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Abstract— In this paper, we consider infinite horizon linear
quadratic stochastic differential games where the games are
neither open-loop nor closed-loop. The state of the game
dynamics is measured only when a certain switch is closed.
The switch requires unanimous operation by the players, and
continuum state measurements are not possible. There is an
upper bound on the number of times the switch can be
closed. Each player is given a quadratic cost function and the
objective of each player is to design a switching strategy and
a control strategy in order to optimize their respective cost
function. We investigate the Nash control strategy and optimal
switching policy for this game with two different cost structures:
discounted cost and average-time cost.

I. INTRODUCTION

Differential games have been studied for a long time due to
their wide applicability in robust control, minimax stochastic
control and multi-agent systems [1], [2]. Among different
forms of games, two-player linear quadratic (LQ) games have
received ample attention for the last few decades. To mention
a few, [3], [4], [5], [6] and the references therein show the
immensity of the studies performed.

The stochastic dynamics of a general two-player LQ game
can be expressed as

dx = (Ax+B1u1 +B2u2)dt+GdWt (1)

where x ∈ Rn, u1 ∈ Rm1 , u2 ∈ Rm2 and Wt is an m
dimensional Wiener process noise. The associated quadratic
cost for player-i is given by:

Ji(u1, u2) = E

[∫ T

0

(x′Lix+ u′iRiui)dt

]
; i = 1, 2 (2)

where Li, Ri � 0. More details on LQ game problems can
be found in [2], [6].

Linear quadratic games were studied under the scenario of
either open-loop or closed-loop. By open-loop we mean that
the strategies depend only on the initial state of the system.
On the other hand, in a closed-loop game, the strategies
depend on the current value of the state x(t).

However, in present days, it is not always possible to
access the state information for a large system due to
communication, sensing or energy constraints. In the control
literature, there is a recent trend towards event-based [7],
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Fig. 1. The game dynamics is controlled by two independent controllers C1,
C2 operated by the players. The players receive perfect state measurements
whenever the switch S is closed. The players unanimously decide the
switching strategy for S.

event-triggered [8], self-triggered [9] or periodic control [10].
These control strategies do not require the state information
x(t) for all time t, rather they sample x(t) intermittently
depending on the systems’ performance criterion [8], [11].
Event based techniques have proven to be efficient for large
scale inter-connected systems to reduce communication and
sensing operations [12]. At the same time, many properties of
a large scale multi-agent system can be studied if formulated
in a game theoretic framework as discussed in [13] and
the references therein. Therefore, the game formulations of
such multi-agent systems need to consider the strategies
depending only on intermittent state information.

In this work, we consider a game formulation for a two-
agents (henceforward called as two players) system where
the system is equipped with a switch that enables the players
to access the state information. Therefore, the players can
have multiple state measurements (finite number of discrete
measurements) over a horizon of [0, T ]; i.e. they have the
knowledge of {x(τi)}Ni=1 such that all τi ∈ [0, T ]. The
players have more information than an open-loop setup
where the only information is x(0) and less information
than a closed-loop game where players know x(t) for all t.
The schematic diagram, Fig 1, illustrates the game structure
along with the switching mechanism to obtain the state
information. In [14], [15], [16] a similar game problem has
been studied for a finite duration [0, T ]. This paper studies the
game for an infinite horizon. The matrices A,Bi, Li, Ri, G
are time invariant for this infinite horizon game.

II. NOTATION

Ci: controller of player-i, S: switching strategy,
J1
i (u1, u2,S): discounted infinite horizon cost function for

player-i, J2
i (u1, u2,S): average infinite horizon cost function
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for player-i, Jji (t0, t1, ·): cost function Jji (u1, u2,S) for
a finite interval (t0, t1], u∗i : Nash controller strategy for
player-i, Jj∗i (S) = Jji (u∗1, u

∗
2,S), Jj∗i (t0, t1, ·): optimal

cost function Jj∗i (u∗1, u
∗
2,S) for an interval (t0, t1], Uad:

set of admissible control strategies, S: set of admissible
switching strategies, ‖a‖2b , a′ba for any matrices a and b
of compatible dimensions.

