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Abstract-This paper addresses the channel estima- 
tion problem for slow frequency-selective fading chan- 
nels using training sequences and the maximum like 
lihood (ML) approach. In the literature people usu- 
ally assume a symbol period spaced delay-tapped-line 
model and additive white Gaussian noise (AWGN). 
Due to the prdiltering in the receiver front end, if 
the sampling rate is larger than one sample per sym- 
bol or sampling epoch is unknown (Le., the timing 
information is unavailable), the AWGN model is not 
valid anymore. A more general ML aannel estimation 
method using the discrete Fourier transform (DFT) is 
derived for colored Gaussian noise and over-sampling. 
A similar idea can be adopted to derive the ML joint 
carrier phase and timing offsets estimation algorithm. 

I. INTRODUCTION 

For burst-transmission digital communication systems, 
channel estimation is required for ML sequence estimation 
receivers [l]. A typical data burst consists of several blocks 
of user data and a predetermined training sequence (TS) 
which is used to estimate the channel impulse response. 
Channel estimation problems are widely addressed in the 
literature [2]-[4]. Estimation can be implemented using a 
Wiener filter or the DFT. For example, [2]-[4] consider 
channel estimation given a known TS. The authors of 
[2] addressed the problem of selecting the optimum TS 
for channel estimation by processing in the frequency d e  
main. Optimum unbiased channel estimation given white 
noise is considered in [3] using a ML approach. Following 
the least-squares (LS) philosophy, [4] presents algorithms 
for optimal unbiased channel estimation with aperiodic 
spread spectrum signals for white or nonwhite noise. 

Previous works [2] - [4] assumed a symbol period delay- 
tapped-line model or AWGN noise [2]. Due to the pre- 
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filtering in the receiver front end, this model is not ac- 
curate enough and will cause aliasing or leakage in the 
frequency domain. Since typical pulse shaping rolloff fac- 
tors in wireless communications range between 0.2 and 
0.7, a sampling frequency larger than one symbol rate is 
required to  prevent aliasing. Typically a nominal sam- 
pling rate of two samples per symbol period is used in 
wireless receivers [l]. When the sampling rate is higher 
than one sample per symbol or timing information is un- 
known, the AWGN model is not valid. Therefore a more 
general model is desired to accommodate colored Gaus- 
sian noise and a higher sampling rate. Felhauer proposed 
a whitening matched filter approach in [4] to  deal with 
the colored noise, which actually follows a more general 
idea in Van Trees' book [5]. In this paper, we shall show 
that a direct optimum estimator can be derived without 
preliminary processing [5, p.2891. 

In what follows we take a ML approach and derive an 
optimal channel estimation algorithm in the frequency d e  
main. The key issue is how to  tackle the colored Gaussian 
noise. It is well known that the autocovariance matrix of a 
colored Gaussian noise process is a Toeplitz matrix which 
was thoroughly studied in [6]-[8]. We show that the in- 
verse of Toeplits matrices can be substituted by a circular 
matrix asymptotically under certain condition in [7], [SI. 
This leads to  the frequency domain approach because of 
the fact that the eigendecomposition of a circular matrix 
is equivalent to  the DFT. 

The rest of the paper is organized as follows. Section 
I1 models the slow frequency-selective fading channel and 
formulates the ML estimation problem mathematically. 
Section I11 first revisits some properties of Toeplitz matri- 
ces and then derives the channel estimator. As a special 
example case, the ML joint carrier phase and timing off- 
sets estimator is addressed in Section IV that also shows 
some simulation results. Section V concludes the paper. 

