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Abstract—We consider the collaboration of autonomous
agents as a coalitional game subject to constraints, like commu-
nication, trust or reputation. We analyze the tradeoff between
the benefits of collaboration and these constraints (or costs
of collaboration) via dynamic, iterative stochastic games. The
agents can observe locally the actions of other agents in their
neighborhood and decide whether to collaborate or not in
a distributed asynchronous manner. Trust values are taken
into consideration when agents act and collaborate. Specifically
they affect the selection of agents to collaborate with. We
consider only problems where the information used for either
estimating reputations or deciding on strategies is mostly local;
i.e. from the neighbors of each agent. We show that randomized
algorithms emerge as the agents try to reach the maximum
payoff. We also investigate the topology of the formed network
by studying the second largest eigenvalue of the corresponding
graph, and describe its effects on control performance.

I. INTRODUCTION

Dynamic networked systems are used as models for many

phenomena and situations in science and engineering: com-

munication networks, collaborating robots, organizations,

societal systems and communities, economic systems and

biological systems. Discovering fundamental principles gov-

erning the design-synthesis, control-operation, and perfor-

mance evaluation of dynamic networked systems represents

a major research challenge currently in science and engineer-

ing at large. The recent emphasis on and significance of this

challenge is well described in the recent reports on Network

Science [1], [2].

In this paper we develop the fundamental view that agents

in such a network are dynamic entities that collaborate

because via collaboration they can accomplish objectives and

goals much better than working alone, or even accomplish

objectives that they cannot achieve alone at all. Yet the

benefits derived from such collaboration require some costs

(or expenditures), for example due to communications, or

due to energy expenditure. Or in equivalent terms, the

collaboration is subject to constraints (static or dynamic).

Understanding and quantifying this tradeoff between the

benefits vs the costs of collaboration, leads to new methods

that can be used to analyze, design and control/operate

networks of agents. Multiple metrics for benefits and costs

can be considered within this framework; that is we can

consider vector valued benefits and costs of collaboration.

Furthermore, we investigate topology effects of the formed

networks. We study the topology efficiency while the benefit-

cost relations change.

This paper is organized as follows. Section II defines the

graphic model and benefit-cost relation we use in the paper.

A description of the coalition formation game is provided in

Sec. III. Section IV investigates the dynamics of the game,

including its convergence, steady state and topology at the

steady state. Section V concludes the paper and discusses

future work.

II. PROBLEM FORMULATION

A. Graphic model

Suppose there are n nodes1 in the network. Define the set
of nodes N = {1, 2, . . . , n}. The communication structure of
the network is represented by an undirected graph g, where a
link between two nodes implies that they are able to directly

communicate. It is natural to assume that nodes only agree

to collaborate with those who are willing to collaborate.

Thus a link in a network means that two end nodes agree to

collaborate with each other. Notice that even though links are

undirectional, the weights (related to gain and cost mentioned

below) of the links are not undirectional. Suppose there is a

link between node i and j. The weights on link ij, denoted as
wij and wji for two directions, are not necessary the same.

Let gN represent the complete graph, where every node

is directly connected to every other node, and let the set

G = {g|g ⊆ gN} be the set of all possible graphs. If i and
j are directly linked in g, we write ij ∈ g. Let g + ij denote
the graph obtained by adding link ij to the existing graph
g where ij /∈ g and g − ij denote the graph obtained by
severing link ij from the existing graph g where ij ∈ g (i.e.,
g + ij = g ∪ {ij} and g − ij = g \ {ij}). The set of nodes
in graph g is N(g) = {i|i ∈ g} and n(g) is the number of
nodes in g.