III. PROBLEM FORMULATION

As mentioned earlier, under the infinite time horizon, we
will consider two versions of the problem. Firstly, we will
consider discounted LQ-games with discount factor β > 0;
and then we will consider the game where the objective is
the time-average cost. In other words, we will consider the
following two situations when :

J1
i (u1, u2,S) = E

[∫ ∞
0

e−βt(x′Lix+ u′iRiui)dt

]
(3)

and

J2
i (u1, u2,S) = lim sup

T→∞

1

T
E

[∫ T

0

(x′Lix+ u′iRiui)dt

]
(4)

for i = 1, 2.
The expectation in the above two costs are with respect to

the probability measure P induced by the controller strategies
Ci and switching strategy S. In order to maintain notational
brevity, we will not explicitly write the dependence of P on
Ci and S.

We assume the following features about the switch S as
it is mentioned in [14].

Assumption 3.1: A1: Switching provides noise-free in-
stantaneous state information whenever, at t, the switch is
closed.

A2: Switching is instantaneous i.e. if the switch S is closed
at τ then it is open for all t > τ until the next switching
time.

A3: The switch is closed at t = 0, and x0 is available to
the players.

The switching element has constraints on the total number
of times the switch can be closed. For these two different
problems, we consider two different switching constraints
as well. For the first problem, we consider an upper bound
on the total number of switchings i.e. the number of state
measurements available is finite even though the game con-
tinues for infinite horizon. On the other hand, for the second
problem, the number of switchings over an arbitrary interval
(a, b] is upper bounded by the number dd(b − a)e where
d > 0 is given. By N i

T , we will denote the number of
switch closings (i.e. number of times the switch S is closed)
requested by player-i, for an arbitrary interval T = (a, b]. Let
N i
∞ denote the number of switchings for the interval (0,∞)

for the i-th player. Let us denote the set of all semi-open
(left open, right closed) intervals on R+ by O.

At this point, we formally state the two optimization
problems. The discounted cost optimization problem can be
expressed as:

Objective for Player-i

min
Ci,S

J1
i (u1, u2,S) (5)

subject to N i
∞ ≤ c

The timed-average cost problem is written as:
Objective for Player-i

min
Ci,S

J2
i (u1, u2,S) (6)

subject to N i
T ≤ dµ(T )de ∀T ∈ O

where µ(·) is the Lebesgue measure on R. In both the
problem formulations (5) and (6), the dynamic equation of
the game (1) is implicitly a constraint and we suppress it to
maintain brevity.

IV. GAMES WITH DISCOUNTED COST

For a given discount factor, β > 0, the game problem has
the following cost function for player-i:

J1
i (u1, u2,S) = E

[∫ ∞
0

e−βt(x′Lix+ u′iRiui)dt

]
. (7)

We aim to find the Nash controllers (C∗1 , C∗2 ) and the
optimal switching strategy to minimize the cost function (7).

Let J1
i (t0, t1, ·) denote the following finite duration cost

function:

J1
i (t0, t1, ·) = J1

i (t0, t1, u1, u2,S) (8)

= E
[∫ t1

t0

e−βt(x′Lix+ u′iRiui)dt

]
Since it is an infinite horizon game, the optimal cost func-

tions J1
i remains finite if and only if e−βt/2x(t) converges to

0 as t→∞ and for any initial state x0. Therefore, without
loss of generality, we may assume that the Nash strategies
belong to the following set of admissible strategies:

Uad1 (β) ,

{(u1(t, x), u2(t, x))| ∀t,∀x0 ∈ Rn, ∃M, α < β s.t.

