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ABSTRACT 

Future military systems such a FCS and WIN-T require a robust 
and flexible nenvork that supports thousands of ad hoc nodes; 
therefore, we must ensure the scalability of networking protocols 
(e.g., routing, security and QoS). The use of hierarchy is a 
powerful solution to the scaling problem, since it allows 
networking protocols to operate on a limited number of nodes, 
as opposed tu the entire network. We have proposed an 
automated solution to dynamically create and maintain such 
hierarchy bused on a combination of global optimization 
algorithms [ I ]  and local distributed maintenance protocols 121. 
Global optimization clearly improves peqormance in a static 
network but, it is unclear how effective it is in a dynamic ad hoc 
environment. In  this paper, we analyze how the hierarchy 
created deteriorates from the optimal as nptwork conditions 
change. We show that the fragility of the optimization depends 
on the particular cost function and the number of merrics that 
change. More important, we show, for thefirsf time, that global 
optimization can remain effective for long periods with good 
cost fisnctions, even in large dynamic ad hoc networks (where 
metrics may chmge rapidly due to node mobility and links 
making and breaking). This result shows that, with fast 
aptimizaiion algorithms such as modified Simulated Annealing 
[ I ] ,  future military systems can use global optimization to 
autoconfigure domains to significantly improve per form" .  
We also show that local maintenance protocols support the 
global optimization mechanisms by extending the time the 
hierarchy remains feasible. 

I. INTRODUCTION 

If  heterogeneous ad hoc battlefield networks are to scale to 
hundreds or thousands of nodes, then some form of hierar- 
chy is needed. One technique is to dynamicaIly create a 
good hierarchy using Domain Autoconfiguration. Domains 
allow routing, QoS and other networking protocols to op- 
erate on fewer nodes, with cross-domain interaction only 
through a few border nodes. This division greatly reduces 
overall overhead (e.g., routing overhead with U nodes goes 
from o(n') toO(nl0gn)). 

Prepared through collaborative participation in the Communications and Net- 
works Consortium sponsored by the U.S. Army Research Laboratory under the 
Collaborative Technology Alliance (CTA) Program, Cooperative Agreement 
DAAD19-2-01-0011. The U.S. Government is authorized to reproduce and dis- 
tribute reprints for Government purposes notwithstanding my copyright notation 
thereon. 

Anthony J. McAuley, Raquel Morera 

Piscataway, NJ, 08854 
and Telcordia Technologies Inc. 

To provide this hierarchy many dynamic clustering 
algorithms, mainly based on local distributed approaches, 
have been proposed in the literature [5] [6]  [7] [SI. Their 
drawback, however, is that they do not take into 
consideration the overal1 network environment. Indeed, in 
many cases, these algorithms harm network performance 
instead of improving it because of the redustering 
overhead they impose in a dynamic network. We have 
proposed an automated way to dynamically create a good 
hierarchy using Domain Autoconfiguration based on a 
combination of global optimization [l] and local 
distributed maintenance [2]. This alIows selection of 
domains to ensure a global optimization and allows 
protocols to be placed. in domains tuned to more 
homogenous conditions [3]. The centraIized optimization 
algorithm relies on a set of cost functions [l] that are 
selected appropriately based on the network environment 
and the desired performance. 

Using global network information, in addition to the local 
maintenance, appears counter-intuitive for ad hoc 
networks, Although the centralized global optimization 
provides significaut benefits ( i s . ,  obtains the most optimal 
clustering map for the given cost function) when first 
configured, it must be shown how effective global 
optimization is in a dynamic ad hoc environment. To 
minimize overhead, global optimization cannot run 
continually. Thus, it may use incomplete, stale, or even 
inaccurate metrics. It is therefore important to analyze how 
quickly the optimization deteriorates as the variables 
(network conditions) change. In particular, we must know 
how the optimality degrades with time in dynamic 
networks. Also, if there is no local domain maintenance 
algorithm (e.g., [2]), then we must see how fast the 
solution becomes infeasible. 