11. PROBLEM FORMULATION 

Without limitations on the number of paths and delay 
of each path in our problem, the following channel model 
is assumed: 

L-I 

h(t) = h1W - 76% (1) 
l=O 
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Fig. 1. Modeling of the Slow Frequency-Selective mding Channel 

and the Matched Filter 

where L (unknown) is the total number of paths, hr and q 
are the attenuation and delay factors of path I respectively, 
T is the symbol period. In our model, a slow frequency- 
selective fading channel is assumed, i.e., h1 and q remain 
constant within the observation window, q is comparable 
with the symbol period. The baseband received signal is 
modeled as the following: 

where {an} is the TS, g ( t )  = gT( t )  €3 f ( t ) ,  gT( t )  is the 
transmitter shaping function, f ( t )  is the prefilter in the 
receiver, n( t )  is the AWGN noise with two-sided power 
spectrum density (PSD) N0/2. The received signal z(t)  
is passed through a matched filter with response g ( - t ) ,  
then sampled at the rate 1/T8 with T8 = T / M  ( M  is the 
sampling rate in samples per symbol). The output of the 
matched filter y ( t )  is given by follows 

where r ( t )  = g ( t )  63 g ( - t ) ,  N ( t )  = n( t )  63 g(- t ) .  The 
noise process N ( t )  is colored due the prefilter and matched 
filter. Let yk = y(kT8) and Nk = N(kT8).  The likelihood 
function of {hl, q} is the pdf of a Gaussian r.v. The mean 
of y, given {hl, q} is my@) that is equal to 

1 . ~ 1  Nl2-1  - -  
%(k) = a x  E hranr(kT8 - nT - qT), (4) 

l=O n=-N/2 

where k E [ - K / 2 ,  K / 2  - 11 with K = M ( N  + R) that is 
the total number of digital samples. Variable R models 
the ideal w e  in which a shaping pulse modulated only by 
the TS {an} is transmitted and used to estimate the chan- 
nel response, and the receiver obverses y ( t )  beyond the TS 
portion in order to collect the statistics of the noise pro- 
cess N ( t ) .  The autocovariance matrix of the observation 
vector - y (K x 1) is 

(5 )  
NO 

C O V ~ ~ ~ , E ]  = -A 2 

where A is a K x K Hermitian Toeplitz matrix with jkth 
element equal to 

[A]j,k = r ( ( j  - k)Ts). (6) 

The log likelihood function of (h,D is given by 

(7) 

-(io- -yHQy - + log [ ( 2 s ) K / 2  I ?A I '"I )  
where Q is the inverse of A, q, is the mean vector of y ,  h 
and 7 are the channel response vectors. The ML estinGate 
of channel response ( h , ~ )  is 

(h,d = arg"yIh,d. h,Z (8) 

The computation of (7) and (8) involves the analysis of 
the inverse of a Toeplitz matrix. 

111. ML CHANNEL ESTIMATOR IN THE FREQUENCY 

DOMAIN 

One of the difficulties in deriving the ML channel esti- 
mator arises from the fact that inverse of a Toeplitz matrix 
is no longer Toeplitz. In this section, we first present some 
results on Toeplitz matrices and then apply these results 
to tackle this problem. 

A.  On the Inverse of Toeplitz Matrices - -  

Intrigued by the observation that the information 
through wireless channels is conveyed by uniformly spaced 
pulses that are some kind of distorted convolution of data 
symbols and a shaping pulse, we try to design the esti- 
mation algorithm in the frequency domain. Fortunately 
the special characteristic of Toeplitz matrices provides a 
solution. The general idea is as follows. It is shown in [6] 
that a family of Toeplitz matrices converges to a circular 
matrix in the weak sense. However in practice, stronger 
convergence (e.g. quadratic forms that appear in the like 
lihood function (7)) is desired. Furthermore the inverse of 
Toeplitz matrices is not Toeplitz in general. In [7] and [8], 
we observe that under certain condition the central part 
of the inverse matrix converges to a circular matrix in the 
strong sense, which leads to the definition of finite term 
strong sense convergence. The eigendecomposition of a 
circular matrix is equivalent to the DFT, which diagonal- 
izes the inverse matrix and provides the frequency domain 
approach. The above conclusion is formulated mathemat- 
ically in the sequel. 