E[‖x(t)‖] ≤Meαt/2,E[‖x(t)‖2] ≤Meαt;

and dx = (Ax+B1u1 +B2u2)dt+GdWt} (9)

Let us take an arbitrary interval (t0, t1] and consider the
following filtering equation (10) for the quantity y(t) =

E[e−
β
2 (t−t0)x(t) | x(t0)] on the interval:

ẏ(t) =Ãy(t) +B1ũ1 +B2ũ2 (10)
y(t0) =x(t0)

where Ã = A− β
2 I and ũi = e−

β
2 (t−t0)ui. Following these

notations, we can write the cost function (7) for the arbitrary
interval (t0, t1] as given below:

J̃1
i (t0, t1) = eβt0J1

i (t0, t1, ·) = E
[ ∫ t1

t0

(y′Liy + ũ′iRiũi)
]
+∫ t1

t0

∫ t

t0

e−β(t−t0)tr(‖ΦA(t, s)G‖2Li)dsdt (11)
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where ΦA is the state transition matrix corresponding to the
drift matrix A.

Due to the filtered equation (10), y(t) is an x(t0) measur-
able function for all t ∈ (t0, t1] and hence the expectation in
the equation (11) is with respect to the distribution P(x(t0)).
The Nash equilibrium of J̃1

i (t0, t1) for any arbitrary interval
can be found by solving certain coupled Riccati equations
[17].

Theorem 4.1: [17] Let P1, P2 be positive definite matri-
ces such that the pair (P1, P2) is the solution of the following
algebraic matrix Riccati equations (12)

P1Ã+ Ã′P1 + L1 − P1B1R
−1
1 B′1P1 − P1B2R

−1
2 B2P2 = 0

(12a)

P2Ã+ Ã′P2 + L2 − P2B1R
−1
1 B′1P1 − P2B2R

−1
2 B2P2 = 0.

(12b)

The Nash open-loop strategy for the players within the
interval (t0, t1] is given by

ũ∗i (t) = −R−1i B′iPiΦ(t, t0)x(t0) (13)

where Φ(t, s) satisfies the equations:

d

dt
Φ(t, s) =(Ã−B1R

−1
1 B′1P1 −B2R

−1
2 B2P2)Φ(t, s)

Φ(t, s) =Φ(t, r)Φ(r, s) (14)
Φ(t, t) =I ∀t, s, r.

Moreover, the optimal cost for player-i for the interval
(t0, t1] of the game is found to be:

J̃1∗
i (t0, t1) =E[y(t0)′Miy(t0)− y(t1)′Miy(t1)]+ (15)∫ t1

t0

∫ t

t0

e−β(t−t0)tr(‖ΦA(t, s)G‖2Li)dsdt.

Mi satisfies the Lyapunov equation:

A′cMi +MiAc + Li + PiBiR
−1
i B′iPi = 0, (16)

where Ac = Ã−B1R
−1
1 B′1P1 −B2R

−1
2 B2P2.

From the relationship of x(t) and y(t) over the interval
(t0, t1], we can verify that y(t) is independent of the noise
Ws for all s ∈ (t0, t1] and

e−
β
2 (t−t0)x(t) = y(t) +

∫ t

t0

e−
β
2 (t−t0)ΦA(t, s)GdWs.

(17)

Equation (17) leads to the fact that

E[x(t)′Mix(t)] =eβ(t−t0)E[y(t)Miy(t)]+ (18)∫ t

t0

tr(‖ΦA(t, s)G‖2Mi
)ds.

Substituting (18) in (15), we obtain

J̃1∗
i (t0, t1) =E[y(t0)′Miy(t0)− e−β(t1−t0)x(t1)′Mix(t1)]+∫ t1

t0

∫ t

t0

e−β(t−t0)tr(‖ΦA(t, s)G‖2Li)dsdt+∫ t1

t0

e−β(t1−t0)tr(‖ΦA(t1, s)G‖2Mi
)ds. (19)

Therefore, the optimal cost J1∗
i (t0, t1) for an arbitrary inter-

val (t0, t1] can be written as follows

J1∗
i (t0, t1, ·) =E[e−βt0x(t0)′Mix(t0)

− e−βt1x(t1)′Mix(t1)]

+

∫ t1

t0

∫ t

t0

e−βttr(‖ΦA(t, s)G‖2Li)dsdt

+

∫ t1

t0

e−βt1tr(‖ΦA(t1, s)G‖2Mi
)ds. (20)