Indeed, by the time the information is collected, the 
optimization process terminates and configuration 
information is distributed, we found that in some cases the 
clusters generated by the algorithm are no longer optimal 
(and possibly infeasible). Thus, though we have made 
significant progress on improving the optimization time 
[ 11, it is critical we understand how quickly the optimality 
degrades over time in a dynamic network. 
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This paper will present the first results showing how 
optimality degrades over time for centralized domain 
algorithms. We show the dependence on the cost functions 
selected for the optimization algorithm and the mobility 
characteristics of the participating nodes (the mobility 
models that we apply are the Random Waypoint Mobility 
Model and the Reference Point Group Mobility Model). 
The importance of the dependence on the cost functions is 
that if we cluster in a way to produce robust clusters (e.g., 
mobility characteristics of the nodes) then the optimality 
degrades slower over time compared to the case where we 
cluster independently of the mobility Characteristics of the 
nodes (e.g.? cluster size), 

The next section presents an overview of our centralized 
domain generation protocol, which consists of the 
Simulated Annealing algorithm and a set of cost functions 
and constraints. Section I11 will describe the importance of 
determining the convergence time requirements and the 
factors that affect these bounds. Section IV presents the 
convergence time characteristics of SA and the method we 
applied for measuring the convergence time bounds along 
with their corresponding values. The Iast section concludes 
the paper and provides some directions for future work. 

II. DOMAIN OPTIMIZATION USING GLOBAL 
INFORMATION 

This section presents our domain optimization approach 
based on using global information [l] with various cost 
functions and topological constraints. We use a modified 
Simulated Annealing algorithm, but describe it only 
briefly, since the results in this paper are independent of 
the particular choice of algorithm. However, we will 
describe in detail ten different cost functions, since the rate 
of change of optimality depends heavily on these cost 
functions. We aIso describe the topological constrains, 
since, without local domain maintenance (e.g., [2]), the 
constraints affect the feasibility of the soIution. 

A. SIMULATED ANNEALING 

Simulated annealing (SA) has been widely used for 
tackling different combinatorial optimization problems [9]. 
The process of obtaining the optimum configuration is 
similar to that followed in a physical annealing schedule. 
In SA, however, the temperature is merely used as a 
control parameter and does not have any physical 
meaning. The description of our modified SA algorithm is 
described in detail in (11, but Figure 1 summarizes its 
operation. 

The objective of the algorithm is to obtain the K cluster 
network partition configuration, C*, that optimizes a 
particular cost function. The process starts with an initial 

temperature value, TO, which is iteratively decreased by the 
cooling fhction until the system is frozen (as decided by 
the stop function). For each temperature, the SA algorithm 
takes the current champion configuration C* and applies 
the recursive function to obtain a new configuration C’ and 
evaluates its cost, E’. If E’ is lower than the cost of the 
current E*, C’ and E’ replace C* and E*. Also, SA 
randomIy accepts a new configuration C’ even though E’ 
is greater than E* to avoid local minima. In the latter case 
C’ and E’ replace C* and E* respectively. A key 
characteristic of simulated annealing is that it allows uphill 
moves at any time and relies heavily on randomization, 

T-ID I 

Figure 1 Simulated Anneahg algorithm for network partitioning 

From the point of view of this paper the important result is 
that the SA produces the optimal (or near optimal) Cluster- 
ing C* with the lowest Energy E*. We will measure how 
this Energy E* changes over time as the metric change (i.e., 
nodes move) without any re-optimization. 

B. METRICS 

In this section we present the set of metrics that will be 
used in our cost functions. The metrics can be categorized 
in two large classes. The first class of metrics is related to 
the network environment characteristics [ 11: 