A communication link is established only if two end

nodes agree to collaborate with each other, i.e., they are

directly connected with each other in g. Once the link is
added, two end nodes join one coalition and they agree to

forward all the traffic from each other. Note that indirect

communication between two players require that there is a

path connecting them. A path in g connecting i1 and im is

1In this paper, the terms node, player and agent are interchangeable.
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a set of distinct nodes {i1, i2, . . . , im} ⊂ N(g), such that
{i1i2, i2i3, . . . , im−1im} ⊂ g.
The communication structure g gives rise to a partition

of the node set into groups of nodes who can communicate

with each other. A coalition of g is a subgraph g′ ⊂ g,
where ∀i ∈ N(g′) and j ∈ N(g′), i �= j, there is a path in
g′ connecting i and j, and ij ∈ g implies ij ∈ g′.

B. Benefit and cost

As we have discussed, agents obtain benefits by joining

a coalition. Suppose the characteristics of each node are

represented as a profile. The profile of node i is xi, which

includes characteristics of several aspects. For instance, in

communication networks, xi can include the location of node

i, neighbor set of node i, power level, noise, interference etc.
Then both the benefit and the cost that occur when node i
connects with node j is a function of xi and xj . We denote

by Bij the benefit node i obtains by collaborating with node
j. On the other hand, establishing links is costly; we denote
the cost of activating link ij by Cij .

We are particularly interested in studying one type of cost

or constraints: the trust values nodes have on others. The

performance of autonomous agents is well-known to suffer

from “free-riding” as there is a natural incentive for nodes

to only consume, but not contribute to the services of the

system. One well-known solution is the application of trust

establishment and management systems. By trust we mean

an estimate about an agent’s actual quality in terms of its

behavior in the network, which is sometimes also referred to

as reputation. Nodes with a high trust value are then favored,

while nodes with a low trust value are isolated from others.

Assume the trust value node i has on node j is denoted as
sij . The simple constraint will be that i only establishes a
direct collaboration with node j, if sij > θ, i.e., a node with
a trust value less than θ is untrusted.
In this paper, we will study coalition formation under

trust constraints. There are many ways to incorporate trust

constraints. One way used is the so-called ‘hard constraint’.

As long as sij does not satisfy certain conditions, a link

cannot be established at all between nodes i and j. The
threshold θ mentioned above is an example. Another way
is the so-called ‘soft constraint’, where trust is considered as

a risk of collaboration. The risk is the cost node i expects to
have when collaborating with node j and is integrated into
the cost Cij . Our previous work on trust and cooperation

[3] showed that both ways can be used as incentive for

cooperation among selfish nodes. Trust values are based on

local monitoring and previous experience. Notice that these

trust values may change over time because new information

has been received about agents, or agents’ behavior has

changed [4].

In the rest of this section, we describe examples of gains

and costs in various networks:

C. Wireless networks

The benefit of nodes in wireless networks can be the rate

of data flow they receive, which is known to be related to

the received power. Let xi denote the physical coordinates

of node i. Then we can define the benefit function Bij =
Pj l(xi, xj), where Pj is the power spend to generate the

transmission and l(xi, xj) < 1 is the loss factor due to
isotropic dispersion and absorption in the environment.

On the other hand, the power used in transmission is a cost.

Therefore, the cost for node i to activate his communication
link to node j can be equal to the transmission energy (or
power) necessary for i to send data to j. We define Cij as

the following

Cij = RSd(xi, xj)
α, (1)

where RS is a parameter depending on the transmit-

ter/receiver antenna gains and the system loss not related

to propagation, and α is the path loss exponent depending
on the specific propagation environment.

Another example of cost in wireless communications is the

data loss during transmission, which is related to the noise

and interference of the wireless channel. Therefore, we can

define Cij = h(N, I) > 0, where N is the environment noise

and I is the interference.

