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Algebraic-Graphical Approach for Signed Dynamical Networks

Guodong Shi, Claudio Altafini, and John S. Baras

Abstract— A signed network is a network with each link
associated with a positive or negative sign. Models for nodes
interacting over such signed networks, where two types of
interactions are defined along the positive and negative links,
respectively, arise from various biological, social, political, and
economical systems. Starting from standard consensus dynam-
ics, there are two basic types of negative interactions along
negative links, namely state flipping or relative-state flipping. In
this paper, we provide an algebraic-graphical method serving
as a systematic tool of studying these dynamics over signed
networks. Utilizing generalized Perron-Frobenius theory, graph
theory, and elementary algebraic recursions, we show this
method is useful to establish a series of basic convergence results
for dynamics over signed networks.

I. INTRODUCTION AND PRELIMINARIES

In the past decades, the study of network dynamics
has attracted various research attentions from a variety of
scientific disciplines [1]. Particularly, with its root traced
back to 1960s on products of stochastic matrices [2], to
1970s on DeGroot social interactions [3], and to 1980s on
distributed optimization [4], consensus algorithms serve as
a primary model for network dynamics as well as being
a foundation for some prominent engineering applications
of large-scale complex networks [5]-[8]. It has become a
common understanding that cooperative node dynamics will
lead to certain collective network behaviors.

On the other hand, in various biological, social, politi-
cal, and economical systems, there are often two different,
activating or inhibitive, trustful or mistrustful, cooperative
or antagonistic, types of node interactions. Using a positive
or negative sign to denote the type of a link, the structure
of these systems can be modeled as signed graphs. After
specifying node dynamical relations among each positive or
negative links, the evolution of node states defines signed net-
work dynamics. Consensus algorithms with positive and neg-
ative links have been recently investigated [9]-[19], where
there exist two basic types of negative interactions along
negative links, namely the state flipping negative dynamics
introduced in [10] and the relative-state flipping negative
dynamics introduced in [11].
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A. Signed Graphs

Consider a network with n nodes indexed in the set V =
{1,...,n}. The structure of the network is represented as an
undirected graph G = (V, E), where an edge (link) {4,j} €
E is an unordered pair of two distinct nodes in the set V.
Each edge in E is associated with a sign, positive or negative,
defining G as a signed graph. The positive and negative edges
are collected in the sets ET and E~, respectively. Then GT =
(V,ET) and G~ = (V,E™) are respectively termed positive
and negative subgraphs. Throughout the paper and without
further specific mention we assume that G is connected and
G~ contains at least one edge.

For a node ¢ € V, its positive neighbors are the nodes
that share a positive link with i, forming the set N :=
{j : {i,j} € ET}. Similarly the negative neighbor set of
node 7 is denoted as N; := {j : {i,j} € E~}. The set
N; = N UN; then contains all nodes that interact with
node ¢ in the graph G. We use deg; = ’Nl‘ to denote the
degree of node ¢, i.e., the number of neighbors of node 3.
Similarly, deg] = |NH and deg; = |NZ_| represent the
positive and negative degree of node ¢, respectively.

B. Signed Laplacian
The Laplacian of the positive graph G is defined as [20]

L. ::DG+ *AG+

G

where A, is the adjacency matrix of the graph G* with
[A,,ij =1if {i,j} € ET and [A_, ];j = 0 otherwise, and
D_, = diag(deg] ..., deg?) is the positive degree matrix.

Next, we denote D = diag(deg;,...,deg, ) as the
negative degree matrix. Let A, be the signed adjacency
matrix of the graph G™, where [A__];; = —1if {i,j} € E
and [A_, ];j = 0 otherwise. Then the matrix

L, =D, —A_
G G

G
is defined as the signed Laplacian of the negative graph G™.
The signed Laplacian of the signed graph G is then given
by L., +L, .

Particularly, we can also neglect the sign of edges in
G~ and let A;f be the adjacency matrix of G~ with the
signs being neglected, i.e., [A;f},;j =1if {i,j} € E- and
[A_,]ij = 0. Then L;i =D, - A;f7 is defined as the
Laplacian of G~ neglecting the sign of the links.