Cluster Size lCil : The number of nodes that have 
been assigned to the cluster. Minimizing Cluster Size 
reduces the overhead and improves the performance of 
most networlung protocols. For example, we know 
that the overhead of most routing protocols is propor- 
tional to the square of the number of nodes. 
Cluster Diameter d, : The size of the longest path 
within a cluster in number of hops. Minimizing diame- 
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ter can reduce overhead and latency of many network- 
ing protocoIs. For example, a smaller diameter allows 
proactive routing protocols, which exchanges routing 
information among all nodes, to update information 
(e.g., Iink failure) quicker and with less overhead. 
Border Routers ER,, : The number of nodes that in- 
terconnect two or more clusters. There are scenarios 
where we want to have some minimum number of 
border nodes to improve robustness or provide more 
bandwidth for inter-domain communication. In other 
cases we want to minimize the number of border 
nodes, to minimize inter-cluster signaling, 

The second class contains the metrics related to the node's 
mobility characteristics [ 101: 

0 

Direction B, : The direction of a node described as the 
angle counter-clockwise from the straight from two 
consecutive points on the trajectory of the node and 
the straight line parallel to the positive x-axis (see 
Figure 2). A node can estimate its direction of move- 
ment utilizing various tools, such as a GPS device. 

Figure 2 Definition of 

Speed U i  : The speed of a node i is the magnitude of 
the distance that is covered in a unit of time (meters 
per second). A node can estimate its speed using a 
GPS device or by other means. 
ReIative Direction 0, : The relative direction of two 

nodes. If node; is moving with direction @ and nodej 

with direction 0j then: 

I 

=,in(l@ -~,l,360-le; +I), (1) 

Note that 8i,0j E [0",360"), 0,. 1.1 E [0",180"]. Figure 3 
gives two graphical examples showing the computation of 
the relative direction e,. of two nodes i andj. 

Figure 3 Relative Direction of two nodes i and j 

Relative Velocity UG, The relative velocity of two 
nodes is the velocity with which a node approaches or 
recedes from another node: 

Link Expiration Time LETj: The Link Expiration 
Time is defined as the estimated lifetime of the link 
that connects two nodes i and j. Figure 4 shows an ex- 
ample of the calculation of LETj for two nodes at co- 

ordinates (xi, yi) and ( x j ,  y j ) .  

a = U j  COSBj  -U, cos4 
b = n . - x ,  

c = u j  sine, - U ,  sin S;: 
d = y .  -yi 

r = TxRange . (TI&" in his case is assumed the s m e  for wery node) 
J .I 

Figure 4 Life Expiration Time for a link between two nodes 

For the example given in Figure 4 it can be shown [11] 
that: 

I 

C. COST FUNCTIONS 

Simulated Annealing is one of many global optimization 
algorithms that we can utilize to obtain optimal or subop- 
timal clustering decisions [9]. The goodness of the cluster- 
ing decisions depends primarily on the cost functions and 
constraints provided for optimization, not on the optimiza- 
tion algorithms themselves. We have found the careful 
design and selection of cost functions is very important far 
the quality of clustering decisions, with respect to the im- 
posed network objectives (e.g., minimum overhead or 
minimum latency). The cost functions are based on vari- 
ous metrics of interest that can be measured from the net- 
work. TabIe 1 Lists ten example cost functions have been 
shown to meet different objectives [ I ]  [ 101. 
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Diameter of cluster i 
Number of border routers of cluster i 
Relative direction of nodes ij 
Relative Velocity of nodes ij 
Expiration Time of Link between nodes i,i 

Balanced Diameter 
Clusters 

Balanced Size Clus- 
ters with the mini- 
mum number of 
Border Routers.. 
Cluster members 
move in a similar 
direction, so we 
expect longer dura- 
tions of stable clus- 
ter membership 
Cluster members 
have similar veloc- 
ity, so we expect 
more stable cluster 
membership 
Links among cluster 
members have long 
expiration time es- 
timates. Improves 
the lifetime ofthe 
generated hierarchy 
Cluster members 
move with similar 
direction and veloc- 
ity, SO we expect 
more stable cluster 
membership, Like 
(f3),(7),(8) capturing 
more node dynam- 
ics (e.g., direction 

I and velocity) 

Cost Functions and Network Objectives 
Cost Function 

J ( C )  = mi* p a r  ( ICl I' , ....) ICK 12 )) (1) 

(3) 
1-1 

J ( C )  = min (Var (d:, ,d:, ,.... , dfx )) (4) 