D. Social connection model

We present a model used in social networks[5]. Assume

that each node potentially offers benefits V to other nodes

per time unit. The potential benefit may be reduced with

multi-hop interactions in the network. Following the Jackson-

Wolinsky connections model, then the gain node i obtains by
connecting with node j is defined as

Bij =
∑

V δrij−1 (2)

where rij is the number of hops in the shortest path between

i and j (also known as the geodesic distance in graph theory),
and 0 ≤ δ ≤ 1 is the communication depreciation rate. The
gain function gives higher value to paths with smaller number

of hops. It captures the fact that more directly collaborating

nodes gain more than nodes far away in terms of ‘social’

distance. The depreciation can be explained by diminishing

benefits due to intermediate collaboration failures or delays.

The cost can be the degree of trust between users i and
j: the more i trusts j, the lower the cost of establishing the
link.

III. COALITION FORMATION GAME

We are interested in studying autonomous networks, where

each node manages and controls its own operations in the

network. A node decides to directly collaborate with others

only if it gets the maximum payoff. The coalition formation

process is modelled as pairwise games, which is called

coalition formation game in the literature [6]. In this section,

we give the detailed description of the games.

The pairwise games are modelled as an iterated process in

which individual nodes activate and delete links based on the

improvement that the resulting network offers them relative

to the current network. A link between two nodes can be

formed only if both nodes agree to activate the link, while a

single node can sever an existing link. Each user receives a

payoff based on the network configuration that is in place.
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Initially the n nodes are disconnected. The players meet
over time and have the opportunity to form links with each

other. The time horizon, T , is divided into periods and is
modelled as a countable, infinite set, T = {1, 2, . . . , t, . . . }.
Let g(t) represent the network that exists at the end of period

t.
A strategy of node i is a vector, defined as γi =

(γi,1, . . . , γi,i−1, γi,i+1, . . . , γi,n), where γi,j ∈ {0, 1} for
each j �= i. γi,j = 1 is interpreted as saying that node i
wants to form a link with node j, while γi,j = 0 states that
i does not directly communicate with node j. The set of all
strategies of node i is denoted by Γi. Since node i has the
option of forming or not forming a link with each of the

remaining n − 1 nodes, the number of strategies of node i
is |Γi| = 2n−1. The set Γ = Γ1 × · · · × Γn is the strategy

space of all the nodes. A link ij is formed in network g
only if γi,j = 1 and γj,i = 1. Therefore, a strategy profile

γ(t) = (γ
(t)
1 , . . . , γ

(t)
n ) at time period t corresponds to the

network g(t) at time t. The payoff of node i from the network
g is defined as

Ui(g) = Bi(g) − Ci(g), (3)

where Bi(g) =
∑

j∈N(g) Bij and Ci(g) =
∑

j∈N(g) Cij .

Now we describe the dynamic process generated by the

iterated pairwise game. The game is assumed to be repeated

in each time period t = 1, 2, . . . . Define pij as the probability

that the node pair ij is selected, in each time period, to
play the pairwise game. Notice that there may be multiple

pairs selected in the same time period. These pairs can play

simultaneously as long as they do not contain the same node.

On the other hand, if both ij and ik are selected, i cannot
play two games simultaneously. Thus i will not play any of
the two games and it will inform its neighbors j and k as
well. Therefore, there would be no game played on links ij
and ik in the current time period.
We assume that each node is myopic. Given that nodes i

and j play the game, if the link ij is already in the network,
then the decision is whether to sever it, and otherwise the

decision is whether to establish the link. The nodes involved

act myopically, activating the link if it makes each at least

as well off and one strictly better off, and deleting the link

if its deletion makes either player better off. Mathematically

speaking, if only node pair ij is selected in time period t,
then the network g(t+1) has either

• g(t+1) = g(t)−ij if vi(g
(t)−ij) > vi(g

(t)) or vj(g
(t)−

ij) > vj(g
(t)), or

• g(t+1) = g(t)+ij if vi(g
(t)+ij) > vi(g

(t)) and vj(g
(t)+

ij) ≥ vj(g
(t)), or vi(g

(t) + ij) ≥ vi(g
(t)) and vj(g

(t) +
ij) > vj(g

(t)), or
• g(t+1) = g(t) if none of the above satisfies.