Now we may take t1 →∞ in the analysis performed above
and all the asymptotic results hold as shown in [17]. Since
the Nash strategies are restricted to Uad1 (β), we will have
limt1→∞ e−βt1x(t1)′Mix(t1) = 0. Therefore, for an interval
(t0,∞), we can write

J1∗
i (t0,∞, ·) =E[e−βt0y(t0)′Miy(t0)]+ (21)∫ ∞

t0

∫ t

t0

e−βttr(‖ΦA(t, s)G‖2Li)dsdt+

lim
t1→∞

∫ t1

t0

e−βt1tr(‖ΦA(t1, s)G‖2Mi
)ds.

Since we restrict the controller strategies within the admis-
sible set Uad1 (β), we can conclude that

lim
t1→∞

∫ t1

t0

e−βt1tr(‖ΦA(t1, s)G‖2Mi
)ds = 0.

Lemma 4.2: Let a given switching strategy S accesses
the state at the time instances {τi}Ni=0 (0 = τ0 < τ1 <
· · · < τN < ∞) over the infinite horizon of the game. The
optimal cost of player-i under switching S can be written
as:

J1∗
i (S) = E[x′0Mix0]+ (22)
N∑
k=1

∫ τk

τk−1

∫ t

τk−1

e−βttr(‖ΦA(t, s)G‖2Li)dsdt+

N∑
k=1

∫ τk

τk−1

e−βτktr(‖ΦA(τk, s)G‖2Mi
)ds+∫ ∞

τN

∫ t

τN

e−βttr(‖ΦA(t, s)G‖2Li)dsdt
Proof: The switching strategy S partitions the inter-

val (0,∞) into a collection of subintervals {(τi, τi+1]}Ni=0,
where τN+1 = ∞. From Theorem (4.1), we can conclude
for any such subintervals (τk, τk+1]

J1∗
i (τk, τk+1, ·) =E[e−βτkx(τk)′Mix(τk)− (23)

e−βτk+1x(τk+1)′Mix(τk+1)]+∫ τk+1

τk

∫ t

τk

e−βttr(‖ΦA(t, s)G‖2Li)dsdt+∫ τk+1

τk

e−βτk+1tr(‖ΦA(τk+1, s)G‖2Mi
)ds.

Due to the optimality principle, the strategy u∗i is optimal
for (0,∞), if the strategy restricted to any arbitrary interval
(t0, t1) ⊂ (0,∞) is an optimal strategy for that interval.
Thus, the optimal strategy for the infinite horizon game can
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be found by concatenating the optimal strategies over the
intervals (τk, τk+1]. Therefore,

u∗i (t) =−R−1i B′iPiΦ(t, τk)x(τk) (24)
∀t ∈ (τk, τk+1], k = 1, · · · , N.

Consequently, the optimal cost over the entire interval (0,∞)
is obtained by adding the costs over the intervals (τk, τk+1],
i.e.

J1∗
i (S) =

N∑
k=0

J1∗
i (τk, τk+1, ·). (25)

This leads to

J1∗
i (S) =

N∑
k=1

∫ τk

τk−1

∫ t

τk−1

e−βttr(‖ΦA(t, s)G‖2Li)dsdt+

N∑
k=1

∫ τk

τk−1

e−βτktr(‖ΦA(τk, s)G‖2Mi
)ds+ (26)∫ ∞

τN

∫ t

τN

e−βttr(‖ΦA(t, s)G‖2Li)dsdt+ E[x′0Mix0].

Corollary 4.3: Finiteness of the cost J1∗
i (S) depends on

the existence of a τN <∞ such that∫ ∞
τN

∫ t

τN

e−β(t−τN )tr(‖ΦA(t, s)G‖2Lids)dt <∞. (27)

Therefore, the necessary condition is that

lim
t→∞

∫ t

τN

e−β(t−τN )tr(‖ΦA(t, s)G‖2Li)ds = 0, (28)

or equivalently,

lim
t→∞

∫ t

τN

e−βstr(‖ΦÃ(t, s)G‖2Li)ds = 0. (29)

We will assume in this work that (29) holds and thus our
problem is well defined.