Parameter I Definition 
C, I Clusteri 

I ICil I Size of cluster i I 

I s  I Scalar speed of node 

D. TOPOLOGICAL CONSTRAINTS 

The clustering decisions where the optimization algorithm 
(e.g., Simulated Annealing) searches for the optimal clus- 
tering is limited by the requirements of the domain topol- 
ogy. In particular we want a node within a cluster to be 
able to reach all other members of the cluster without pass- 
ing outside the cluster. More formally we define a topo- 
logical cluster as a set S of nodes where for 
V'nodq ,nodej E S and iz j ,  there is always a path T~ 
from nodei to node, such that Vnode, E S  holds 

that nodek E e,. The constraint of topological clusters is 
important, since we want the members of the generated 
clusters to be isolated from the members of other clusters. 

III. TIME TO CALCULATE THE OPTIMAL DOMAINS 

This section looks at the time required to calculate the 
optimal domains, .using a modified Simulated Annealing 
algorithm, for different network sizes and numbers of gen- 
erated domains. 

A. RELEVANCE OF RUNNING TIME FOR 
OPTIMIZATION 

The time it takes for the optimization to complete does not 
affect the rate of degradation of the optimality (or how 
quickly the solution can become infeasible); however, the 
speed of optimization does place a lower bound on good- 
ness of centralized optimization. For example, if it takes 
two minutes to generate the optimal solution and the solu- 
tion becomes infeasible after one minute we should not 
consider central optimization. In other words, if the opti- 
mization operates on metric values collected f ,  seconds 

before, the optimization itself takes to seconds and the 

distribution of the new configuration takes b ,  seconds, 

then the result has already degraded for 1, + t o  +td sec- 

onds. As t ,  and fd are typically not under our control, we 
investigate the optimization time t o .  

As we have shown in [I]  the important parameters that 
determine the convergence time characteristics of Simu- 
lated Annealing algorithm is the applied cost function, the 
number of generated clusters, the selection of cooling 
schedule and the termination condition of the algorithm 
(e.g., StopReppeats value). Note, however, that even though 
this section calculates optimization time to based on 
Simulated Annealing, this does not affect the results for 
degradation of the optimality or how quickly the solution 
can become infeasible. 
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B. OPTIMIZATION TIME RESULTS 

Figure 5 shows the time it takes for the Simulated 
Annealing algorithm to run for the first cost function 
shown in Table 1. The results were obtained on a 700MHz 
Pentium 111 processor with 256MB RAM, which was 
running Linux (kernel v. 2.4.20-6). It shows the results for 
different number of nodes in the network (from IO0 to 
1000) and for different numbers of generated clusters 
(from 2 to 10). 

Convergence Time VS Nedes VS Ch~krJ 
J ( C )  = min (var(1c,la ,....sl~J)) 

13 0-200 m 2 w 4 w  O ~ O O ~ O O  a- m8~)-1000 
~ i m i z o o  "o-1400 01wi6w m i " a o  

Figure 5 Convergence Time of SA aIgorithm with respect to the 
network size and the number of generated clusters 

The general observations are that the larger the network 
size and the smaller the number of generated clusters the 
higher the convergence time of SA. The convergence time 
decreases as the number of generated clusters increases 
because for a specific network size the more the number of 
generated clusters the less the potential clustering 
solutions. By analyzing more these results, we can 
conclude that the size of generated dusters has the most 
significant impact on the convergence time. This is 
because the cluster size parameter depends both on the 
network size and the number of generated clusters. For 
smaller cluster sizes the fewer are the potential clustering 
solutions to be evaluated from the SA algorithm, which 
results in shorter convergence times. 

IV. RATE OF DEGRADATION OF OPTLMALITY 

The section presents resuIts on the rate of degradation of 
optimality with respect to changes in metrics that cause 
changes in the input to the cost function and topological 
constraints. 