If more than one pairs are selected to play the game, each

pairwise game could be considered separately. If after some

time period t, no additional links are formed or severed,
then the network formation process has reached a steady

state. Thus a coalition or coalitions have been formed at

the steady state. Then the coalition formation game moves

to the second phase, in which users act together to achieve

maximum payoffs.

IV. GAME DYNAMICS

In this section, we study the dynamics of the game we just

defined, including its convergence, steady state and topology

at the steady state.

A. Convergence

Having described the iterated pairwise game,we study the

convergence of such a game. In particular, we are interested

in the conditions under which all nodes in the network are

connected. The coalition that contains all the nodes is called

the “grand coalition”.

To study the convergence, we first define a concept of

stability: pairwise stability.

Definition 1 A network g is pairwise stable if

• for all ij ∈ g vi(g) ≥ vi(g−ij) and vj(g) ≥ vj(g−ij),
and

• for all ij /∈ g, if vi(g) < vi(g+ij) then vj(g) > vj(g+
ij) or if vj(g) < vj(g + ij) then vi(g) > vi(g + ij).

We first give a simple fact on the dynamics of the pairwise

game:

Lemma 1: The iterated pairwise game converges to a

pairwise stable network or a cycle of networks.

Sketch of Proof: If in certain time period, the network

is not pairwise stable, there must exist at least one link that

can be formed or severed to improve the payoffs of the two

end nodes. As long as such a link is selected, the network

changes to another network. This procedure either stops at

the pairwise stable network or it changes back to a network

that has been met due to the limited number of possible

networks |gN |. In the later case, the procedure forms a cycle.

Figure 1(a) is a network of 6 nodes starting from no links.

The benefit follows the definition of Eqn. (2). Take c12 =
c23 = c34 = c45 = c56 = c61 = 1, where cij = cji for all

i, j ∈ N and the cost of other links are much greater than

1, V = 0.9 and δ = 0.3. We observe that the first link’s
cost exceeds its payoff, while subsequent links are valuable.

Following the myopic strategy, no link could be formed at all.

However, it is obvious that the network shown in Figure 1(b)

provides better payoffs than the empty network, where vi =
0.421 for all i = 1, 2, . . . , 6, and it is easy to verify that the
network is pairwise stable. Some random events are needed

potential

1

2 3

4

56

1

2 3

4

56

v=0.9<c=1

(a) (b)

link

Fig. 1. A network where the game converges to an inefficient network.
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to help the network jump out of the inefficient stable network,

which (random events) are called mutations.

In evolutionary games, mutations are introduced so that the

evolution of games is modelled as a Markov chain, where

the states of the Markov chain are the strategy profiles γ.
Given nonzero mutations for each state of the Markov chain,

we have that the Markov chain is irreducible and aperiodic.

Therefore, it has a unique corresponding stationary distri-

bution. The work of Harsanyi and Selten [7] and Kardori,

et al. [8] show that by letting the mutation probability go to

0 in a certain way, the game converges to a unique Pareto
equilibrium. The mutations for network formation mean that

when two nodes agree to form a link, with a probability

p, the link is not formed, or when a link is to be deleted
because one of the two nodes choose to sever it, the link

is not deleted with probability p. Such mutations may result
from transmission failures or noise. Thus by using mutations,

the pairwise game converges to a stable network.

The dynamic system defines a Markov chain on a finite

state space. P = [pij ] is the Markov transition matrix. Note
that, under our assumptions, all elements in the matrix P
are strictly positive. It is well known , then, that the Markov

chain has a unique stationary distribution. A stationary

distribution is a row vector μ satisfying

μP = μ.

Asymptotically, independent of the initial condition, the

strategy distribution is given by μ. By introducing stochastic
mutations, we have obtained uniqueness and global stability.

We examine the long run behavior of the system when the

probability of mutations is small. To this end, we introduce

the concept of the limit distribution.