95 6 



A family of Toeplitz matrices ITn} (where n is the di- 
mension of the matrix) is defined by a sequence of complex 
numbers 

ti; {i = - - - , -1,o, 1,. * - } 
such that the element of Tn at the ith row and j t h  column 
is equal to t i - j ,  i.e., 

[Tn]i,j = t i - j ,  (9) 

where t-i = ti, i.e., we restrict our discussion to the Her- 
mitian case. Its corresponding circular matrix is defined 
by the discrete time Fourier transform (DTFT) of {t,,}. 
Let T(X) denote the DTFT of tn7 i.e., 

m 

Let U,, denote the DFT matrix defined as 
I- - 
I 1  1 ... 1 

J 1 e-j(2x(n-1)/,,) . . . e-j(2*(n-1)(,,-1)/n) 

and Dn denote the diagonal matrix with the i th diagonal 
element pi,,, = F(Zn(i - l ) /n ) ,  i.e., 

Dn = dia&l,n, ~ 2 , n ,  * * * 7 ~ n , n l .  (11) 

Then the circular matrix U,HDnUn is defined as Cn. We 
can introduce the finite term strong sense convergence as 
follows. 

Definition 1 For two families of Hermitian matrices A,, 
and Bn, consider the quadmtic form 

where the maximum is over all the n-dimensional vector 
ofthe form 

x =  (O,... ,O,x- t ,"'  ,XO,"' ,X~,O,"' 70). 

If (12) converges to zero for any given C ,  we shall call A,, 
converges to Bn in the finite term strong sense. 

If x corresponds to an observation within the window 
[-C, C] (where C does not increase with n)  and with negli- 
gible leakage outside the observation window, we are able 
to replace A,, with B,, asymptotically in evaluating the 
quadratic forms. Many practical applications fall into this 
category. We have the following theorem: 

Theorem 1 Let {T,} be a family of Hemitian Toeplitz 
matrices associated with the sequence {tn},  and F ( z )  be 
the z-transform of {tn}.  If IF(z)l as continuous and does 
not have any zero on the unit circle, and E&=_, [ktkl 5 
00, Tql converges to C;l in the strong sense for finite 
term quadratic forms and 

II T? - c2 111 W/f i ) .  (13) 

B. ML Channel Estimator 

In our problem the inverse matrix is Q. Because A is 
the autocorrelation matrix of the noise process N ( t ) ,  it is 
non-negative definite. Furthermore if we assume Q exists 
for all K, i.e., A is positive definite for all K, it is easy 
to verify that the x transform of {r(kT')} is positive on 
the unit circle. In the over-sampling case, the technique 
in [5, p.2891 can be applied to guarantee our operation 
will be meaningful. In typical communication receivers, 
the shaping pulse {r(kT,)} usually degrades faster than 
O(l/(k(2), e.g., the magnitude of the raised-cosine shap- 
ing pulse is less than 0( l / (k l3) .  In engineering practice, it 
is under the system designer's control to make the train- 
ing portion mg satisfy the finite term condition through 
packing zeros along with the training sequence {an}. Fol- 
lowing the finite term strong sense convergence theorem, 
we can replace the inverse matrix Q by a circular matrix 
C-l k! U Z D - l U ~ ,  where UK is defined in (10). The kth 
(k = 0, - - , K - 1)  diagonal element of D is equal to 

where Fr[k] is the DTFT of {r(kT,)}, R ( w )  is the Fourier 
transform of r(t). 

From (8) we have 

(h7 E) 
H H Qmv - mV Qg + mv &mv] 

(15) 

When K is large enough, i.e., R is large enough, and the 
sampling rate M satisfies the Nyquist sampling theorem, 
we obtain 
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that is the N + R point DFT of the channel re- 
sponse, Fv[m] is the K point DFT of - g, i.e., Fv[m] = -p-' K / 2  y( kT8)e - jaTmklK .  Similarly we have 

K/2-1  
E, &Q~14, = K C ~r[mlld[~l12P[m]12- (17) 

After some arithmetic, it can be shown that the ML esti- 
mate of channel response is given by 

m=-K/2  

(h, d 
=arg min 

h z  

(18) 

In summary, the ML estimate of (&,E) has the following 
DFT 

We have the following observations: 
0 When K is large enough, we can apply the time-shift 

property of Fourier transform to separate the shap- 
ing pulse, TS and channel response in the frequency 
domain. 

0 People are only interested in the channel response 
within the passband of the shaping function, i.e., 
when F,,[m] # 0, (19) follows. 

0 If there is no noise, i.e., No = 0, it is straightforward 
to verify that the real channel response H[m] is ex- 
actly equal to (19). Therefore the channel estimator 
(19) is unbiased. 