A. PROBLEM 

When nodes are mobile, the network topology changes and 
so do the corresponding metric values. We investigate the 
rate of degradation of optimality of the cost functions for 

given topological constraints due to changes in these 
metrics. In general, the rate of degradation depends on the: 

e 

e 

Due 

Dynamics of the network to  be clustered. Clearly, 
the more mobile the nodes and the more independent 
their movement, the faster the topology changes and 
the lower the probability the solution is feasible upon 
the termination of the algorithm. 
Cost Function. If we cluster based on the expected 
mobility characteristics of the nodes, the generated 
clusters are expected to degrade slower than if ex- 
pected mobility is ignored (e.g. cluster based only on 
cluster size), 

to the generality of the method, results here obtain 
apply to other centralized optimization algorithms. For the 
characterization of the network environment we applied 
two different mobility models: 

Random Waypoint Mobility Model (RWPM). In 
RWPM model the nodes select a random destination 
within the limits of a pre-specified area. Nodes move 
to these destinations with constant speed, selected at 
random between 0 and a pre-specified maximum 
value, When nodes reach their destinations, they im- 
mediately select new destinations and new speed. 
Reference Point Group Mobility Model (RPGM). 
In RPGM we define a number of Reference Points 
(RPs) equal to the number of mobility groups we 
want to establish. Each node is then assigned to a RP. 
The movement of the nodes is characterized ftom the 
mobility patterns of their corresponding RPs. These 
mobility patterns are assigned manually to the various 
RPs in the form of trajectories. When a Rp moves to 
a new location each corresponding node is assigned 
to a random radius and direction around the new posi- 
tion of the RP. Because of the fiinctionality of RPGM 
mode1 and the randomness in the selection of the new 
node position, it is obvious that nodes that belong to 
the same group may have different speeds and direc- 
tions. 

The input to the method is a random placement of nodes. 
Next, the optimization algorithm decides the clustering 
map. We then apply a mobility model to the nodes and 
recalculate the energy fimction as the links between nodes 
make and break. 

B. CONVERGENCE TIME BOUND IN THE ABSENCE 

Once the clustering decision is made we change the 
network topology according to one mobility model. The 
convergence time bound is defined as the time it takes for 
a clustering decision to become infeasible because the 
clusters do not satisfy the constraint of constructing 

OF LOCAL DOMAIN MAINTENANCE 
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topological clusters. Figures 6 and 7 represent the 
convergence time requirements for the cost functions (1) 
and (8) respectively in the case where the nodes are 
moving in accordance to the Random Waypoint Mobility 
Model. The maximum allowable speed was vaned 
between 0.1 d s  to 1 d s  and there was no pause time 
assumed. The number of generated clusters was varied 
from 2 to 15 clusters and the network size is 200 nodes. 

D 0 n V a r ~ G u " e  msqul"&9 

Figure 6 Convergence Time Bounds for cost function (1) 

Convergence Tlme Ftequlrements 
(Nodes=POO,Random Waypoint) 

I I 
0-20 a2040 040-60 060-80 B80-100 

H 100-120 120-140 140-1 60 I 160-180 180-200 

U 200-220 0 220-240 I 2 4 0 4 8 0  I 260-280 280-300 
Figure 7 Convergence Time Bounds for cost hnction (8) 

The convergence time bound on the clustering algorithm is 
much stricter for cost function (1) than for cost function 
(8). The objective of cost function (1) is to generate bal- 
anced size clusters, thus it does not take node mobility into 
consideration, while (8) generates robust (long-lived) clus- 
ters by grouping nodes with similar mobility characteris- 
tics. We conclude that, to extend the applicability of cen- 
tralized algorithms to dynamic networks, cost hc t ions  
must take into account the dynamics of the nodes. 

Figure 8 shows the ratio of feasible clustering decisions 
taken by SA at the time the algorithm terminates as a func- 
tion of node mobility. A cluster configuration is unfeasible 
if it violates the topological cluster requirement. 