C. Structural Balance Theory

Introduced in the 1940s [21] and primarily motivated by
social-interpersonal and economic networks, a fundamental
notion in the study of signed graphs is the so-called structural
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balance. We recall the following definition (see [1] for a
detailed introduction).

Definition 1: A signed graph G is structurally balanced
if there is a partition of the node set into V. = V; |J Va,
where V; and Vg are nonempty and mutually disjoint, such
that any edge between the two node subsets V; and Vj is
negative, and any edge within each V; is positive.

The notion of structural balance can be weakened in the
following definition [22].

Definition 2: A signed graph G is weakly structurally
balanced if there is a partition V into V.=V; (JVa---|J
V,, with m > 2, where Vy,...,V,, are nonempty and
mutually disjoint, such that any edge between different V;’s
is negative, and any edge within each V; is positive.

D. Positive/Negative Interactions

Time is slotted at ¢ = 0,1, .... Each node 7 holds a state
x;(t) € R at time ¢, and interacts with its neighbors at each
time to revise its state. The interactions rule is specified by
the sign of the links. Let o, 8 > 0. We first focus on a
particular link {i,j} € E and specify for the moment the
dynamics along this link isolating all other interactions.

« If the sign of {4, j} is positive, then each node s € {3, j}
updates its value by

zs(t+1) = 25(t) + (s (t) — z4(t))
= (1 - a)xs(t) + O‘x—s(t)v (D

where —s € {i,5}\ {s}.
o If the sign of {¢,j} is negative, then each node s €
{4, 7} updates its value by either

— State Flipping Rule:

.I‘S(t + 1) = xs(t) + /6( - x—s(t) - xs(t))
= (1 - B)ms(t) - 53378(1»; 2

or
— Relative-state Flipping Rule:

zs(t+1) = xs(t) — ﬁ(x_s(t) - IS(t))
= (1 +B)zs(t) — fr_s(t).  (3)

The positive interaction is consistent with DeGroot’s rule
of social interactions, which indicates that the opinions of
trustful social members are attractive to each other [3]. The
state-flipping rule, introduced in [10], states that a node
will be attracted by the opposite of its neighbor’s state if
they share a negative link. The relative-state-flipping rule,
introduced in [11], on the other hand states that two nodes
sharing a negative link take repulsive interactions rather than
attraction. The two parameters o and 3 describe the strength
of positive and negative links, respectively.

E. Contributions and Paper Organization

In this paper, we establish an algebraic-graphical method
serving as a system-theoretic tool for studying consensus
dynamics over signed networks. Combining generalized
Perron-Frobenius theory, graph theory, and elementary al-
gebraic recursions, we will show that this approach provides

simple proofs to a series of basic convergence results for
dynamics over signed networks, for both deterministic and
random node interactions. We note that some of the presented
results are essentially no longer new to the literature, how-
ever, new insights can be gained by putting the results and
analysis in a uniform framework. For example, we prove
that signed Laplacian leads to eventually positive matrices
in both state-flipping and relative-state-flipping definitions,
whenever convergence is guaranteed.

The remainder of the paper is organized as follows.
Section II presents a series of basic results for dynamics over
deterministic networks. Section III extends the discussions
to random networks with convergence results established
using similar algebraic-graphical analysis but with additional
probabilistic ingredient. Finally Section IV concludes the
paper with a few remarks and future work.

II. DETERMINISTIC NETWORKS

In this section, we investigate the evolution of the node
states with deterministic interactions. The pairwise interac-
tions among the signed links are collected over a deter-
ministic network. We are interested in characterizing the
asymptotic limits of the node states.