0 Because H[m] is just the DTFT of h and 1, there 
are many possible h and 7 that have the same H[m]. 
If the time domain response is desired, H[m] can be 
treated as an intermediate result. 

0 In practice, large K can be handled in the follow- 
ing manner: if TS length N is large enough, R can 
be dropped with negligible performance loss; if N 
is a small number compared with the shaping pulse 
length, proper number (R)  of zeros can be packed 
along with the TS to provide the channel estima- 
tor enough statistical information of the noise process 
N ( t ) *  

IV. AN EXAMPLE CASE AND SIMULATION RESULTS 

The frequency domain approach introduced by the cir- 
cular matrix approximation simplifies the estimator de- 
sign, a similar idea can be applied to design joint carrier 
phase and timing offiets estimator. 

A.  The Data-Aided ML Joint Carrier Phase and Timing 

Offset Estimator 

Consider the following special case of the channel 
model (1): there is only one path, i.e. L = 1 and ho = e j e .  
The frequency-selective fading channel estimation prob- 
lem becomes the joint carrier phase and timing offsets 
estimation problem. Variables 4 and T are used to model 
the carrier phase and timing offiets between the transmit- 
ter and receiver respectively. It is easy to verify that the 
ML joint carrier phase and timing offiets estimator is as 
follows 

11 Kf2-1 

92 ( k=g/2 3v[k]d[k]*e i (2"kr / (N+R)-~)  . 

(20) 

Define P(T) 
K/2-1  

7 (21) 
1 p(.) = - ,v[,],[,]*ei2Tkr/(N+R) 

K k=-K/2 

where P(T)  is the cross-correlation between the t ime 
shifted y and TS a in the frequency domain. The ML 
timing &et estimate is given by 

.i = arg IP(dI, (22) 

i = ar!dP(+)). (23) 

and the ML phase offset estimate is given by 

P a r s e d  relation serves a bridge to connect the time d e  
main processing with the frequency domain. Because K- 
point DFT is an orthonormal transform, we obtain 

N/2-1 

P(T) = g(nT -k TT)UE. (24) 
n= - N / 2  

Therefore the ML estimate of T is the argument that max- 
imizes the magnitude of the cross-correlation between the 
received samples and the TS either in the frequency d e  
main or in the time domain. In fact the ML estimator 
(24) was proposed in [l], which was derived based on other 
techniques. 
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Fig. 2. Channel Estimation Result Averaged over 500 Tests, M = 2 

Fig. 3. The R M S  Timing Offset Estimation Error with a = 0.50 

B. Simulation Results 

Computer simulations were conducted to test the chan- 
nel estimator and the joint carrier phase and timing offsets 
estimator. An M-sequence with length 63 (as the TS), a 
sampling rate M = 2 with K = 63M, a carrier at 800 
MHz, and a Gray typical urban (TU) channel model were 
applied as in the channel estimation simulation. Figure 2 
shows the averaged estimation result (over 500 tests) at 
O B ,  where the z-axis is the normalized frequency, and the 
y-axis is the normalized magnitude response (N[m]Fr[m]l. 
We can see that the estimator is unbiased. 

A simplified algorithm (based on (22) that uses cuwe- 
fitting technique [9] was applied in our joint timing and 
carrier phase estimation simulation. The following con- 
ditions were assumed: N = 48, M = 4 and the rolloff 
factor a = 0.5. Figure 3 shows the root mean squared 
(RMS) timing estimation error versus the Cramer-Rao 
lower bound (CRB) that was derived in [8]. Two TS 

patterns were tested: the dotting sequence (one-zero se- 
quence) and a pesuderandom sequence. Simulation shows 
that the estimation performance approaches the CRB. 

V. CONCLUSIONS 

In this paper, a ML channel estimator for slow 
frequency-selective fading channels was derived in the fre- 
quency domain given general colored Gaussian noise and 
over-sampling conditions. The key issue is to resolve the 
inverse of Toeplitz matrices that are introduced by the 
prefilter and matched filter in the receiver front end. A 
similar idea can be applied to derive the ML joint carrier 
phase and timing offsets estimator. 
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