Remark 4.4: A sufficient condition for (29) to hold is
that Ã = A− β

2 I is Hurwitz.

A. Pareto Optimality of the Switching Strategy

Due to Lemma 4.2, we have the optimal cost of the game
expressed explicitly as a function of the switching strategy
S. Therefore, player-i should optimize (22) with respect
to the switching strategy S, which is equivalent to a RN
dimensional optimization problem.

In this game formulation, we have a single switch and thus
the problem at this stage is a multi-objective (two objectives:
J1∗
1 (S), J1∗

2 (S)) optimization problem over the optimization
variable S.

Let us denote the set of feasible switching strategies by S
which is defined in the following way:

S = {{τk}Nk=0 | 0 = τ0 < τ1 · · · < τN <∞, and
c ≥ N ∈ N} (30)

where N is the set of natural numbers, and c is the maximum
number of allowed switching. It is important to note here

that S ⊂ Rc. The optimization problem at this stage can be
written as

min
S∈S

{J1∗
1 (S), J1∗

2 (S)} (31)

A multi-objective optimization problem has the notion of
Pareto optimally and therefore we seek for Pareto optimal
solution(s) of this problem.

Definition 4.5: A feasible point s ∈ S is said to (Pareto)
dominate another feasible point s1 ∈ S if

1. J1∗
i (s) ≤ J1∗

i (s1) for all i = 1, 2, and
2. J1∗

j (s) < J1∗
j (s1) for some j ∈ {1, 2}.

A solution s∗ ∈ S is called Pareto optimal point if there
does not exist another solution s ∈ S that dominates it.

The set of Pareto optimal outcomes is often known as the
Pareto frontier.
Let us take θ ∈ [0, 1] and define the weighted cost function:

J(S) = θJ1∗
1 (S) + (1− θ)J1∗

2 (S), (32)

where S ∈ S is a feasible switching strategy. It is well known
in the literature that a Pareto optimal solution of (31) has a
one-to-one correspondence with the solution of (32) for some
specific value of θ [18].

Proposition 4.6: For every θ ∈ [0, 1], (32) attains a
minimum for some S(θ) ∈ S.

Proof: [sketch] J1∗
i attains a minimum for every

(Mi, Li) pair such that Mi, Li � 0. J(S) is obtained by
replacing Li and Mi by θL1+(1−θ)L2 and θM1+(1−θ)M2

respectively.
Due to space limitation, we will conclude this section by

pointing to the crucial fact that the optimization problem
to find the Pareto optimal points are finite dimensional
optimization problems and can be solved using classical
techniques such as gradient descent.

V. GAMES WITH AVERAGE COST

In this section, we study the other variation of an infinite
horizon game where the objective of is to optimize the
average cost which is given by:

J2
i (u1, u2,S) = lim sup

T→∞

1

T
E

[∫ T

0

(x′Lix+ u′iRiui)dt

]
(33)

Similar to the discounted cost problem, in this case also
we want to constraint control and switching strategies so
that the cost remains finite. We define the following set of
admissible strategies for the controllers in (34).

Uad2 ,

{(u1(t, x), u2(t, x))| ∀t, ∀x0 ∈ Rn, ∃M s.t.

E[‖x(t)‖] ≤M,E[‖x(t)‖2] ≤M;

and dx = (Ax+B1u1 +B2u2)dt+GdWt} (34)

Let us consider the filtration z(t) = E[x(t) |x(t0)] for the
stochastic dynamics for t > t0. z(t) satisfies the differential
equation

ż(t) =Az(t) +B1u1 +B2u2 (35)
z(t0) =x(t0).
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Following similar steps as done for discounted cost problem,
we consider an arbitrary interval (t0, t1] and within this
interval we define

J2
i (t0, t1, ·) = J2

i (t0, t1, u1, u2,S) (36)

= E
[∫ t1

t0

(x′Lix+ u′iRiui)dt

]
Therefore, we can write

J2
i (t0, t1, ·) =E

[∫ t1

t0

(z′Liz + u′iRiui)dt

]
+ (37)∫ t1

t0

∫ t

t0

tr(‖ΦA(t, s)G‖2Li)dsdt

Similar to Theorem 4.1, we have the following theorem due
to [17] that gives the open loop Nash strategy for the duration
(t0, t1].