Definition 2 The limit distribution μ∗ is defined by μ∗ =
limp→0 μ(p), if it exists.

If the limit distribution places positive probability on the

strategy configuration z ∈ Z, z is called a long run equi-
librium. In principle, we can calculate the limit distribution,

for each p, by explicitly writing down the closed form for

pij and then solving the equation μP = μ for μ, but the
procedure is complicated. In this paper, we only present the

result that shows that by permutation the game converges to

a dominant equilibrium.

Theorem 2: If there exists an equilibrium which domi-

nates other equilibria, with probability 1 the N -player game
converges to the dominant equilibrium.

Proof: This is true since the dominant equilibrium is

the single absorbing state. The Markov chain will converge

to the single absorbing state with probability 1.

B. Steady state

In this section, we investigate the coalitions formed when

the pairwise games reach the steady state. The network

model we studied is described as the following:

• Gain: Bij = B if ij ∈ g.
• The cost is the summation of two components: com-

munication cost and risk that depends on trust values,

Cij = CCij + Rij .

Fig. 2. Number of coalitions vs. benefit B

– The communication cost is defined as in Eqn. (1),

CCij = RSd2
ij , where dij is the distance between

i and j.
– The risk is defined as the reverse of trust values.

Trust values are based on the history of a node’s

game strategy. More specifically, if at time T ,
sij(T ) =

∑T
t=1 γji(t)/T , then Rij = 1/sij .

• Game strategy: in addition to the strategy defined in

Sec. III, a scheme that uses trust as an incentive for

collaboration is introduced, where if sij is less than a

threshod θ, node i always chooses to collaborate with
j.

We run simulations where 20 nodes are randomly placed

on a 1000 meters × 1000 meters square. Two nodes are
selected to play the pairwise game with a fixed probability

1/n(n − 1), where n = 20. Parameters RS and θ are
fixed and the benefit parameter B changes. We compare the

number of coalitions that are formed with and without the

trust constraint when the network reaches the pairwise stable

state as shown in Figure 2. It shows that the trust constraint

serves as an incentive that helps the pairwise game to form

the grand coalition (the number of coalitions is equal to 1).

C. Topology Effects

We studied the topology of the network when the game

reaches the steady state. One particular topology we are

interested in is the small-world topology: most links are

connected between neighboring nodes with few long-range

shortcuts. In the past five years, there has been substan-

tial research on the small-world model in various complex

networks, such as the Internet and biological systems. One

important result is that the second largest eigenvalue modulus

(SLEM) of the corresponding adjacency matrix of a graph

determines the convergence speed of distributed dynamic

algorithms on the graph.

In the rest of this section, we investigate the normalized

matrix F of the adjacency matrix A, that is

F = D−1A, (4)

where D is the diagonal matrix whose ith diagonal element
is the degree of vertex i. Thus F matrices are a class

of stochastic matrices. Since F is a primitive stochastic

matrix, according to the Perron-Frobenius theorem [9], λ1

J. S. Baras et al.: Coalition Formation and Trust in Collaborative Control MoC1.3 

1200



0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

B

S
L
E
M

Fig. 3. SLEM vs. benefit B

is a simple eigenvalue with a right eigenvector 1 and a

left eigenvector π such that 1
T π = 1. Let λ2, λ3, . . . , λr

be the other eigenvalues of F ordered in a way such that

λ1 = 1 > |λ2| ≥ |λ3| ≥ · · · ≥ |λr|, and m2 is the algebraic

multiplicity of λ2. Then it is shown that the convergence of

F t is geometric, with relative speed equal to SLEM = |λ2|.
The spectral gap of a graph is the quantity 1 − SLEM; so
iterations on graphs with higher spectral gaps converge faster.