A. Fundamental Convergence Results

1) State-Flipping Negative Dynamics: With the state flip-
ping rule (2) along with the negative links, the update of
x;(t) reads as

r(t+1) =z(t)+a Y (a:j(t) - xi(t)>

JENS
DI CORE0)
JENT
= (1 — adeg — Bdegi_)xi(t) +a Z z;(t)
JENT
—B > xi(t). (4)
jeN]

Denote x(t) = (z1(t)...7,(t))T. We can now rewrite (4)
into the following compact form:

x(t+1)=Wex(t) = (I —aL_, —BL__)x(t) ()

where L, and L are the signed Laplacian of the positive
and negative graphs G* and G, respectively.

Recall that a real matrix (or vector) is called positive
(non-negative) if all its entries are positive (non-negative);
a stochastic matrix is a nonnegative matrix with row sum
equal to one [23]. A key property of the matrix W, lies in

Wl =1, i€V ©)
j=1
which indicates that W, will become a stochastic matrix

if all its entries are taken into their absolute values. The
following result holds.
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Theorem 1: Assume that 0 < o+ 8 < 1/ max;ev deg;.
Then under the state flipping rule (2), the following state-
ments hold for any initial value x(0).

(i) If G is structurally balanced subject to partition V =
V1 U VQ, then hmt_>OO I’l(t) (ZjE\h I](O) -
eV z;(0 i € Vi, and limy o 2;(t) =
| Sev, ol v, 75(0) /i € Vo,
(ii) If G is not structurally balanced, then lim;_, o 2;(t) =
0, i€ V.

Proof. (i) Let G be structurally balanced with partition V =

V1 J V2. Consider a gauge transformation given by

Z,L(t) = xl(t),z € Vyq; Zl(t) = —.’El(t),l € Vs.

The evolution of the z;(t) follows standard consensus algo-
rithm and the result holds from Theorem 2 in [7].

(ii) Applying Gershgorin’s Circle Theorem (see, e.g., Theo-
rem 6.1.1 in [23]), it is easy to see that —1 < \;(W) <1
for all \; € o(W,) when 0 < a4+ 8 < 1/deg; for all
i. This immediately implies that for any initial value x(0),
there exists y(x(0)) = (y1(x(0)), ..., yn(x(0)))T satisfying
W,y =y such that

lim ;(t) = y;.

t—o00

Claim. |yi| = - -+ = |yn| for any x(0).
Suppose there are two distinct nodes ¢ and j with |y;| #
ly;|. The fact that W,y =y gives

\yz|<2\

This is impossible if G is connected noting the fact that
Z?zl |[Wlij| =1, i € V. This proves the above claim.

Now let y, = |y1]| = - -+ = |yn| # 0 for some x(0). There
must be a set V, (which, of course, may be an empty set)
with

olig| il i€V, (7)

Yi = Ys, 0 € Vs ¥i = —Ys,t € V\ V.

It is straightforward to verify that in order for W y =y
to hold, all links (if any) in either V, or V \ V, must be
positive, and the links (if any) between V, and V \ V., must
be negative. This is to say, G must be structurally balanced
since by our standing assumption G~ is nonempty.

We have now completed the proof. (]

We remark that the condition 0 < a+f < 1/ max;cvy deg;
in Theorem 1 can be certainly relaxed, e.g., a straightforward
one would be 0 < adeg] + Bdeg; < 1 for all i. Further
relaxations can be obtained making use of the structure of
L | and LG_, and the fact that the spectrum of W, will be

G+
restricted within the unit cycle for sufficiently small « and

B.

The essential message of Theorem 1 is that the structural
balance of G determines whether one is within the spectrum
of W,. In fact, there holds

I”<|x®|*  ®

with sufficiently small « and 8 guaranteeing Amax (W2) < 1.
Therefore, the algorithm (4) defines an overall contraction

(4 D" < Anax (W2)[[(2)

mapping, consistent with the standard consensus algorithms
without negative links.

2) Relative-State-Flipping Negative Dynamics: Now con-
sider the state flipping rule (3) for negative links. The update
of x;(t) reads as

zi())

zi(t+1) =xz;(t —l—az (:cj

JENT

5 Y (otn-50)

JEN,
= (1 — adeg]” + Bdeg;)xi(t)

—i—aij BZZ‘J )

JENT JENT

Recall that the Laplacian of the matrix G~ neglecting the
sign of the links is defined as L;f. The algorithm (9) is
written into

x(t+1) = (I—aL,, +BL__)x(1).