Theorem 5.1: Let Q1, Q2 be positive definite matrices
such that the pair (Q1, Q2) is the solution of the following
algebraic matrix Riccati equation (38)

Q1A+A′Q1 + L1 −Q1B1R
−1
1 B′1Q1 −Q1B2R

−1
2 B2Q2 = 0,

(38a)

Q2A+A′Q2 + L2 −Q2B1R
−1
1 B′1Q1 −Q2B2R

−1
2 B2Q2 = 0.

(38b)

The open-loop Nash strategy for the players within the
interval (t0, t1] is given by

u∗i (t) = −R−1i B′iQiΨ(t, t0)x(t0) (39)

where Ψ(t, s) satisfies the equations:

d

dt
Ψ(t, s) =(A−B1R

−1
1 B′1Q1 −B2R

−1
2 B2Q2)Ψ(t, s)

Ψ(t, s) =Ψ(t, r)Ψ(r, s)

Ψ(t, t) =I ∀t, s, r. (40)

Moreover, the optimal cost for player-i for the interval
(t0, t1] of the game is found to be:

J2∗
i (t0, t1, ·) =E[z(t0)′Ciz(t0)− z(t1)′Ciz(t1)]+ (41)∫ t1

t0

∫ t

t0

tr(‖ΦA(t, s)G‖2Li)dsdt.

Ci satisfies the Lyapunov equation:

A′clCi + CiAcl + Li +QiBiR
−1
i B′iQi = 0, (42)

where Acl = A−B1R
−1
1 B′1Q1 −B2R

−1
2 B2Q2.

Using the fact that x(t) = z(t) +
∫ t
t0

ΦA(t, s)GdWs, we
can write

J2∗
i (t0, t1, ·) =E[x(t0)′Cix(t0)− x(t1)′Cix(t1)]+ (43)∫ t1

t0

∫ t

t0

tr(‖ΦA(t, s)G‖2Li)dsdt+∫ t1

t0

tr(‖ΦA(t1, s)G‖2Cids) (44)

Thus, for a switching strategy S = {τk}Nk=1 over an
interval (0, T ], the cost is

J2∗
i (0, T, ·) = E[x′0Cix0 − x(T )′Cix(T )]+ (45)
N+1∑
k=1

∫ τk

τk−1

∫ t

τk−1

tr(‖ΦA(t, s)G‖2Li)dsdt+

N+1∑
k=1

∫ τk

τk−1

tr(‖ΦA(τk, s)G‖2Ci)ds

where τ0 = 0 and τN+1 = T .
For this game problem, we have the constraint that over an

interval (a, b], the maximum number of samples that can be
acquired is dd(b − a)e. The following section describes the
optimal switching strategy for an the infinite horizon game.
Then we use the optimal switching strategy to explicitly
calculate the cost (33).

A. Optimality of the Switching Policy
Let us consider an arbitrary interval (0, T ] and let us

denote N = dTde. Therefore, we aim to find a switching
policy from the following set:

S(N) = {{τk}nk=0 | 0 = τ0 < τ1 < · · · < τn < T ;n ≤ N}
(46)

Proposition 5.2: For any τk > τk−1,∫ τk

τk−1

∫ t

τk−1

tr(‖ΦA(t, s)G‖2Li)dsdt+∫ τk

τk−1

tr(‖ΦA(τk, s)G‖2Ci)ds = (47)∫ τk

τk−1

∫ t

τk−1

tr(‖ΦA(t, s)G‖2
L̃i

)dsdt+ tr(G′CiG)(τk − τk−1)

where L̃i = Li +A′Ci + CiA � 0.
The objective of player-i is to select the optimal switching

strategy S ∈ S(N) for the interval (0, T ] to minimize the
cost. Let us define

Hi(n, τ0, τ1, · · · , τn) = J2∗
i (0, T, ·) = tr(G′CiG)T+

n+1∑
k=1

∫ τk

τk−1

∫ t

τk−1

tr(‖ΦA(t, s)G‖2
L̃i

)dsdt (48)

where τ0 = 0 and τn+1 = T . For a fixed n ≤ N = dTde,
we evaluate the first order necessary conditions ∂Hi