We study the SLEM of graphs that are formed by the

formation game we described in Sec. IV-B. Since the SLEM

is defined in a connected graph, we only study benefit

parameter values B > 0.5, when a grand coalition is formed
at the steady state as shown in Fig 2. In Figure 3, the SLEM

decreases with the benefit. Especially, the SLEM decreases

dramatically in the range of [0.7, 0.8]. We calculated the
shortest path and clustering coefficients of these graphs. The

results show that the range of [0.7, 0.8] is exactly where we
observe the small-world property. Research has shown that

a graph with the small-world property is efficient regarding

convergence of distributed algorithms. Our study on network

structure formation shows that a small increase in benefit

may result in an efficient network topology.

More specifically, we study networks in the form similar

to the one of Fig. 1, that is, all nodes are placed on the

circumference of a circle. Suppose that the gain and cost

are defined as in Eqns. (2) and (1) respectively. We assume

that all nodes are equally placed on the circle. Therefore,

the distance between any pair of neighboring nodes on the

circle is the same, denoted as d1, and the corresponding cost

is Cd1
. Similarly, the distance between nodes that are r hops

away on the circle is denoted as dr and the corresponding

cost is Cdr
.

We first present the following proposition:

Proposition 3: There exist direct connections between

nodes that are at least r hops away on the circle if V >
Cdr

1−δ
⌊n

2 �−r+1
.

Sketch of Proof: Suppose nodes are numbered in a

clockwise order. Now consider a connection that connects

nodes 1 and r + 1. By adding this connection, the benefit of

node 1 from node r + 1 to node ⌊n
2 � changes to

V
(

1 + δ + · · · + δ⌊
n
2 �−r

)

− Cdr
.

The least gain change due to adding the connection

between node 1 and r + 1 takes place if there has been
a connection between node 1 and r. Therefore, a direct
connection that connects nodes 1 and r + 1 is added if

V
(

1 + δ + · · · + δ⌊
n
2 �−r

)

−Cdr
>V

(

δ + · · · + δ⌊
n
2 �−r+1

)

.

The right hand side is the gain node 1 gets from node r to
⌊n

2 � given there is a direct connection between node 1 and
r−1 and no direct connection between node 1 and s, where
s ≥ r.
Then we have that

V >
Cdr

1 − δ⌊
n
2 �−r+1

.

Notice that the condition on V is only a sufficient condi-

tion.

Consider the basic case where the formed network is the

1-dimensional lattice having a ring topology. We have that

Corollary 4: The formed network is a 1-dimensional lat-

tice if Cd1
< V <

Cd2

1−δ
⌊n

2 �−1
.

The corresponding F matrix of the network is called the

base matrix F0 and is the following:

F0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1
2 0 . . . 0 1

2
1
2 0 1

2 0 . . . 0
0 1

2 0 1
2 . . . 0

. . . . . .

. . . . . .
1
2 0 0 . . . 1

2 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟



(5)

The matrix F0 is actually a circulant matrix. Circulant

matrices have a special structure which provides them with

special properties. All entries in a given diagonal are the

same. Each row is determined by its previous row by a

shift to the right (modulo n). Suppose the first row of a

circulant matrix is [a1, a2, . . . , an]. We write a circulant
matrix A = circ[a1, a2, . . . , an]. Now consider the n × n
permutation matrix, Π = circ[0, 1, 0, . . . , 0]. Then A can be

written as A = a1I + a2Π + · · · + anΠn−1. For a vector

a = [a1, a2, . . . , an], the polynomial pa(z) = a1 + a2z +
· · · + anzn−1 is called the representer of the circulant. The

following theorem based on [10] states how to calculate the

eigenvalues of circulants.