From (10), M1 = 1 always holds. We present the following
result.

Theorem 2: Suppose G is connected. Then for any 0 <
a < 1/max;ey deg;", there exists a critical value S, > 0
for 5 such that

(i) If B < B, then an average consensus is reached along

o), ie. ,
" x;i(0
lim z;(t) = 72:]:1 = (0)

t—o00 n

M, x(t) = (10)

for all initial value x(0);
(ii) If B > B.. then limy_,o ||x(t)|| = oo for almost all
initial values w.r.t. Lebesgue measure.
Proof. Since 0 < a < 1/ max;ey degj', all eigenvalues of
I — L, are nonnegative again invoking the GerShgorin’s
Circle Theorem. This in turn leads to the following fact
noticing that L;f is positive semi-definite: I —aL —|—BL;7
is positive semi-definite. Define J = 117 /n and consider

f(B) = Amax (I —alL,, +BL_ — llT/n>.

The Courant-Fischer Theorem (see Theorem 4.2.11 in
[23]) implies f(-) is a continuous and non-decreasing func-
tion over [0, c0). Now that G is connected, we have f(0) <
1 since the second smallest eigenvalue of L_, is positive.
Apparently f(oo) > 1. Therefore, there exists a critical value
B« > 0 satisfying f(8«) = 1 such that

e There holds f(5) < 1 if § < [.. In this case, along
(10) x(t) converges to the eigenspace corresponding to
the eigenvalue one of M, which leads to the average
consensus statement in (i).

e There holds f(5) > 1 if 8 > f.. In this case, along
(10) x(t) diverges as long as the initial value x(0) has a
nonzero projection onto the eigenspace corresponding to
Amax (M) of M. This leads to the almost everywhere
divergence statement in (ii).

The proof is now complete. |
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The condition that GT is a connected graph is crucial for
Theorem 2: If GT is not connected, it is easy to see that one
single negative link and an arbitrarily small 5 > 0 will drive
the network state to diverge for almost all initial values.

B. Directed Graphs

Directional links in a network can also be associated with
signs [24]. We now present generalizations of the previous
model and results to signed directed networks. For the ease
of presentation, we keep the previous notation and simply
adapt them to the directed graph case. Their usage is of
course restricted to the current subsection.

Now let the graph G = (V,E) be a directed graph
(digraph), where a link (i, j) € E is directed starting from ¢
and pointing to j. A diagraph is termed a signed digraph if
each of its link has a positive or negative sign. By revising
the definition of positive and negative neighbor sets of node
1 to

N:_ = {](]Z = {j:(],i)GEi},
the network dynamics (4) and (9) are then readily defined for
the digraph G. The set N; = NZT" (UN;" continues to represent
the overall neighbor set of node <. In this directed graph case
we continue to define deg; = deg;, deg; = deg;, and
deg; = |N;| as the positive, negative, and overall degrees of
node 1.

Definition 1 can be generalized to digraphs by replacing
the undirected edges with directional links:

Definition 3: A signed digraph G is structurally balanced
if there is a partition of the node set into V = V1| JV2, where
V; and V5 are nonempty and mutually disjoint, such that any
directional link between V; and Vj is negative, and any link
whose two end nodes belong to the same V; is positive.

The following theorem corresponds to Theorem 1 for
signed digraphs.

Theorem 3: Consider network dynamics (4) over a di-
graph G. Assume that 0 < a4 < 1/ max;cy deg;. Suppose
G is strongly connected. The following holds for any initial
value x(0).

(i) If G is structurally balanced subject to parti-
tion V. = V; |J V,, then there are n pos-
itive numbers wiq,...,w, with > " w, = 1
such that limt%xJ zi(t) = (X,ev, wjz;(0) —

Vs w;x;(0 /n i € Vi; and limg_ oo xi(t) =
(devl w;z;(0) — ZjGVQ w;x;( ))/”7 i € Va.