∂τk
≡ 0

∂Hi

∂τk
= (49)∫ τk

τk−1

tr(‖ΦA(τk, s)G‖2L̃i)ds−
∫ τk+1

τk

tr(‖ΦA(s, τk)G‖2
L̃i

)ds

Using the shift invariance property of ΦA(t, s) along with
the fact that ΦA(t, s) = ΦA(−s,−t) we obtain∫ τk+1

τk

tr(‖ΦA(s, τk)G‖2
L̃i

)ds =∫ τk+1

τk

tr(‖ΦA(τk+1 − τk, τk+1 − s)G‖2L̃i)ds =∫ τk+1−τk

0

tr(‖ΦA(τk+1 − τk, s)G‖2L̃i)ds, (50)
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and similarly,∫ τk

τk−1

tr(‖ΦA(τk, s)G‖2L̃i)ds =∫ τk−τk−1

0

tr(‖ΦA(τk − τk−1, s)G‖2L̃i)ds.

Combining the above two results, we obtain

∂Hi

∂τk
=

∫ τk−τk−1

0

tr(‖ΦA(τk − τk−1, s)G‖2L̃i)ds− (51)∫ τk+1−τk

0

tr(‖ΦA(τk+1 − τk, s)G‖2L̃i)ds.

Therefore, ∂Hi
∂τk

= 0 requires τk − τk−1 = τk+1 − τk for
all k. This leads to the fact that the inter-sampling duration
should be constant through out the interval (0, T ] and the
sampling instances are given by

τ∗k = k
T

n+ 1
.

With this structure of τk, we can simplify
Hi(n, τ0, τ1, · · · , τn) into

Hi(n) = Hi(n, τ
∗
0 , τ
∗
1 , · · · , τ∗n) = tr(G′CiG)T+

(n+ 1)

∫ T
(n+1)

0

∫ t

0

tr(‖ΦA(t, s)G‖2Li)dsdt (52)

One can check that Hi(n) is a decreasing function of n.
Consequently n∗ = N = dTde.

Remark 5.3: The optimal τ∗k are same for both the
players in this case. The optimal switching strategy over an
arbitrary interval (0, T ] is a periodic strategy with period
p(T ) = T

dTde+1 Therefore,

p∗ = lim
T→∞

p(T ) =
1

d
.

Thus, the optimal switching policy for the infinite horizon
game is a periodic sampling policy where the period is the
inverse of the bound d.

Therefore, the optimal cost of player-i is:

J2∗
i (u∗1, u

∗
2,S∗) = lim sup

T→∞

1

T
H(n) (53)

=tr(G′CiG) + d

∫ 1
d

0

∫ t

0

tr(‖ΦA(t, s)G‖2Li)dsdt

Thus, the switching strategy is similar to periodic control
or time triggered control and hence this framework can be
used to study game theoretic properties of large multi-agent
systems under periodic or time-triggered control.

VI. CONCLUSIONS

We have considered an infinite horizon linear quadratic
stochastic differential game with two different types of cost
functions. The game under consideration is neither a closed-
loop nor an open-loop game, rather there is a switch which
can provide finite number of discrete time measurements.
We show the existence of Nash control strategy of such a

game and then we address the question of optimal switching
strategy.

The results illustrate that the optimal switching policy (or
equivalently the optimal sampling times) for the discounted
cost problem can be found by constructing a Pareto frontier
of two optimization functions. On the other hand, the average
cost problem shows that the optimal switching is a periodic
sampling policy where the period can be uniquely determined
from the given bound on the number of sampling in an unit
interval.
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