Theorem 5: [10] Let ω = e
2π

√
−1

n be the nth root of unity.
The eigenvalues of A = circ[a1, a2, . . . , an] are given by
λi = pa(ωi−1), where i = 1, 2, . . . , n.
Then we have the following proposition:

Proposition 6: The SLEM of the base matrix F0 has

multiplicity at least 2.
Sketch of Proof: F0 is a circulant matrix. The representer

of the circulant F0 is

pa(z) =
1

2
(z + zn−1). (6)
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So the eigenvalues of this matrix are λi = pa(ωi−1). It is
easy to show that λ1 = 1 and more over it is a simple
eigenvalue because the underlying graph is connected. Since

for integers A and B, ωAn+B = ωB , it follows that λ2 = λn,

λ3 = λn−1 and so on.

By substituting λ2 = pa(ω), we have that
Corollary 7: SLEM(F0) = cos( 2π

n
).

Now consider the case where V >
Cdr

1−δ
⌊ n

2
�−r+1

, where r

is any integer in the range [2, ⌊n
2 �]. Shortcuts with length at

least r (i.e. direct connections among nodes r hops away) are
added in the network. The larger V is, the ‘longer’ shortcuts

are established.

We investigate the effect of shortcuts following the pertur-

bation approach to small worlds proposed by Higham [11].

We add “small” nonzero positive numbers for the entries of

F0 that correspond to connections between nodes that are at

most r hops away. We perturb these entries of the matrix F0

by a constant ε. The idea is that ε represents the probability
of having a shortcut. Then the expected number of shortcuts

added is ε(r−1)n. This model can be considered as a “mean
field” approximation of the real network. We anticipate that

the analysis of these perturbed matrices gives us some insight

on the evolution of network topologies as the gain increases.

The perturbed matrix is the following:

Fr,ε =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1−2(r−2)ε
2 ε ε

1−2(r−2)ε
2 0 1−(r−2)ε

2 ε

ε 1−2(r−2)ε
2 0 1−2(r−2)ε

2
. . . .
. . . .

1−2(r−2)ε
2 ε ε ε

. . . 0 . . . ε 1−2(r−2)ε
2

. . . 0 . . . ε ε

. . . 0 . . . ε ε
. . . . .
. . . . .

. . . 0 . . . 1−2(r−2)ε
2 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟



(7)

Fr,ε is also a circulant matrix. The representer of this

circulant is

pa(z)=
1 − 2(r − 2)ε

2
z + εz2 + · · · + εzr−1 + 0 + · · · + 0

+εzn−r+1 + · · · + εzn−2 +
1 − 2(r − 2)ε

2
zn−1.(8)

Substituting z = ω, we have the SLEM of Fr,ε

λ2(Fr,ε) = (1−2(r−1)ε) cos(
2π

n
)+2ε

r−1
∑

k=1

cos(
2kπ

n
). (9)

Thus we can state the following proposition:

Proposition 8: Let rε = K
nβ , where K > 0 and β ≥ 0.

For β > 2, the effect of shortcuts on convergence rate is
negligible. β = 2 is the threshold. For β < 2, the shortcuts
are dominantly decreasing the SLEM, thus the small-world

topology appears.

Proof: For large n, applying Taylor series, we can write:

λ2(Fr,ε) = 1 −
2π2

n2
− 2rε + o(

1

n4
). (10)

The first two terms are the contributions of the base matrix

F0 and the rest are the contributions of the perturbation. It

is easy to yield the results of this proposition.

V. CONLUSIONS

In this paper, we developed the fundamental view that

agents in an autonomic network collaborate to accomplish

objectives and goals much better than working alone, or even

accomplish objectives that they cannot achieve alone at all.

We modelled the process of coalition formation by under-

standing and quantifying the tradeoff between the benefits vs.

the costs of collaboration. Our analysis leads to new methods

that can be used to design and control/operate networks of

agents. Multiple metrics for benefits and costs can be con-

sidered within this framework including trust values between

agents. Furthermore, we investigated the topology effects of

formed coalitions by studying the graph’s spectral gap. Our

future work will integrate the current framework into real

networks, such as communication networks and biological

networks, and study how the new methods can be applied to

fundamental network design.
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