Acceptance Ratio of Clustering Maps 
(Cost function ( I ) ,  N=lDO, C=10) 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - _ - -  

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9  I 2 3 4 5 6 7 8 9 I O  

MaxSpeed ( 4 s )  - Random Waypoint Mobility Model 

+Chutm--Z -Ctaers-S --cCmrtw-IO 

Figure 8 Acceptance (%) of the clustering decisions subject to 
RWPM model 

Interestingly we found a case where the acceptance per- 
centage stays constant. In this case we applied the RPGM 
model where we assumed two mobility groups (50 nodes 
each) that were moving towards the same direction but 
with an average relative speed of 4 d s .  Due to the differ- 
ent mobility characteristics presented by the nodes of the 
two mobility groups, the application of cost h c t i o n  (8) 
results in accurate identification of the two mobility 
groups. In this case the clustering decisions were always 
feasible. The nodes of these groups continue to move to- 
gether through time, so the clustering is always the optimal 
one with respect to the mobility cost function. 

C. CLUSTERING DEGRADATION RATE WITH LOCAL 

In the previous subsection we assumed no local 
maintenance. We have proposed an automated creation 
and maintenance of a hierarchy based on a combination of 
global optimization algorithms [ 11 and local distributed 
maintenance protocols [2]. For example, implementing a 
simple Iocal maintenance algorithm a node that gets 
disconnected fkom its cluster can join another cluster; if 
the node can join more than one cluster without violating 
the feasibility criterion it selects the one with the lowest 
duster ID. We assume the local maintenance protocol is 
able to maintain connected clusters; but will not be able to 
maintain optimality. Therefore, we must investigate how 
the goodness of the optimization deteriorates. 

MAINTENANCE 

We propose to use the behavior of the energy (cost) func- 
tion to measure this degradation. These results can indicate 
the time intervals at which the optimization must run and, 
indeed, whether it is worth doing any global optimization. 
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Figure 9 shows how energy (cost) degrades as the time 
progresses for cost function (1) (i.e. balanced size clusters) 
and the RWPM mobility model. There are three curves 
represented in Figure 9, each representing a different 
maximum speed 3 m i s ,  5 m / s  and 10 d s .  As expected it 
is observed that the optimality degrades fast for higher 
node mobility. 

Energy (Balanced Size Clusters Wit Local Maintenance) 
1.00E+07 (N1 OO-Cl 0-RW PM-LM) 
~ . O O E + O B  

B.OOE+06 

7.00E+06 

6.00E+OE 

15.DDEcO6 

4.00€+06 

3.ODE+06 

2.00€+06 

1.00E+06 

O.OOE+OO 

Q 2% ,@ ,e ,@ ,+ @ $* & p p @ @ $5 & 
Th.( .e*)  

- 3m/s - 5m/s . . - .  1 Omls 

Figure 9 Energy Degradation after Optimization with Local 
Domain Maintenance (100 Nodes, 10 Clusters, 
Random Waypoint Model , Cost function (1)) 

V. CONCLUSIONS 

The paper shows that centralized algorithms can be 
usefully applied to create better domains for even dynamic 
ad hoc networks. Even though applying centralized 
algorithms based on global optimization seems counter 
intuitive, the observations we make in this work show that 
there are many scenarios where the algorithm can be used 
with great success. We show the optimization degrades 
with time and that without local domain maintenance the 
optimization can quickly become infeasible. However, we 
also show that even with a simple local domain 
maintenance algorithm (e.g., [2]) the clustering does not 
become infeasible and the degradation is gradual, 
Moreover, we show that by choosing cost functions that 
select domains based on mobility [IO], the rate of 
degradation in time can be kept much smaller. With higher 
mobility we need cost function takes into account the 
dynamics of the nodes, so clusters optimality degrades is 
not too fast that it requires frequent optimization with high 
computational and bandwidth overhead. We believe the 
results show the domain optimization can be applied with 
great benefit in future dynamic military networks, such as 
WIN-T and FCS. 

show that the SA convergence time is proportional to the 
network size but counter proportional to the number of 
generated clusters. Even though we focus OR Simulated 
Annealing, this class of results can be generalized for any 
clustering algorithm due to the independence of the 
method we applied to derive them. The results of this work 
can be used as a reference point for the application of any 
algorithm based on global information in a time sensitive 
dynamic ad hoc environments. 
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