(ii) If G is not structurally balanced, then lim;_, ., x;(t) =
0, 2€ V.

Likewise, the following theorem corresponds to Theorem
2 for signed digraphs.

Theorem 4: Consider network dynamics (9) over a di-
graph G. Suppose G™ is strongly connected and fix 0 <
a < 1/ max;cy deg; . There exists 3, > 0 such that for any
B < B, there are ¢1(B), ..., q,(B) € RT with Y1 |, ¢; =1
satisfying that a consensus is reached at

t) = Z ¢iz:(0)

€ E+}; N~

lim z;(
t—o0

for all initial value x(0).

In the statement of Theorem 4, for any S < pf.,
(q1(B) ... qn(B)) is aleft eigenvector related to eigenvalue 1
of M. It is worth emphasizing that the 5. in Theorem 4 is
merely an upper bound for 5 under which the network can
still reach a consensus in the presence of the negative links,
and it is unclear whether such 8, would remain a critical
value as the undirected case. The actual value of /3, can be
estimated using standard matrix perturbation theory [25].

C. Weighted Signs, Continuous-time Dynamics, Switching
Structures

More sophisticated signed networks can certainly be stud-
ied by generalizing the previous tools and analysis. This sub-
section presents a survey to related results in the literature.

1) Weighted Signs: The strength of positive and negative
links, represented by « and f, can also be link dependent.
This means that for the positive and negative dynamics (1),
(2), and (3) along the edge {4, j }, @ and 8 will be replaced by
a; and f3;;, respectively. The results of Theorems 1-4 can be
extended to networks with weighted signs straightforwardly
[10].

2) Continuous-time Dynamics: The signed network dy-
namics considered above clearly have their continuous-time
counter part. For the state flipping negative dynamics (5), the
corresponding node state evolution in continuous time reads
as

On the other hand, the continuous-time counter part of the
dynamics (10) is

Gx(t) = —(aL,, —pL, )x(1).

Theorems 1 and 2 can be translated to the these continuous
time models straightforwardly, even for nonlinear node inter-
actions [9], [15]. As illustrated in (8), under the state-flipping
negative dynamics, both positive and negative links lead to
non-expansive network state evolution'. The mathematical
reason behind those non-linear generalizations is due to the
fact that the non-expansive property can be preserved for
suitable nonlinear interaction rules.

3) Switching Network Structures: In the study of stan-
dard consensus algorithms, one particular interest was to
establish convergence conditions under time-varying network
structures [5], [8], [26], [27], for which earlier work was
dated to 1960s [2]. Such analysis can be challenging due to
the lacking of a common convergence metric that works for
all possible choices of the interaction graphs. Nevertheless,
possibilities of generalizing the analysis of time-varying
network structures have been shown in the literature [10],
[14], [15], [18], [28], [29].

Y

(12)

'With directed graphs, (8) in general no longer holds under the state-
flipping negative dynamics. However, there still holds that max;cv }xl (t+
1)| < max;ev |z;(t)| as shown in the proof of Theorem 3. Therefore, the
network state evolution continues to be non-expansive.
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Let G, = (V,E;),t = 0,1,... be a sequence of graphs
with each G; being a (directed or undirected) signed graph.
Then the positive and negative neighbor set of node 1,
are determined by connections in G; and therefore become
time-dependent, denoted N (¢) and N; (¢), respectively. The
network dynamics under the state-flipping rule (2) are then
represented by

wlt+ ) =) +a > () - u®)

-
JENi (t)

=8 Y (w0 + ).

JEN; (1)

13)

The following result holds.

Proposition 1: Suppose there exists a constant 0 < ¢ < 1
such that oo|N (¢)| + B|N; (t)| < 1—6 for all i € V and
allt > 0.

(i) Let there exist 7' > 0 such that the graph G, 17 =
(V,U;2TE,) is strongly connected for all s > 0. Then along
(13), for any initial value x(0), there exists y.(x(0)) > 0
such that lim;_, o, ’x,(t)‘ = y.(x(0)) for all i € V.

