem:

(P′1) minx∈Rn

N∑
i=1

fi(x),

subject to: gi(x) ≤ 0, i = 1 , . . . ,N
ξi(x) = 0, i = 1 , . . . ,N,

where Assumptions 2.1 and 2.2 are extended to include the
(twice) differentiability of ξi(x) and the linear independence
of the set of vectors {∇ξ j(x∗)}Nj=1 and {∇gi(x∗)}i∈B(x∗). Con-
sider now the following iteration, referenced henceforth as
Algorithm 3:

xi,k+1 = xi,k −α
{
∇ fi(xi,k) +µi,k∇gi(xi,k) +ηi,k∇ξi(xi,k)

+
∑
j∈Ni

li j(λi,k −λ j,k) + c
(
gi(xi,k) + z2

i,k

)
∇gi(xi,k)

+ cξi(xi,k)∇ξi(xi,k) + c
∑
j∈Ni

li j(xi,k − x j,k)

 (28)

zi,k+1 = zi,k −2α
{
µi,kzi,k + czi,k

(
gi(xi,k) + z2

i,k

)}
(29)

µi,k+1 = µi,k +α
(
gi(xi,k) + z2

i,k

)
(30)

λi,k+1 = λi,k +α
∑
j∈Ni

li j(xi,k − x j,k) (31)

ηi,k+1 = ηi,k +αξi(xi,k) (32)

The following result states the convergence properties of this
algorithm.

Proposition 6.1: Let the extended Assumptions 2.1 and
2.2 hold and let (x∗,ψ∗,η∗) be a local minimizer-
Lagrange multiplier pair of (P′1). Assume also that
y′

∑N
i=1

[
∇2 fi(x∗) +ψ∗i∇

2gi(x∗) +η∗i∇
2ξi(x∗)

]
y > 0 for all y

such that ∇gi(x∗)′y = 0, with i ∈ B(x∗) and ∇ξi(x∗)′y = 0
for all i. Then there exists c̄ > 0 so that for all c ≥ c̄
we can find ᾱ(c) such that for all α ∈ (0, ᾱ(c)], (x∗,ψ∗,η∗)
is a point of attraction for iteration (28)-(32), for all i =

1, . . . ,N. In addition, if the sequence
{
xi,k,µi,k,ηi,k

}
converges

to (x∗,ψ∗,η∗), then the rate of convergence of ‖xi,k − x∗‖,
‖µi,k −ψ

∗‖ and ‖ηi,k −η
∗‖ is linear.�

The proof of this result would follow the same steps as
in the case of Corollary 6.1. Note that as in the case of
Algorithm 2, Algorithm 3 is distributed as well since the
agents update their estimates of the minimizer and Lagrange
multipliers using only local information and information
from neighbors.

VII. Conclusions
We presented a distributed algorithm for solving an op-

timization problem with inequality constrains; where the
cost function is expressed as a sum of functions and each
agent is aware of only one function of the sum and has its
own local inequality constraint. We gave conditions for the
(local) convergence of the algorithm where special care had
to be paid to dealing with the non-regularity of the local
minimizers due to the distributed formulation. In addition,
we introduced an extension of the algorithm that solves
the distributed optimization problem in the case agents are
endowed with equality constraints as well, in addition to the
inequality ones.
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