(i1) Suppose G is undirected for all ¢ > 0. Let the graph
Gls,00] = (V, UfisEt) be connected for all s > 0. Then
along (13), for any initial value x(0), there exists ., (x(0)) >
0 such that lim;_, o |2;(t)| = y.(x(0)) for all i € V.
Proof. The desired conclusions follow from Theorem 2.1 and
Theorem 2.2 in [16], where the positive and negative weights
are link dependent. ]

Structural balance condition can be applied to the sequence
of graphs G; = (V,E;), under which bipartite consensus
result can be similarly established for state-flipping negative
dynamics [14], [18], [28]. On the other hand, for relative-
state flipping negative dynamics, analysis for switching
network structures can be extremely challenging since the
network state is no longer non-expansive in the presence of
one single negative link. It turned out that in order to preserve
convergence to consensus, it is important that at each time
step, the influence of the negative links can be overcome by
the positive links. We refer to [29] for such treatment under
continuous-time node dynamics.

III. RANDOM NETWORKS

Node interactions happen randomly in many real-world
networks, and how consensus can be reached over a random
node interaction processes have been extensively studied [6],
[30]-[35]. We proceed to discuss network dynamics over
signed random graph processes.

We use the following gossiping model [31] to describe
the random node interactions. The undirected, signed graph,
G = (V,E), continue to define the world of the network
where interactions take place. Each node initiates interactions
at the instants of a rate-one Poisson process, and at each
of these instants, picks a node at random to interact with.
Under this model, at a given time, at most one node initiates
an interaction. This allows us to order interaction events in
time and to focus on modeling the node pair selection at

interaction times. The node pair selection is then performed
as follows.

Definition 4: Independently at each interaction event ¢ >
0, (i) a node ¢ € V is drawn uniformly at random, i.e., with
probability 1/n; (ii) node ¢ picks a neighbor j uniformly
with probability 1/deg,; for j € N;. In this case, we say that
the unordered node pair {3, j} is selected.

The node pair selection process is assumed to be i.i.d.,
i.e., the nodes that initiate an interaction and the selected
node pairs are identically distributed and independent over
t > 0. Let (E,.”, 1) be the probability space, where . is
the discrete o-algebra on E, and y is the probability measure
defined by ({i,7}) = (1/deg; +1/deg;)/n for all {i,j} €
E. The node selection process can then be seen as a random
event in the product probability space (€2, .7, P), where Q =
EN = {w = (wo,wl,...,) : Vt,wt S E}, F = yN’ and P
is the product probability measure (uniquely) defined by: for
any finite subset K' C N, P((w¢)ter) = [ [ ;¢ x p(wt) for any
(wi)iere € EI¥l For any t € N, we define the coordinate
mapping G; : ! — E by Gi(w) = wy, for all w € Q. Then
formally Gy, t = 0,1,... describe the node pair selection
process. We denote .#; = o(Go, ..., G:) as the o-algebra
capturing the ¢+ 1 first interactions of the selection process.

After the pair of nodes {4, j} have been selected at time ¢,
they update their states x;(t) and x;(t) according to the sign
of the link that they share: if the link is positive, they update
their states by (1); if the link is negative, they update their
states by either (2) or (3). The nodes that are not selected
at time ¢ will keep their states unchanged. In this way, x(¢),
t=0,1,... specifies a random process over the probability
space (£2,.Z,P), and we are interested in the mean, mean-
square, and almost sure convergence of x(t).

For state-flipping and relative-state flipping models, we
present the following results, respectively, for the mean-
square and almost sure convergence of x(t).

Theorem 5: Let 0 < o, 8 < 1 and consider state flipping
rule (2) for dynamics over negative links.

(1) If G is structurally balanced subject to partition V =
V1 U Vs, then both in mean-square and almost surely,

zi(t) = (D 2;(0) = > 2;(0))/n, i €V (14)

JEV, JEV2
and
l‘l(t) — —( Z l‘](O) — Z xJ(O))/n, 1 € V.
JEVL JEV2

15)

(ii) If G is not structurally balanced, then x;(t) — 0 both
in mean-square and almost surely for all ¢ € V.

Theorem 6: Suppose G is connected and consider the
relative-state flipping rule (3). For any 0 < a < 1, there
exists 5*(c) > 0 such that z;(t) — 2?21 x;(0)/n both in
mean-square and almost surely for all initial value x(0) if
p<pr

The following results characterize possible almost sure
divergence of x(t) caused by large /3 related to the negative
links.
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Theorem 7: Fix 0 < o < 1 with o # 1/2.
(i) Suppose both GT and G~ are connected. Then under
the state flipping negative dynamics (2), there exists [,

such that whenever 3 > [, there holds

=) =1
for almost all initial values w.r.t. Lebesgue measure.

(i) Under the relative-state flipping negative dynamics (3),
there exists 3, such that whenever 8 > [, there holds

IP’(hm sup max ‘xl (16)

t—o00

— ()| = oo) —1 a7

P(llmsu max |x;(t
t~>oop ]eV’ ( )

for almost all initial values w.r.t. Lebesgue measure.
These results can be similarly obtained by adapting the
algebraic-graphical analysis for deterministic networks to
the random setting. We refer to [12], [13], [17] for related

treatments, and omit the details due to space limitations.

IV. CONCLUSIONS

We have established an algebraic-graphical method which
can systematically investigate consensus dynamics over
signed networks, in view of generalized Perron-Frobenius
theory, graph theory, and elementary algebraic recursions.
After basic convergence results have been clear, interesting
future directions include inverse problems such as estimating
characteristics of the annotations of links and nodes from
observations of various network characteristics at a subset
of nodes (called boundary nodes) like delay and throughput.

REFERENCES

[1]1 E. David and J. Kleinberg, Networks, Crowds, and Markets: Reasoning
About a Highly Connected World. New York, NY, USA: Cambridge
University Press, 2010.

[2] J. Wolfowitz, “Products of indecomposable, aperiodic, stochastic ma-
trices,” Proc. Amer. Math. Soc., vol. 14, no. 5, pp. 733-737, 1963.

[3] M. H. Degroot, “Reaching a Consensus,” Journal of the American
Statistical Association, vol. 69, no. 345, pp. 118-121, 1974. [Online].
Available: http://www.jstor.org/stable/2285509

[4] J. N. Tsitsiklis, Problems in decentralized decision making and
computation.  Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci.,
Massachusetts Inst. Technol., Boston, MA, USA, 1984.

[5] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups
of mobile autonomous agents using nearest neighbor rules,” IEEE
Transactions on Automatic Control, vol. 48, pp. 988-1001, 2003.

[6] S. Kar and J. M. F. Moura, “Distributed consensus algorithms in
sensor networks: Quantized data and random link failures,” IEEE
Transactions on Signal Processing, vol. 58, no. 3, pp. 1383-1400,
2010.

[71 R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proceedings of the
IEEE, vol. 95, no. 1, pp. 215-233, 2007.

[8] W. Ren and R. Beard, “Consensus seeking in multi-agent systems un-
der dynamically changing interaction topologies,” IEEE Transactions
on Automatic Control, vol. 50, pp. 655-661, 2005.

[9] C. Altafini, “Dynamics of opinion forming in structurally balanced
social networks,” Plos One, vol. 7, no. 6, p. €38135, 2012.

, “Consensus problems on networks with antagonistic interac-

tions,” IEEE Transactions on Automatic Control, vol. 58, no. 4, pp.

935-946, 2013.

G. Shi, M. Johansson, and K. H. Johansson, “How agreement and

disagreement evolve over random dynamic networks,” IEEE Journal

on Selected Areas in Communications, vol. 31, no. 6, pp. 1061-1071,

2013.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]
[21]
[22]
[23]
[24]
[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

2014

G. Shi, A. Proutiere, M. Johansson, J. S. Baras, and K. H. Johansson,
“Emergent behaviors over signed random dynamical networks: state-
flipping model,” IEEE Transactions on Control of Network Systems,
pp. 142-153, 2015.

“Emergent behaviors over signed random dynamical networks:
relative-state-flipping model,” IEEE Transactions on Control of Net-
work Systems, in press, 2017.

J. Liu, X. Chen, T. Basar, and M. A. Belabbas, “Exponential
convergence of the discrete-time altafini model,” Preprint, arXiv
[math.OC]:1512.0715, 2015.

Z. Meng, G. Shi, and K. H. Johansson, “Dynamics of opinion forming
in structurally balanced social networks,” SIAM Journal on Control
and Optimization, vol. 53, no. 5, pp. 3057-3080, 2015.

Z. Meng, G. Shi, K. H. Johansson, M. Cao, and Y. Hong, “Behaviors
of networks with antagonistic interactions and switching topologies,”
Automatica, vol. 73, 2016.

G. Shi, A. Proutiere, M. Johansson, J. S. Baras, and K. H. Johansson,
“The evolution of beliefs over signed social networks,” Operations
Research, vol. 64, pp. 585-604, 2016.

W. Xia, M. Cao, and K. H. Johansson, “Structural balance and opinion
separation in trustmistrust social networks,” IEEE Transactions on
Control of Network Systems, 2015.

J. M. Hendrickx, “A lifting approach to models of opinion dynamics
with antagonisms,” in Proc. of the 53th IEEE Conference on Decision
and Control, 2014, pp. 2118-2123.

M. Egerstedt and M. Mesbahi, Graph Theoretic Methods in Multiagent
Networks. Princeton University Press, 2010.

F. Heider, “Attitudes and cognitive organization,” Journal of Psychol-
ogy, vol. 21, pp. 107-112, 1946.

J. A. Davis, “Clustering and structural balance in graphs,”
Relations, vol. 20, pp. 181-187, 1967.

R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University
Press, 1985.

S. Wasserman and K. Faust, Social Network Analysis: Methods and
Applications. Cambridge University Press, 1994.

J. S. G. W. Stewart, Matrix Perturbation Theory. Academic Press,
1990.

V. Blondel, J. M. Hendrickx, A. Olshevsky, and J. Tsitsiklis, “Con-
vergence in multiagent coordination, consensus, and flocking,” IEEE
Conf. Decision and Control, pp. 2996-3000, 2005.

L. Moreau, “Stability of multiagent systems with time-dependent com-
munication links,” IEEE Transactions on Automatic Control, vol. 50,
pp. 169-182, 2005.

A. V. Proskurnikov, A. Matveev, and M. Cao, “Opinion dynamics in
social networks with hostile camps: Consensus vs. polarization,” IEEE
Transactions on Automatic Control, 2015.

B. D. O. Anderson, G. Shi, and J. Trumpf, “Convergence and state
reconstruction of time-varying multi-agent systems from complete
observability theory,” IEEE Transactions on Automatic Control, 2017.
Y. Hatano and M. Mesbahi, “Agreement over random networks,” [EEE
Transactions on Automatic Control, vol. 50, no. 11, pp. 1867-1872,
2005.

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Transactions on Information Theory, vol. 52, no. 6,
pp. 2508-2530, 2006.

F. Fagnani and S. Zampieri, “Randomized consensus algorithms over
large scale networks,” IEEE Journal on Selected Areas in Communi-
cations, vol. 26, no. 4, pp. 634-649, 2008.

A. Tahbaz-Salehi and A. Jadbabaie, “A necessary and sufficient
condition for consensus over random networks,” IEEE Transactions
on Automatic Control, vol. 53, no. 5, pp. 791-795, 2008.

——, “Consensus over ergodic stationary graph processes,” IEEE
Transactions on Automatic Control, vol. 55, no. 1, pp. 225-230, 2010.
G. Shi, B. D. O. Anderson, and K. H. Johansson, “Consensus over
random graph processes: Network borel-cantelli lemmas for almost
sure convergence,” IEEE Transactions on Information Theory, vol. 61,
no. 10, pp. 5690-5707, 2015.

Human



